[1] J. Margueron and E. Khan, “Suppression, persistence, and reentrance of superfluidity near and beyond the neutron drip”, Phys. Rev. C 86, 065801(2012).
[2] M. Belabbas, J.J.Li and J. Margueron, “Finite-temperature pairing re-entrance in the drip-line nucleus 48Ni”, Phys. Rev. C 96,024304(2017).
[3] J.J.Li, J.Margueron, W.H.Long, N.Van Giai, ” Pairing phase transition: A finite-temperature relativistic Hartree-Fock-Bogoliubov study”, Phys. Rev. C 92,014302 (2015).
[4] J.J.Li, J.Margueron, W.H.Long, N.Van Giai, ” Magicity of neutron-rich nuclei within relativistic self-consistent approaches”, Phys. Lett. B 753,97 (2016).
[5] J.J.Li, J.Margueron, W.H.Long, N.Van Giai, ” Superheavy magic structures in the relativistic Hartree–Fock–Bogoliubov approach”, Phys. Lett. B 732,169 (2014).
[6] A. T. Kruppa, P. H. Heenen and R. J. Liotta, ” Resonances in the Hartree-Fock BCS theory ”, Phys. Rev. C63044324 (2001).
[7] N. Sandulescu, O.Civitarese and R. J. Liotta, “Temperature dependent BCS equations with continuum coupling”, Phys. Rev. C61044317 (2000).
[8] P. G. De Gennes, “Supercoductivity of Metals and Allows”, (Addition-Wesley, London, 1986).
[9] J. Dobaczewski, H. Flocard, and J. Treiner, ” Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line ”, Nucl. Phys. A422,103 (1984).
[10] G. F. Bertsch and H. Esbensen, “Pair correlations near the neutron drip line”, Ann. Phys. (N.Y.) 209 327(1991).
[11] W. Satula , J. Dobaczewski, and W. Nazarewicz, ” Odd-even staggering of nuclear masses: Pairing or shape effect?”, Phys. Rev. Lett.81, 3599(1998).
[12] M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. Mac-Cormick, X. Xu, B. Pfeiffer, “The Ame2012 Atomic Mass Evaluation”, Chin. Phys. C 36, 1603 (2012).
[13] O. Civitarese, G. G. Dussel and R. Perazzo, “Thermal aspects of the pairing correlations in finite nuclei”, Nucl. Phys. A 404, 251 (1983).
[14] A. L. Goodman, Nucl. Phys, ”Finite temperature HFB theory”, A 352, 30 (1981); A. L. Goodman, ”Finite-temperature Hartree-Fock-Bogoliubov calculations in rare earth nuclei ”, Phys. Rev. C 34, 1942 (1986).
[15] N. Sandulescu, Nguyen Van Giai and R. J. Liotta, “ Resonant continuum in the Hartree-Fock + BCS approximation”, Phys. Rev. C 61 061301(R), (2000).
[16] A. Sedrakian, T. Alm, and U. Lombardo, “Superfluidity in asymmetric nuclear matter”, Phys. Rev. C 55, R582 (1997).
[17] A. T. Kruppa, P. H. Heenen and R. J. Liotta, “Resonances in the Hartree-Fock BCS theory”, Phys. Rev. C63 044324 (2001).
[18] A. Pastore, J. Margueron, P. Schuck, & X. Vias, ” Pairing in exotic neutron-rich nuclei near the drip line and in the crust of neutron stars”, Phys. Rev. C 88, 034314 (2013).
[19] K. Bennaceur, J. Dobaczewski and M. Ploszajjczak, “Continuum effects for the mean-field and pairing properties of weakly bound nuclei”, Phys. Rev. C 60, 034308(1999).
Systematic Study of the Thermal Pairing Re-entrance in the 72Ti Nucleus
Finite-temperature Hartree-Fock-Bogoliubov calculations are performed in 72Ti using Skyrme interactions, to predict the finite-temperature pairing re-entrance phenomenon for the system of neutrons. It is also shown that pairing re-entrance modifies the neutron single-particle energies around the Fermi level, as well as occupation numbers and quasiparticle levels. It is also shown that neutron resonant states are expected to contribute substantially to pairing correlations and the two predicted critical temperatures are Tc1=0.1-0.2 MeV and Tc2 =0.7-0.9 MeV. On the other hand, Our results for the ground-state energies, proton and neutron separation energies are in very good agreement with experiment where available.
[1] J. Margueron and E. Khan, “Suppression, persistence, and reentrance of superfluidity near and beyond the neutron drip”, Phys. Rev. C 86, 065801(2012).
[2] M. Belabbas, J.J.Li and J. Margueron, “Finite-temperature pairing re-entrance in the drip-line nucleus 48Ni”, Phys. Rev. C 96,024304(2017).
[3] J.J.Li, J.Margueron, W.H.Long, N.Van Giai, ” Pairing phase transition: A finite-temperature relativistic Hartree-Fock-Bogoliubov study”, Phys. Rev. C 92,014302 (2015).
