Research Article
BibTex RIS Cite

Thermal Fading Rates in LiF:Mg,Ti Main Thermoluminescence Peaks

Year 2017, , 26 - 30, 25.08.2017
https://doi.org/10.1501/nuclear.2023.23

Abstract

Thermal fading (TF) is important in choosing appropriate
thermoluminescence (TL) materials for particular applications. TF is the
process of reducing the capability of producing the response due to radiation
exposure. The fading rate of LiF based thermoluminescent (TL) material depends
on many experimental parameters such as storage temperature, readout mechanism,
annealing and radiation
type or time based on the storage time before or after radiation.



The general  aim of the present
work  is to investigate if the activation
energy E,
frequency factor  s, temperature T and concentration µ0 values evaluated from the experimental thermal fading
rates glow–curves through a computerized glow–curve deconvolution analysis
(CGCD),  can simulate the thermal fading
glow-curves using a phenomenological 
model for LiF;Mg,Ti.

References

  • [1] John A. Harvey, Nathan P. Haverland, Kimberlee J. Kearfott ; Characterization of the glow-peak fading properties of six common thermoluminescent materials ,Applied Radiation and Isotopes 68 (2010) 1988–2000.
  • [2] Horowitz, Y.S., Satinger, D., Brandan, M.E., Avila, O., Rodriguez-Villafuerte, M., 2002a. Supralinearity of peaks 5a, 5 and 5b in TLD-100 following 6.8 MeV and 2.6 MeV He ion irradiation: the extended track interaction model. Radiat. Prot. Dosim. 100, 95–98.
  • [3] Horowitz, Y.S., Oster, L., Satinger, D., Biderman, S., 2002b. The composite structure of peak 5 in the glow curve of LiF:Mg,Ti (TLD-100): confirmation of peak 5a arising from a locally trapped electron–hole configuration. Radiat. Prot. Dosim. 100, 123–126.
  • [4] Moscovitch, M., Szalanczy, A., Bruml, W.W., Velbeck, K.J., Tawil, R.A., 1990. A TLD system based on gas heating with linear time–temperature profile. Radiat. Prot. Dosim. 34, 361–364.
  • [5] Izak-Biran, T., Malchi, S., Shamai, Y., Alfassi, Z.B., 1996. Low pre- and post- irradiation fading of LiF:Mg,Ti (TLD-100, TLD-600, TLD-700) using a preheat technique. Radiat. Prot. Dosim. 64, 269–274
  • [6] D.Yossian and Y.S.Horowitz Rad. Prot. Dosim. 60, 1995 (special issue).
  • [7] A Delgado J L Muniz and J M Gomez Ros Radiat. Measurem. 21 (1994) 693.
  • [8] D. Afouxenidis, G. S. Polymeris, N. C. Tsirliganis and G. Kitis. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program. Radiation Protection Dosimetry (2012), Vol. 149, No. 4, pp. 363–370.
  • [9] Kitis, G., Gomes-Ros, J. M. and Tuyn, J. W. N. Thermoluminescence glow curve deconvolution functions for first, second and general orders of kinetics. J. Phys.D: Appl. Phys. 31 2636–2641 (1998).
  • [10] M. Halimi, D. Kadri, A. Mokeddem , Modern Physics Letters B Vol. 29, No. 34 (2015) 1550226 .
Year 2017, , 26 - 30, 25.08.2017
https://doi.org/10.1501/nuclear.2023.23

Abstract

Thermal fading (TF) is important in choosing appropriate
thermoluminescence (TL) materials for particular applications. TF is the
process of reducing the capability of producing the response due to radiation
exposure. The fading rate of LiF based thermoluminescent (TL) material depends
on many experimental parameters such as storage temperature, readout mechanism,
annealing and radiation
type or time based on the storage time before or after radiation.



The general  aim of the present
work  is to investigate if the activation
energy E,
frequency factor  s, temperature T and concentration µ0 values evaluated from the experimental thermal fading
rates glow–curves through a computerized glow–curve deconvolution analysis
(CGCD),  can simulate the thermal fading
glow-curves using a phenomenological 
model for LiF;Mg,Ti.

