A Bibliometric Analysis of Cross-Section Calculations
Yıl 2022,
Cilt: 9 Sayı: 2, 32 - 42, 04.09.2025
Hasan Özdoğan
,
Gençay Sevim
,
Yiğit Ali Üncü
Öz
In this study, the literature for cross section calculations examined from 2019 to 2023 using the ISI Web of Science (WOS) database to understand the dynamics of scientific communication. The main objective was to perform a bibliometric analysis and model networks among authors, texts, sources, citations, keywords, organizations, and countries. Using the R tool "Bibliometrix" and descriptive statistical techniques, the significant publication trends in co-authorship, citation patterns, institutional collaborations, and the geographic distribution of authorship have been identifed. The present findings highlight the importance of international collaboration and interdisciplinary research. The presented bibliometric analysis for cross section calculations has uncovered significant publication trends, particularly regarding co-authorships, citation patterns, institutional collaborations, and the geographic origins of authors.
Etik Beyan
The authors declare that there is no conflict of interest regarding the publication of this paper.
Teşekkür
Acknowledgment
Authors contributed equally to this work. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
Kaynakça
-
[1] S. Agostinelli et al., “GEANT4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A, vol. 506, no. 3, 250–303, 2003.
-
[2] R. E. Prael and H. Lichtenstein, User Guide to the LAHET Code System, Los Alamos National Laboratory Report LA-UR-89-3014, 1989.
-
[3] T. T. Böhlen et al., “The FLUKA Code: Developments and Challenges for High Energy and Medical Applications,” Nucl. Data Sheets, vol. 120, 211–214, 2014.
-
[4] M. Blann, ALICE91: Precompound Model Code for Nuclear Reaction Calculations, Report, 1991.
-
[5] A. I. Dityuk, A. Y. Konobeyev, V. P. Lunev, and Y. N. Shubin, ALICE-IPPE – An Updated Version of ALICE91 for Precompound Nuclear Reactions, Obninsk: Institute of Physics and Power Engineering, 1998.
-
[6] P. G. Young and E. D. Arthur, Comprehensive Nuclear Model Code System – GNASH, Los Alamos National Laboratory Report LA-UR-89-3014, 1989.
-
[7] M. Herman et al., “EMPIRE: Nuclear Reaction Model Code System for Data Evaluation,” Nucl. Data Sheets, vol. 108, no. 12, 2655–2715, 2007.
-
[8] A. J. Koning, S. Hilaire, and M. C. Duijvestijn, “TALYS-1.0,” in Proceedings of the International Conference on Nuclear Data for Science and Technology, Nice, France, 2007, 211–214.
-
[9] T. Kawano, T. Ohsawa, K. Shibata, and H. Nakashima, “Nuclear Data Calculations Using JENDL High Energy File,” J. Nucl. Sci. Technol., vol. 41, no. Suppl. 2, 1221–1225, 2004.
-
[10] S. G. Mashnik, A. J. Sierk, and R. E. Prael, Cascade-Exciton Model of Nuclear Reactions: CEM95 Code Manual, Los Alamos National Laboratory Report LA-UR-98-6000, 1995.
-
[11]A. Kaplan, H. Özdoğan, A. Aydın, and E. Tel, “(γ,2n) Reaction Cross Section Calculations on Several Structural Fusion Materials,” Journal of Fusion Energy, vol. 32, no. 4, 431–436, 2013, doi: 10.1007/s10894-012-9590-9.
-
[12] A. Kaplan, İ. H. Sarpün, A. Aydın, E. Tel, V. Çapalı, and H. Özdoǧan, “(γ, 2n)-Reaction cross-section calculations of several even-even lanthanide nuclei using different level density models,” Physics of Atomic Nuclei, vol. 78, no. 1, 53–64, 2015, doi: 10.1134/S106377881501010X.
-
[13] H. Özdoğan, M. Şekerci, and A. Kaplan, “A new developed semi-empirical formula for the (α,p) reaction cross-section at 19±1 MeV,” Mod Phys Lett A, vol. 34, no. 06, p. 1950044, 2019, doi: 10.1142/S0217732319500445.
