Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 8 - 16, 04.12.2024
https://doi.org/10.59474/nuclear.2023.62

Öz

Kaynakça

  • [1] R.E. Ligenfelter, E.J. Flamm, E.H. Canfield, S. Kellman, High-energy solar neutrons: 1. Production in flares, Journal of Geophysical Research 70 (17) 4077-4086 (1965).
  • [2] R.R. Daniel, G.S. Gokhale, G. Joseph, P.J. Lavakare, B.S. Sekhon, A search for energetic neutrons emitted during solar flares, Solar Physics 10 465–471(1969).
  • [3] R.J. Murphy, R. Ramaty, Solar-flare neutrons and gamma rays, Advances in Space Research 4 (7) 127–136 (1984).
  • [4] R. Ramaty, R.J Murphy, Nuclear processes and accelerated particles in solar flares, Space Science Reviews 45 (3) 213–268 (1987).
  • [5] J. G. Mitchell, The physics of solar energetic particles and their detection, Ph.D. thesis, The George Washington University (2022).
  • [6] F. Cataldo, M. Prata, Neutron radiation shielding composites for deep space exploration: an introduction, in: Micro and nanostructured composite materials for neutron shielding applications, Elsevier, pp. 263–285 (2020).
  • [7] T. Sato, Recent progress in space weather research for cosmic radiation dosimetry, Annals of the ICRP 49 (1_suppl) 185–192 (2020).
  • [8] L. Sihver, F.Y. Barghouty, D. Falconer, Space radiation risk reduction through prediction, detection and protection, in: 2021 IEEE Aerospace Conference (50100), IEEE, pp. 1–10 (2021).
  • [9] S. Roffe, H. Akolkar, A.D. George, B. L. Barranco, Bernabé, R.B. Benosman, Neutron-induced, single-event effects on neuromorphic event based vision sensor: A first step and tools to space applications, IEEE Access 9, 85748–85763 (2021).
  • [10] K. Yamaoka, H. Tajima, K. Miyata, T. Inamori, Y. Sasai, H. Kawahara, J.H. Park, K. Nakazawa, S. Masuda, K. Matsushita etc., Solar Neutron Spectrometer Onboard a 3U CubeSat, Transactions Of The Japan Society For Aeronautical And Space Sciences, Aerospace Technology Japan 19 (3) 354–359 (2021).
  • [11] Y. Muraki, T. Koi, S.Masuda, Y. Matsubara, P. Pedro, S. Miyake, T. Naito, E. Ortiz, A. Oshima, T. Sako etc., Detection of solar neutrons and solar neutron decayprotons, Universe 10 (1) 16(2023). [12] K. Yamaoka, H. Tajima, K. Miyata, T. Watabe, K. Ito, T. Miyazawa, T. Kudoh, K. Nakazawa, S. Masuda, K. Tani, M. Arai, S. Hatori, K. Kume, S. Mizushima, H. Takahashi, K. Watanabe, SOlar Neutron and Gamma-ray Spectrometer (SONGS), PoS ICRC2023 1341(2023).
  • [13] G.A. de Nolfo, A. Bruno, and J. Dumonthier, I. Liceaga-Indart, J. Legere, R. Messner, J.G. Mitchell, J.M. Ryan, G. Suarez, T. Tatoli, Solar Neutron TRACking (SONTRAC) Concept, in: 36th International Cosmic Ray Conference (ICRC2019), 36-1074 (2019).
  • [14] J.G. Mitchell, G.A. De Nolfo, A. Bruno, J. Dumonthier, I. Liceaga-Indart, J. Link, J. Legere, R. Messner, J. Ryan, G. Suarezb etc., Development of the Solar Neutron TRACking (SONTRAC) Concept, in: 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference, IEEE, (2021).
  • [15] G.A. de Nolfo, J.G. Mitchell, G. Suarez, J.M. Ryan, A. Bruno, J. Dumonthier, J. Legere, R. Messner, T. Tatoli, L. Williams, Next-generation SOlar Neutron TRACking (SONTRAC) instrument, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1054,168352(2023).
  • [16] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, et al., GEANT4—a simulation toolkit, Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506 (3) 250–303(2003).
  • [17] A. I. Topuz, GEANT4 package - SONTRAC fiber bundle,https://github.com/illcore/ SONTRAC_pixelated_sensors.git (2024).
  • [18] Kuraray - Plastic scintillating fibers, http://kuraraypsf.jp/pdf/all.pdf, accessed: 28/06/2024. [19] C. Han, S. Wang , Q. Shi, A.Degeling , E.Wang, X. Jia , N. Hasebe , Q.Zong, A background suppression detector array for fast neutron measurement in space science study, Measurement 230,114479 (2024).
  • [20] L.X. González, F. Sánchez, J.F.Valdés-Galicia, Geant4 simulation of the solar neu tron telescope at Sierra Negra, Mexico, Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment 613 (2) 263–271 (2010).