[4] J.J.Li, J.Margueron, W.H.Long, N.Van Giai, ” Magicity of neutron-rich nuclei within relativistic self-consistent approaches”, Phys. Lett. B 753,97 (2016).
[5] J.J.Li, J.Margueron, W.H.Long, N.Van Giai, ” Superheavy magic structures in the relativistic Hartree–Fock–Bogoliubov approach”, Phys. Lett. B 732,169 (2014).
[6] A. T. Kruppa, P. H. Heenen and R. J. Liotta, ” Resonances in the Hartree-Fock BCS theory ”, Phys. Rev. C63044324 (2001).
[7] N. Sandulescu, O.Civitarese and R. J. Liotta, “Temperature dependent BCS equations with continuum coupling”, Phys. Rev. C61044317 (2000).
[8] P. G. De Gennes, “Supercoductivity of Metals and Allows”, (Addition-Wesley, London, 1986).
[9] J. Dobaczewski, H. Flocard, and J. Treiner, ” Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line ”, Nucl. Phys. A422,103 (1984).
[10] G. F. Bertsch and H. Esbensen, “Pair correlations near the neutron drip line”, Ann. Phys. (N.Y.) 209 327(1991).
[11] W. Satula , J. Dobaczewski, and W. Nazarewicz, ” Odd-even staggering of nuclear masses: Pairing or shape effect?”, Phys. Rev. Lett.81, 3599(1998).
[12] M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. Mac-Cormick, X. Xu, B. Pfeiffer, “The Ame2012 Atomic Mass Evaluation”, Chin. Phys. C 36, 1603 (2012).
[13] O. Civitarese, G. G. Dussel and R. Perazzo, “Thermal aspects of the pairing correlations in finite nuclei”, Nucl. Phys. A 404, 251 (1983).
[14] A. L. Goodman, Nucl. Phys, ”Finite temperature HFB theory”, A 352, 30 (1981); A. L. Goodman, ”Finite-temperature Hartree-Fock-Bogoliubov calculations in rare earth nuclei ”, Phys. Rev. C 34, 1942 (1986).
[15] N. Sandulescu, Nguyen Van Giai and R. J. Liotta, “ Resonant continuum in the Hartree-Fock + BCS approximation”, Phys. Rev. C 61 061301(R), (2000).
[16] A. Sedrakian, T. Alm, and U. Lombardo, “Superfluidity in asymmetric nuclear matter”, Phys. Rev. C 55, R582 (1997).
[17] A. T. Kruppa, P. H. Heenen and R. J. Liotta, “Resonances in the Hartree-Fock BCS theory”, Phys. Rev. C63 044324 (2001).
[18] A. Pastore, J. Margueron, P. Schuck, & X. Vias, ” Pairing in exotic neutron-rich nuclei near the drip line and in the crust of neutron stars”, Phys. Rev. C 88, 034314 (2013).
[19] K. Bennaceur, J. Dobaczewski and M. Ploszajjczak, “Continuum effects for the mean-field and pairing properties of weakly bound nuclei”, Phys. Rev. C 60, 034308(1999).
Belabbas, M. (2019). Systematic Study of the Thermal Pairing Re-entrance in the 72Ti Nucleus. Journal of Nuclear Sciences, 5(2), 30-33. https://doi.org/10.1501/nuclear_0000000045
AMA
Belabbas M. Systematic Study of the Thermal Pairing Re-entrance in the 72Ti Nucleus. Journal of Nuclear Sciences. Mart 2019;5(2):30-33. doi:10.1501/nuclear_0000000045
Chicago
Belabbas, M. “Systematic Study of the Thermal Pairing Re-Entrance in the 72Ti Nucleus”. Journal of Nuclear Sciences 5, sy. 2 (Mart 2019): 30-33. https://doi.org/10.1501/nuclear_0000000045.
EndNote
Belabbas M (01 Mart 2019) Systematic Study of the Thermal Pairing Re-entrance in the 72Ti Nucleus. Journal of Nuclear Sciences 5 2 30–33.
IEEE
M. Belabbas, “Systematic Study of the Thermal Pairing Re-entrance in the 72Ti Nucleus”, Journal of Nuclear Sciences, c. 5, sy. 2, ss. 30–33, 2019, doi: 10.1501/nuclear_0000000045.
ISNAD
Belabbas, M. “Systematic Study of the Thermal Pairing Re-Entrance in the 72Ti Nucleus”. Journal of Nuclear Sciences 5/2 (Mart 2019), 30-33. https://doi.org/10.1501/nuclear_0000000045.
JAMA
Belabbas M. Systematic Study of the Thermal Pairing Re-entrance in the 72Ti Nucleus. Journal of Nuclear Sciences. 2019;5:30–33.
MLA
Belabbas, M. “Systematic Study of the Thermal Pairing Re-Entrance in the 72Ti Nucleus”. Journal of Nuclear Sciences, c. 5, sy. 2, 2019, ss. 30-33, doi:10.1501/nuclear_0000000045.
Vancouver
Belabbas M. Systematic Study of the Thermal Pairing Re-entrance in the 72Ti Nucleus. Journal of Nuclear Sciences. 2019;5(2):30-3.