-
[14] H. Özdoğan, M. Şekerci, and A. Kaplan, “Investigation of gamma strength functions and level density models effects on photon induced reaction cross–section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu,” Applied Radiation and Isotopes, vol. 143, 6–10, 2019, doi: https://doi.org/10.1016/j.apradiso.2018.10.011.
-
[15] A. Gandhi et al., “Cross section calculation of (n,p) and (n,2n) nuclear reactions on Zn, Mo and Pb isotopes with ∼14 MeV neutrons,” J Radioanal Nucl Chem, vol. 322, no. 1, 89–97, 2019, [Online]. http://inis.iaea.org/search/search.aspx?orig_q=RN:50077097.
-
[16] H. Azizakram, M. Sadeghi, P. Ashtari, and F. Zolfagharpour, “An overview of 124I production at a medical cyclotron by ALICE/ASH, EMPIRE-3.2.2 and TALYS-1.6 codes,” Applied Radiation and Isotopes, vol. 112, 147–155, 2016, doi: https://doi.org/10.1016/j.apradiso.2016.03.028.
-
[17] A. B. Olorunsola, J. A. Bamikole, A. A. Bello, O. M. Ikumapayi, and B. A. Adaramola, “Model calculation and evaluation of neutron induced reaction cross-section on 237Np, 241Am and 245Cm using EMPIRE 3.2 code,” AIP Conf Proc, vol. 2754, no. 1, p. 030010, 2023, doi: 10.1063/5.0161141.
-
[18] L. Yettou and M. Belgaid, “Calculation of pre-equilibrium effects in neutron-induced cross section on 32,34 S isotopes using the EMPIRE 3.2 code,” EPJ Web Conf, vol. 100, p. 01009, 2015, doi: 10.1051/epjconf/201510001009.
-
[19] O. Kilicoglu and H. Mehmetcik, “Science mapping for radiation shielding research,” Radiation Physics and Chemistry, vol. 189, p. 109721, 2021, doi: 10.1016/j.radphyschem.2021.109721
-
[20] L. Obregón, C. Orozco, J. M. Camargo, J. Duarte, and G. Valencia, “Research trend on nuclear energy from 2008 to 2018: A bibliometric analysis,” International Journal of Energy Economics and Policy, vol. 9, no. 4, 106–115, 2019, doi: 10.32479/ijeep.8515.
-
[21] S. Permana, “Two decades of nuclear energy policy and its impact on Indonesia: A bibliometric review,” International Journal of Energy Economics and Policy, vol. 12, no. 1, 1–6, 2022, doi: 10.32479/ijeep.12547.
-
[22] A. Mardani and S. Abdiazar, “Global research status in leading nuclear science and technology journals during 2001–2010,” Library Review, vol. 63, no. 4/5, 324–339, 2014, doi: 10.1108/LR-02-2013-0014
-
[23] A. Andrés, Measuring academic research: How to undertake a bibliometric study. Elsevier, 2009.
-
[24] S. M. Lawani, “Bibliometrics: Its Theoretical Foundations, Methods and Applications,” vol. 31, no. Jahresband, pp. 294–315, 1981, doi: doi:10.1515/libr.1981.31.1.294.
-
[25] B. Martin, “What can bibliometrics tell us about changes in the mode of knowledge production?,” Prometheus, vol. 29, 455–479, Dec. 2011, doi: 10.1080/08109028.2011.643540.
-
[26] M. Mering, “In Lay Terms: Bibliometrics: Understanding Author-, Article- and Journal- Level Metrics,” Serials Review, vol. 43, p. 0, Jan. 2017, doi: 10.1080/00987913.2017.1282288.
-
[27] M. Aria and C. Cuccurullo, “bibliometrix: An R-tool for comprehensive science mapping analysis,” J Informetr, vol. 11, no. 4, 959–975, 2017, doi: https://doi.org/10.1016/j.joi.2017.08.007.