Unveiling secondary particle generation in a SONTRAC detector through GEANT4 simulations

Yıl 2022, , 8 - 16, 04.12.2024
https://doi.org/10.59474/nuclear.2023.62

Öz

SOlar Neutron TRACking (SONTRAC) is a detector concept based on a bundle of plastic scintillators by aiming at tracking the solar neutrons through the generation of the secondary particles such as protons from the (n, np) and (n, p) processes. In this study, in addition to the particle population, the energy spectra of the secondary particles including protons, gamma rays, electrons, alphas, and ions that are produced either due to the interaction between the fast neutrons and a SONTRAC detector or through the interplay between the secondary particles and the detector components are determined by means of GEANT4 simulations. The detector geometry in the present study consists of 34$\times$34 Kuraray Y11-200(M) fibers, the composition of which includes polystyrene for the fiber core, poly(methyl methacrylate) (PMMA) for the first clad, and fluorinated PMMA for the second clad. The current fiber bundle is irradiated with a planar vertical neutron beam of 0.2$\times$0.2 cm$^{2}$ by using an energy list composed of 20, 40, 60, 80, and 100 MeV where the number of incident neutrons is $10^5$, and it is first revealed that a non-negligible number of secondary protons are generated by the fast neutron bombardment; however, the population of these secondary protons is still low compared to the incident beam, i.e. in the order of $10^3$. Secondly, it is also observed that the energy spectrum of secondary protons exhibits a decreasing trend that is limited by the kinetic energy of incident neutrons. Additionally, the range of the secondary protons along with the deposited energy is computed, and it is demonstrated that a significant portion of the generated protons lose their entire energy and stop within the present SONTRAC detector. Finally, a 34$\times$34 pixel grid detector is introduced on each side of the fiber bundle to collect the optical photons produced from the energy deposition in the scintillation fibers, and the trajectory of the secondary protons on the pixel grid is shown by using a fast neutron beam of 100 MeV.

Kaynakça

  • [1] R.E. Ligenfelter, E.J. Flamm, E.H. Canfield, S. Kellman, High-energy solar neutrons: 1. Production in flares, Journal of Geophysical Research 70 (17) 4077-4086 (1965).
  • [2] R.R. Daniel, G.S. Gokhale, G. Joseph, P.J. Lavakare, B.S. Sekhon, A search for energetic neutrons emitted during solar flares, Solar Physics 10 465–471(1969).
  • [3] R.J. Murphy, R. Ramaty, Solar-flare neutrons and gamma rays, Advances in Space Research 4 (7) 127–136 (1984).
  • [4] R. Ramaty, R.J Murphy, Nuclear processes and accelerated particles in solar flares, Space Science Reviews 45 (3) 213–268 (1987).
  • [5] J. G. Mitchell, The physics of solar energetic particles and their detection, Ph.D. thesis, The George Washington University (2022).
  • [6] F. Cataldo, M. Prata, Neutron radiation shielding composites for deep space exploration: an introduction, in: Micro and nanostructured composite materials for neutron shielding applications, Elsevier, pp. 263–285 (2020).
  • [7] T. Sato, Recent progress in space weather research for cosmic radiation dosimetry, Annals of the ICRP 49 (1_suppl) 185–192 (2020).
  • [8] L. Sihver, F.Y. Barghouty, D. Falconer, Space radiation risk reduction through prediction, detection and protection, in: 2021 IEEE Aerospace Conference (50100), IEEE, pp. 1–10 (2021).
  • [9] S. Roffe, H. Akolkar, A.D. George, B. L. Barranco, Bernabé, R.B. Benosman, Neutron-induced, single-event effects on neuromorphic event based vision sensor: A first step and tools to space applications, IEEE Access 9, 85748–85763 (2021).
  • [10] K. Yamaoka, H. Tajima, K. Miyata, T. Inamori, Y. Sasai, H. Kawahara, J.H. Park, K. Nakazawa, S. Masuda, K. Matsushita etc., Solar Neutron Spectrometer Onboard a 3U CubeSat, Transactions Of The Japan Society For Aeronautical And Space Sciences, Aerospace Technology Japan 19 (3) 354–359 (2021).
  • [11] Y. Muraki, T. Koi, S.Masuda, Y. Matsubara, P. Pedro, S. Miyake, T. Naito, E. Ortiz, A. Oshima, T. Sako etc., Detection of solar neutrons and solar neutron decayprotons, Universe 10 (1) 16(2023). [12] K. Yamaoka, H. Tajima, K. Miyata, T. Watabe, K. Ito, T. Miyazawa, T. Kudoh, K. Nakazawa, S. Masuda, K. Tani, M. Arai, S. Hatori, K. Kume, S. Mizushima, H. Takahashi, K. Watanabe, SOlar Neutron and Gamma-ray Spectrometer (SONGS), PoS ICRC2023 1341(2023).
  • [13] G.A. de Nolfo, A. Bruno, and J. Dumonthier, I. Liceaga-Indart, J. Legere, R. Messner, J.G. Mitchell, J.M. Ryan, G. Suarez, T. Tatoli, Solar Neutron TRACking (SONTRAC) Concept, in: 36th International Cosmic Ray Conference (ICRC2019), 36-1074 (2019).
  • [14] J.G. Mitchell, G.A. De Nolfo, A. Bruno, J. Dumonthier, I. Liceaga-Indart, J. Link, J. Legere, R. Messner, J. Ryan, G. Suarezb etc., Development of the Solar Neutron TRACking (SONTRAC) Concept, in: 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference, IEEE, (2021).
  • [15] G.A. de Nolfo, J.G. Mitchell, G. Suarez, J.M. Ryan, A. Bruno, J. Dumonthier, J. Legere, R. Messner, T. Tatoli, L. Williams, Next-generation SOlar Neutron TRACking (SONTRAC) instrument, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1054,168352(2023).
  • [16] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, et al., GEANT4—a simulation toolkit, Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506 (3) 250–303(2003).
  • [17] A. I. Topuz, GEANT4 package - SONTRAC fiber bundle,https://github.com/illcore/ SONTRAC_pixelated_sensors.git (2024).
  • [18] Kuraray - Plastic scintillating fibers, http://kuraraypsf.jp/pdf/all.pdf, accessed: 28/06/2024. [19] C. Han, S. Wang , Q. Shi, A.Degeling , E.Wang, X. Jia , N. Hasebe , Q.Zong, A background suppression detector array for fast neutron measurement in space science study, Measurement 230,114479 (2024).
  • [20] L.X. González, F. Sánchez, J.F.Valdés-Galicia, Geant4 simulation of the solar neu tron telescope at Sierra Negra, Mexico, Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment 613 (2) 263–271 (2010).
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Dedektör Teknolojisi, Nükleer Bilimler, Nükleer Teknoloji, Nükleer Uygulamalar, Radyasyon Teknolojisi, Nükleer Mühendisliği (Diğer)
Bölüm Research Articles
Yazarlar