References

  • [1] John A. Harvey, Nathan P. Haverland, Kimberlee J. Kearfott ; Characterization of the glow-peak fading properties of six common thermoluminescent materials ,Applied Radiation and Isotopes 68 (2010) 1988–2000.
  • [2] Horowitz, Y.S., Satinger, D., Brandan, M.E., Avila, O., Rodriguez-Villafuerte, M., 2002a. Supralinearity of peaks 5a, 5 and 5b in TLD-100 following 6.8 MeV and 2.6 MeV He ion irradiation: the extended track interaction model. Radiat. Prot. Dosim. 100, 95–98.
  • [3] Horowitz, Y.S., Oster, L., Satinger, D., Biderman, S., 2002b. The composite structure of peak 5 in the glow curve of LiF:Mg,Ti (TLD-100): confirmation of peak 5a arising from a locally trapped electron–hole configuration. Radiat. Prot. Dosim. 100, 123–126.
  • [4] Moscovitch, M., Szalanczy, A., Bruml, W.W., Velbeck, K.J., Tawil, R.A., 1990. A TLD system based on gas heating with linear time–temperature profile. Radiat. Prot. Dosim. 34, 361–364.
  • [5] Izak-Biran, T., Malchi, S., Shamai, Y., Alfassi, Z.B., 1996. Low pre- and post- irradiation fading of LiF:Mg,Ti (TLD-100, TLD-600, TLD-700) using a preheat technique. Radiat. Prot. Dosim. 64, 269–274
  • [6] D.Yossian and Y.S.Horowitz Rad. Prot. Dosim. 60, 1995 (special issue).
  • [7] A Delgado J L Muniz and J M Gomez Ros Radiat. Measurem. 21 (1994) 693.
  • [8] D. Afouxenidis, G. S. Polymeris, N. C. Tsirliganis and G. Kitis. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program. Radiation Protection Dosimetry (2012), Vol. 149, No. 4, pp. 363–370.
  • [9] Kitis, G., Gomes-Ros, J. M. and Tuyn, J. W. N. Thermoluminescence glow curve deconvolution functions for first, second and general orders of kinetics. J. Phys.D: Appl. Phys. 31 2636–2641 (1998).
  • [10] M. Halimi, D. Kadri, A. Mokeddem , Modern Physics Letters B Vol. 29, No. 34 (2015) 1550226 .
There are 10 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

M. Halimi

D. Kadri

A. Mokeddema

İ. Missoum

Publication Date August 25, 2017
Submission Date April 1, 2017
Published in Issue Year 2017

Cite

APA Halimi, M., Kadri, D., Mokeddema, A., Missoum, İ. (2017). Thermal Fading Rates in LiF:Mg,Ti Main Thermoluminescence Peaks. Journal of Nuclear Sciences, 4(1), 26-30. https://doi.org/10.1501/nuclear.2023.23
AMA Halimi M, Kadri D, Mokeddema A, Missoum İ. Thermal Fading Rates in LiF:Mg,Ti Main Thermoluminescence Peaks. Journal of Nuclear Sciences. August 2017;4(1):26-30. doi:10.1501/nuclear.2023.23
Chicago Halimi, M., D. Kadri, A. Mokeddema, and İ. Missoum. “Thermal Fading Rates in LiF:Mg,Ti Main Thermoluminescence Peaks”. Journal of Nuclear Sciences 4, no. 1 (August 2017): 26-30. https://doi.org/10.1501/nuclear.2023.23.
EndNote Halimi M, Kadri D, Mokeddema A, Missoum İ (August 1, 2017) Thermal Fading Rates in LiF:Mg,Ti Main Thermoluminescence Peaks. Journal of Nuclear Sciences 4 1 26–30.
IEEE M. Halimi, D. Kadri, A. Mokeddema, and İ. Missoum, “Thermal Fading Rates in LiF:Mg,Ti Main Thermoluminescence Peaks”, Journal of Nuclear Sciences, vol. 4, no. 1, pp. 26–30, 2017, doi: 10.1501/nuclear.2023.23.
ISNAD Halimi, M. et al. “Thermal Fading Rates in LiF:Mg,Ti Main Thermoluminescence Peaks”. Journal of Nuclear Sciences 4/1 (August 2017), 26-30. https://doi.org/10.1501/nuclear.2023.23.
JAMA Halimi M, Kadri D, Mokeddema A, Missoum İ. Thermal Fading Rates in LiF:Mg,Ti Main Thermoluminescence Peaks. Journal of Nuclear Sciences. 2017;4:26–30.
MLA Halimi, M. et al. “Thermal Fading Rates in LiF:Mg,Ti Main Thermoluminescence Peaks”. Journal of Nuclear Sciences, vol. 4, no. 1, 2017, pp. 26-30, doi:10.1501/nuclear.2023.23.
Vancouver Halimi M, Kadri D, Mokeddema A, Missoum İ. Thermal Fading Rates in LiF:Mg,Ti Main Thermoluminescence Peaks. Journal of Nuclear Sciences. 2017;4(1):26-30.