-
[28] C. Neuhaus and H.-D. Daniel, “Data Sources for Performing Citation Analysis: An Overview,” Journal of Documentation, vol. 64, 193–210, Mar. 2008, doi: 10.1108/00220410810858010.
-
[29] M. McLean, “RefManageR: Import and Manage BibTeX and BibLaTeX References in R,” The Journal of Open Source Software, vol. 2, Aug. 2017, doi: 10.21105/joss.00338.
-
[30] M. S. Zakaria, “Data visualization as a research support service in academic libraries: An investigation of world-class universities,” The Journal of Academic Librarianship, vol. 47, no. 5, p. 102397, 2021, doi: https://doi.org/10.1016/j.acalib.2021.102397.
-
[31] K. Healy and J. Moody, “Data Visualization in Sociology,” Annu Rev Sociol, vol. 40, 105–128, 2014, doi: 10.1146/annurev-soc-071312-145551.
-
[32] C. Perin, R. Vuillemot, C. D. Stolper, J. T. Stasko, J. Wood, and S. Carpendale, “State of the Art of Sports Data Visualization,” Computer Graphics Forum, vol. 37, no. 3, 663–686, 2018, doi: https://doi.org/10.1111/cgf.13447.
-
[33] A. J. Lotka, “The frequency distribution of scientific productivity,” J. Wash. Acad. Sci., vol. 16, no. 12, 317–325, 1926.
-
[34] J. Alvarado et al., “Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes,” Energy Environ Sci, vol. 12, no. 2, 780–794, 2019, doi: 10.1039/C8EE02601G.
-
[35]R. Güsten et al., “Astrophysical detection of the helium hydride ion HeH+,” Nature, vol. 568, no. 7752, 357–359, 2019.
-
[36] V. Vuitton, R. V Yelle, S. J. Klippenstein, S. M. Hörst, and P. Lavvas, “Simulating the density of organic species in the atmosphere of Titan with a coupled ion-neutral photochemical model,” Icarus, vol. 324, 120–197, 2019, doi: https://doi.org/10.1016/j.icarus.2018.06.013.
-
[37] T. Kawano et al., “IAEA Photonuclear Data Library 2019,” Nuclear Data Sheets, vol. 163, 109–162, 2020, doi: https://doi.org/10.1016/j.nds.2019.12.002.
-
[38] Y. Xu, Y. Han, H. Liang, Z. Wu, H. Guo, and C. Cai, “Global optical model potential for the weakly bound projectile 9Be,” Phys Rev C, vol. 99, no. 3, p. 34618, Mar. 2019, doi: 10.1103/PhysRevC.99.034618.
-
[39] Y. Xu, Y. Han, H. Liang, Z. Wu, H. Guo, and C. Cai, “Global optical model potential for the weakly bound projectile Be 9,” Phys Rev C, vol. 99, no. 3, p. 034618, 2019.
-
[40] X. Liu, Y. Huang, L. Ding, X. Zhao, P. Liu, and T. Li, “Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption,” J Mater Sci Technol, vol. 72, 93–103, May 2021, doi: 10.1016/j.jmst.2020.09.012.
-
[41] H. Özdoğan, “Theoretical calculations of production cross–sections for the 201Pb, 111In 18F and 11C radioisotopes at proton induced reactions,” Applied Radiation and Isotopes, vol. 143, 1–5, 2019, doi: https://doi.org/10.1016/j.apradiso.2018.10.007.
-
[42] C. Evoli, R. Aloisio, and P. Blasi, “Galactic cosmic rays after the AMS-02 observations,” Physical Review D, vol. 99, no. 10, p. 103023, 2019, doi: 10.1103/PhysRevD.99.103023.
-
[43] Z. Wu and L. Guo, “Microscopic studies of production cross sections in multinucleon transfer reaction 58Ni 124Sn,” Phys Rev C, vol. 100, no. 1, p. 14612, 2019, doi: 10.1103/PhysRevC.100.014612.
-
[44] V. Mossa et al., “The baryon density of the Universe from an improved rate of deuterium burning,” Nature, vol. 587, no. 7833, 210–213, 2020.