Ahmet Ilker Topuz 0000-0002-1397-8839

Erken Görünüm Tarihi 2 Aralık 2024
Yayımlanma Tarihi 4 Aralık 2024
Gönderilme Tarihi 26 Ağustos 2024
Kabul Tarihi 25 Ekim 2024
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Topuz, A. I. (2024). Unveiling secondary particle generation in a SONTRAC detector through GEANT4 simulations. Journal of Nuclear Sciences, 9(1), 8-16. https://doi.org/10.59474/nuclear.2023.62
AMA Topuz AI. Unveiling secondary particle generation in a SONTRAC detector through GEANT4 simulations. Journal of Nuclear Sciences. Aralık 2024;9(1):8-16. doi:10.59474/nuclear.2023.62
Chicago Topuz, Ahmet Ilker. “Unveiling Secondary Particle Generation in a SONTRAC Detector through GEANT4 Simulations”. Journal of Nuclear Sciences 9, sy. 1 (Aralık 2024): 8-16. https://doi.org/10.59474/nuclear.2023.62.
EndNote Topuz AI (01 Aralık 2024) Unveiling secondary particle generation in a SONTRAC detector through GEANT4 simulations. Journal of Nuclear Sciences 9 1 8–16.
IEEE A. I. Topuz, “Unveiling secondary particle generation in a SONTRAC detector through GEANT4 simulations”, Journal of Nuclear Sciences, c. 9, sy. 1, ss. 8–16, 2024, doi: 10.59474/nuclear.2023.62.
ISNAD Topuz, Ahmet Ilker. “Unveiling Secondary Particle Generation in a SONTRAC Detector through GEANT4 Simulations”. Journal of Nuclear Sciences 9/1 (Aralık 2024), 8-16. https://doi.org/10.59474/nuclear.2023.62.
JAMA Topuz AI. Unveiling secondary particle generation in a SONTRAC detector through GEANT4 simulations. Journal of Nuclear Sciences. 2024;9:8–16.
MLA Topuz, Ahmet Ilker. “Unveiling Secondary Particle Generation in a SONTRAC Detector through GEANT4 Simulations”. Journal of Nuclear Sciences, c. 9, sy. 1, 2024, ss. 8-16, doi:10.59474/nuclear.2023.62.
Vancouver Topuz AI. Unveiling secondary particle generation in a SONTRAC detector through GEANT4 simulations. Journal of Nuclear Sciences. 2024;9(1):8-16.