In this study, a spherical inertial electrostatic fusion reactor (SIEC-K) is designed, built and operated to analyze electrostatic characteristics and plasma breakdown conditions. The reactor consists of two spherical electrodes; where the anode is the outer chamber of the reactor made out of two aluminum hemispheres and the cathode is a combination of stainless-steel wires forming a cage like structure aligned within the center. Design considerations and processes are introduced as the execution of this technology sustains the fundamental grounds to understanding plasma breakdown. The conditions for plasma breakdown are that under a low-pressure environment where a certain potential difference is created between two electrodes, a deep potential well will be formed within the cathode region. The gas present in the reactor chamber will be ionized and the nucleus of the atoms will be accelerated towards the negative potential well, creating plasma breakdown. Considering that this study will not focus on nuclear fusion reactions, the main fuel source is chosen to be air and it is also very convenient to operate with. Electrostatic simulation was made to estimate the plasma region inside of the reactor and check if the proposed design is in accordance with the literature, which is to validate the formation of the potential well within the structure of the cathode. Pressure-voltage values within the range of hardware limitations (1-6 kV) for plasma breakdown values are recorded and qualitatively compared to their corresponding values for linear Paschen’s plasma breakdown voltage law. The main motivation behind this study is to uncover the basis of plasma characteristics of the SIEC-K Reactor for future studies.
Ankara University Institute of Nuclear Sciences
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | June 25, 2021 |
Submission Date | December 21, 2020 |
Published in Issue | Year 2020 |