-
[45] M. Duer et al., “Direct observation of proton-neutron short-range correlation dominance in heavy nuclei,” Phys Rev Lett, vol. 122, no. 17, p. 172502, 2019.
-
[46] D. Carbone et al., “Analysis of two-nucleon transfer reactions in the Ne 20+ Cd 116 system at 306 MeV,” Phys Rev C, vol. 102, no. 4, p. 044606, 2020.
-
[47] Y. Liang et al., “Benzene decomposition by non-thermal plasma: A detailed mechanism study by synchrotron radiation photoionization mass spectrometry and theoretical calculations,” J Hazard Mater, vol. 420, p. 126584, 2021, doi: https://doi.org/10.1016/j.jhazmat.2021.126584.
-
[48] S. Parashari et al., “Systematic analysis of the neutron-induced reaction cross sections for nat Mo isotopes within 10--20 MeV,” Phys Rev C, vol. 99, no. 4, p. 44602, 2019, doi: 10.1103/PhysRevC.99.044602.
-
[49] E. K. Elmaghraby, G. Y. Mohamed, and M. Al-abyad, “Experimental investigation and nuclear model calculations for proton induced reactions on indium around thresholds,” Nucl Phys A, vol. 984, 112–132, 2019, doi: https://doi.org/10.1016/j.nuclphysa.2019.01.009.
-
[50] N. Rocco, C. Barbieri, O. Benhar, A. De Pace, and A. Lovato, “Neutrino-nucleus cross section within the extended factorization scheme,” Phys Rev C, vol. 99, no. 2, p. 25502, 2019, doi: 10.1103/PhysRevC.99.025502.
-
[51] A. Spatafora et al., “Ne 20+ Ge 76 elastic and inelastic scattering at 306 MeV,” Phys Rev C, vol. 100, no. 3, p. 034620, 2019.
Tesir kesit Hesaplamalarına Yönelik Bibliyometrik Bir Analiz
Yıl 2022,
Cilt: 9 Sayı: 2, 32 - 42, 04.09.2025
Hasan Özdoğan
,
Gençay Sevim
,
Yiğit Ali Üncü
Öz
Bu çalışmada, bilimsel iletişimin dinamiklerini anlamak amacıyla 2019–2023 yılları arasında tesir kesit hesaplamalarına yönelik literatürü ISI Web of Science (WOS) veritabanı üzerinden inceledik. Birincil amacımız, bibliyometrik bir analiz gerçekleştirmek ve yazarlar, metinler, kaynaklar, atıflar, anahtar kelimeler, kurumlar ve ülkeler arasındaki ağları modellemektir. Bu doğrultuda, R tabanlı "Bibliometrix" aracı ve tanımlayıcı istatistiksel teknikler kullanılarak, eşyazarlık ilişkileri, atıf desenleri, kurumsal iş birlikleri ve yazarlığın coğrafi dağılımına ilişkin önemli yayın eğilimleri belirlenmiştir. Bulgularımız, uluslararası iş birliğinin ve disiplinler arası araştırmaların önemine dikkat çekmektedir. Tesir kesit hesaplamalarına yönelik analizimiz, özellikle eşyazarlık yapıları, atıf desenleri, kurumsal iş birlikleri ve yazarların coğrafi kökenleri açısından dikkat çekici yayın eğilimlerini ortaya koymuştur.
Kaynakça
-
[1] S. Agostinelli et al., “GEANT4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A, vol. 506, no. 3, 250–303, 2003.
-
[2] R. E. Prael and H. Lichtenstein, User Guide to the LAHET Code System, Los Alamos National Laboratory Report LA-UR-89-3014, 1989.
-
[3] T. T. Böhlen et al., “The FLUKA Code: Developments and Challenges for High Energy and Medical Applications,” Nucl. Data Sheets, vol. 120, 211–214, 2014.
-
[4] M. Blann, ALICE91: Precompound Model Code for Nuclear Reaction Calculations, Report, 1991.
-
[5] A. I. Dityuk, A. Y. Konobeyev, V. P. Lunev, and Y. N. Shubin, ALICE-IPPE – An Updated Version of ALICE91 for Precompound Nuclear Reactions, Obninsk: Institute of Physics and Power Engineering, 1998.
-
[6] P. G. Young and E. D. Arthur, Comprehensive Nuclear Model Code System – GNASH, Los Alamos National Laboratory Report LA-UR-89-3014, 1989.
-
[7] M. Herman et al., “EMPIRE: Nuclear Reaction Model Code System for Data Evaluation,” Nucl. Data Sheets, vol. 108, no. 12, 2655–2715, 2007.
-
[8] A. J. Koning, S. Hilaire, and M. C. Duijvestijn, “TALYS-1.0,” in Proceedings of the International Conference on Nuclear Data for Science and Technology, Nice, France, 2007, 211–214.
-
[9] T. Kawano, T. Ohsawa, K. Shibata, and H. Nakashima, “Nuclear Data Calculations Using JENDL High Energy File,” J. Nucl. Sci. Technol., vol. 41, no. Suppl. 2, 1221–1225, 2004.
-
[10] S. G. Mashnik, A. J. Sierk, and R. E. Prael, Cascade-Exciton Model of Nuclear Reactions: CEM95 Code Manual, Los Alamos National Laboratory Report LA-UR-98-6000, 1995.
-
[11]A. Kaplan, H. Özdoğan, A. Aydın, and E. Tel, “(γ,2n) Reaction Cross Section Calculations on Several Structural Fusion Materials,” Journal of Fusion Energy, vol. 32, no. 4, 431–436, 2013, doi: 10.1007/s10894-012-9590-9.
-
[12] A. Kaplan, İ. H. Sarpün, A. Aydın, E. Tel, V. Çapalı, and H. Özdoǧan, “(γ, 2n)-Reaction cross-section calculations of several even-even lanthanide nuclei using different level density models,” Physics of Atomic Nuclei, vol. 78, no. 1, 53–64, 2015, doi: 10.1134/S106377881501010X.
-
[13] H. Özdoğan, M. Şekerci, and A. Kaplan, “A new developed semi-empirical formula for the (α,p) reaction cross-section at 19±1 MeV,” Mod Phys Lett A, vol. 34, no. 06, p. 1950044, 2019, doi: 10.1142/S0217732319500445.
-
[14] H. Özdoğan, M. Şekerci, and A. Kaplan, “Investigation of gamma strength functions and level density models effects on photon induced reaction cross–section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu,” Applied Radiation and Isotopes, vol. 143, 6–10, 2019, doi: https://doi.org/10.1016/j.apradiso.2018.10.011.
-
[15] A. Gandhi et al., “Cross section calculation of (n,p) and (n,2n) nuclear reactions on Zn, Mo and Pb isotopes with ∼14 MeV neutrons,” J Radioanal Nucl Chem, vol. 322, no. 1, 89–97, 2019, [Online]. http://inis.iaea.org/search/search.aspx?orig_q=RN:50077097.
-
[16] H. Azizakram, M. Sadeghi, P. Ashtari, and F. Zolfagharpour, “An overview of 124I production at a medical cyclotron by ALICE/ASH, EMPIRE-3.2.2 and TALYS-1.6 codes,” Applied Radiation and Isotopes, vol. 112, 147–155, 2016, doi: https://doi.org/10.1016/j.apradiso.2016.03.028.
-
[17] A. B. Olorunsola, J. A. Bamikole, A. A. Bello, O. M. Ikumapayi, and B. A. Adaramola, “Model calculation and evaluation of neutron induced reaction cross-section on 237Np, 241Am and 245Cm using EMPIRE 3.2 code,” AIP Conf Proc, vol. 2754, no. 1, p. 030010, 2023, doi: 10.1063/5.0161141.
-
[18] L. Yettou and M. Belgaid, “Calculation of pre-equilibrium effects in neutron-induced cross section on 32,34 S isotopes using the EMPIRE 3.2 code,” EPJ Web Conf, vol. 100, p. 01009, 2015, doi: 10.1051/epjconf/201510001009.
-
[19] O. Kilicoglu and H. Mehmetcik, “Science mapping for radiation shielding research,” Radiation Physics and Chemistry, vol. 189, p. 109721, 2021, doi: 10.1016/j.radphyschem.2021.109721
-
[20] L. Obregón, C. Orozco, J. M. Camargo, J. Duarte, and G. Valencia, “Research trend on nuclear energy from 2008 to 2018: A bibliometric analysis,” International Journal of Energy Economics and Policy, vol. 9, no. 4, 106–115, 2019, doi: 10.32479/ijeep.8515.
-
[21] S. Permana, “Two decades of nuclear energy policy and its impact on Indonesia: A bibliometric review,” International Journal of Energy Economics and Policy, vol. 12, no. 1, 1–6, 2022, doi: 10.32479/ijeep.12547.
-
[22] A. Mardani and S. Abdiazar, “Global research status in leading nuclear science and technology journals during 2001–2010,” Library Review, vol. 63, no. 4/5, 324–339, 2014, doi: 10.1108/LR-02-2013-0014
-
[23] A. Andrés, Measuring academic research: How to undertake a bibliometric study. Elsevier, 2009.
-
[24] S. M. Lawani, “Bibliometrics: Its Theoretical Foundations, Methods and Applications,” vol. 31, no. Jahresband, pp. 294–315, 1981, doi: doi:10.1515/libr.1981.31.1.294.
-
[25] B. Martin, “What can bibliometrics tell us about changes in the mode of knowledge production?,” Prometheus, vol. 29, 455–479, Dec. 2011, doi: 10.1080/08109028.2011.643540.
-
[26] M. Mering, “In Lay Terms: Bibliometrics: Understanding Author-, Article- and Journal- Level Metrics,” Serials Review, vol. 43, p. 0, Jan. 2017, doi: 10.1080/00987913.2017.1282288.
-
[27] M. Aria and C. Cuccurullo, “bibliometrix: An R-tool for comprehensive science mapping analysis,” J Informetr, vol. 11, no. 4, 959–975, 2017, doi: https://doi.org/10.1016/j.joi.2017.08.007.
-
[28] C. Neuhaus and H.-D. Daniel, “Data Sources for Performing Citation Analysis: An Overview,” Journal of Documentation, vol. 64, 193–210, Mar. 2008, doi: 10.1108/00220410810858010.
-
[29] M. McLean, “RefManageR: Import and Manage BibTeX and BibLaTeX References in R,” The Journal of Open Source Software, vol. 2, Aug. 2017, doi: 10.21105/joss.00338.
-
[30] M. S. Zakaria, “Data visualization as a research support service in academic libraries: An investigation of world-class universities,” The Journal of Academic Librarianship, vol. 47, no. 5, p. 102397, 2021, doi: https://doi.org/10.1016/j.acalib.2021.102397.
-
[31] K. Healy and J. Moody, “Data Visualization in Sociology,” Annu Rev Sociol, vol. 40, 105–128, 2014, doi: 10.1146/annurev-soc-071312-145551.
-
[32] C. Perin, R. Vuillemot, C. D. Stolper, J. T. Stasko, J. Wood, and S. Carpendale, “State of the Art of Sports Data Visualization,” Computer Graphics Forum, vol. 37, no. 3, 663–686, 2018, doi: https://doi.org/10.1111/cgf.13447.
-
[33] A. J. Lotka, “The frequency distribution of scientific productivity,” J. Wash. Acad. Sci., vol. 16, no. 12, 317–325, 1926.
-
[34] J. Alvarado et al., “Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes,” Energy Environ Sci, vol. 12, no. 2, 780–794, 2019, doi: 10.1039/C8EE02601G.
-
[35]R. Güsten et al., “Astrophysical detection of the helium hydride ion HeH+,” Nature, vol. 568, no. 7752, 357–359, 2019.
-
[36] V. Vuitton, R. V Yelle, S. J. Klippenstein, S. M. Hörst, and P. Lavvas, “Simulating the density of organic species in the atmosphere of Titan with a coupled ion-neutral photochemical model,” Icarus, vol. 324, 120–197, 2019, doi: https://doi.org/10.1016/j.icarus.2018.06.013.
-
[37] T. Kawano et al., “IAEA Photonuclear Data Library 2019,” Nuclear Data Sheets, vol. 163, 109–162, 2020, doi: https://doi.org/10.1016/j.nds.2019.12.002.
-
[38] Y. Xu, Y. Han, H. Liang, Z. Wu, H. Guo, and C. Cai, “Global optical model potential for the weakly bound projectile 9Be,” Phys Rev C, vol. 99, no. 3, p. 34618, Mar. 2019, doi: 10.1103/PhysRevC.99.034618.
-
[39] Y. Xu, Y. Han, H. Liang, Z. Wu, H. Guo, and C. Cai, “Global optical model potential for the weakly bound projectile Be 9,” Phys Rev C, vol. 99, no. 3, p. 034618, 2019.
-
[40] X. Liu, Y. Huang, L. Ding, X. Zhao, P. Liu, and T. Li, “Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption,” J Mater Sci Technol, vol. 72, 93–103, May 2021, doi: 10.1016/j.jmst.2020.09.012.
-
[41] H. Özdoğan, “Theoretical calculations of production cross–sections for the 201Pb, 111In 18F and 11C radioisotopes at proton induced reactions,” Applied Radiation and Isotopes, vol. 143, 1–5, 2019, doi: https://doi.org/10.1016/j.apradiso.2018.10.007.
-
[42] C. Evoli, R. Aloisio, and P. Blasi, “Galactic cosmic rays after the AMS-02 observations,” Physical Review D, vol. 99, no. 10, p. 103023, 2019, doi: 10.1103/PhysRevD.99.103023.
-
[43] Z. Wu and L. Guo, “Microscopic studies of production cross sections in multinucleon transfer reaction 58Ni 124Sn,” Phys Rev C, vol. 100, no. 1, p. 14612, 2019, doi: 10.1103/PhysRevC.100.014612.
-
[44] V. Mossa et al., “The baryon density of the Universe from an improved rate of deuterium burning,” Nature, vol. 587, no. 7833, 210–213, 2020.
-
[45] M. Duer et al., “Direct observation of proton-neutron short-range correlation dominance in heavy nuclei,” Phys Rev Lett, vol. 122, no. 17, p. 172502, 2019.
-
[46] D. Carbone et al., “Analysis of two-nucleon transfer reactions in the Ne 20+ Cd 116 system at 306 MeV,” Phys Rev C, vol. 102, no. 4, p. 044606, 2020.
-
[47] Y. Liang et al., “Benzene decomposition by non-thermal plasma: A detailed mechanism study by synchrotron radiation photoionization mass spectrometry and theoretical calculations,” J Hazard Mater, vol. 420, p. 126584, 2021, doi: https://doi.org/10.1016/j.jhazmat.2021.126584.
-
[48] S. Parashari et al., “Systematic analysis of the neutron-induced reaction cross sections for nat Mo isotopes within 10--20 MeV,” Phys Rev C, vol. 99, no. 4, p. 44602, 2019, doi: 10.1103/PhysRevC.99.044602.
-
[49] E. K. Elmaghraby, G. Y. Mohamed, and M. Al-abyad, “Experimental investigation and nuclear model calculations for proton induced reactions on indium around thresholds,” Nucl Phys A, vol. 984, 112–132, 2019, doi: https://doi.org/10.1016/j.nuclphysa.2019.01.009.
-
[50] N. Rocco, C. Barbieri, O. Benhar, A. De Pace, and A. Lovato, “Neutrino-nucleus cross section within the extended factorization scheme,” Phys Rev C, vol. 99, no. 2, p. 25502, 2019, doi: 10.1103/PhysRevC.99.025502.
-
[51] A. Spatafora et al., “Ne 20+ Ge 76 elastic and inelastic scattering at 306 MeV,” Phys Rev C, vol. 100, no. 3, p. 034620, 2019.