Research Article
BibTex RIS Cite

Indoor Radon Levels and Contributory Factors in Southwest Nigeria

Year 2020, Volume: 7 Issue: 2, 20 - 27, 20.04.2022
https://doi.org/10.1501/nuclear.2023.55

Abstract

Radon-222 has been found to be the main contributor to lung cancer after smoking. This make the determination of the level of indoor radon activity concentration in dwellings an important health issue. This research was conducted to measure radon concentrations using alpha track detectors in dwellings in selected area in Ondo State, Southwest Nigeria. Detectors were exposed in the area for 90 days period. Radon concentration was related to the age of buildings, ventilation status, heating source and materials used for construction. Likewise, radiological health indices was calculated. Results showed that old buildings built with mud blocks and poorly ventilated had higher radon concentration than modern buildings built with cement blocks with good ventilation. Homes using natural gas had higher radon concentration than homes using charcoal and fire wood as cooking source. The average annual effective dose and other calculated radiological indices does not exceed the recommended limit. This shows that most of the dwellings in the area are safe for dwelling purposes.

Supporting Institution

Nil

Project Number

Nil

Thanks

Nil

References

  • [1] D. Vienneau, S. Boz, L. Forlin, B. Flückiger, K. de Hoogh, C. Berlin, M. Bochud, J.L. Bulliard, M. Zwahlen, M. Röösli, Residential radon – Comparative analysis of exposure models in Switzerland, Environ. Pollut. 271 (2021). https://doi.org/10.1016/j.envpol.2020.116356.
  • [2] R. Copes, E. Peterson, Indoor Radon a Public Health Perspective, (2014).
  • [3] UNSCEAR, Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes, 2000. https://doi.org/10.1097/00004032-199907000-00007.
  • [4] G. Espinosa, L. Tommasino, Surface-deposition and Distribution of the Radon (222Rn and 220Rn) Decay Products Indoors, Phys. Procedia. 80 (2015) 101–104. https://doi.org/10.1016/j.phpro.2015.11.103.
  • [5] ICRP, Annals of the ICRP Radiological Protection against Radon Exposure, 00 (2011) 1–54.
  • [6] A.C. Syuryavin, S. Park, M.M. Nirwono, S.H. Lee, Indoor radon and thoron from building materials: Analysis of humidity, air exchange rate, and dose assessment, Nucl. Eng. Technol. 52 (2020) 2370–2378. https://doi.org/10.1016/j.net.2020.03.013.
  • [7] J. Wang, X. Yan, W. Yang, D. Ye, L. Fan, Y. Liao, Y. Zhang, Y. Yang, X. Li, X. Yao, L. Wan, X. Wang, Association between indoor environment and common cold among children aged 7–9 years in five typical cities in China, Environ. Sustain. Indic. 6 (2020) 0–9. https://doi.org/10.1016/j.indic.2020.100033.
  • [8] D.E. Tchorz-Trzeciakiewicz, M. Rysiukiewicz, Ambient gamma dose rate as an indicator of geogenic radon potential, Sci. Total Environ. 755 (2021). https://doi.org/10.1016/j.scitotenv.2020.142771.
  • [9] C. Kim, D. Choi, Y.G. Lee, K. Kim, Diagnosis of indoor air contaminants in a daycare center using a long-term monitoring, Build. Environ. 204 (2021) 108124. https://doi.org/10.1016/j.buildenv.2021.108124.
  • [10] R. Rabi, L. Oufni, M. Amrane, Modeling of indoor 222 Rn distribution in ventilated room and resulting radiation doses measured in the respiratory tract , J. Radiat. Res. Appl. Sci. 10 (2017) 273–282. https://doi.org/10.1016/j.jrras.2017.05.003.
  • [11] J.A. McGrath, R. Aghamolaei, J. O’Donnell, M.A. Byrne, Factors influencing radon concentration during energy retrofitting in domestic buildings: A computational evaluation, Build. Environ. 194 (2021) 107712. https://doi.org/10.1016/j.buildenv.2021.107712.
  • [12] N.F. Salih, M.S. Aswood, A.A. Hamzawi, Effect of porosity on evaluation of radon concentration in soil samples collected from Sulaymania governorate, Iraq, in: J. Phys. Conf. Ser., Institute of Physics Publishing, 2019. https://doi.org/10.1088/1742-6596/1234/1/012024.
  • [13] G. Gandolfo, L. Lepore, A. Pepperosa, R. Remetti, D. Franci, Radiation protection considerations on radon and building materials radioactivity in Near Zero Energy Buildings, Energy Procedia. 140 (2017) 13–22. https://doi.org/10.1016/j.egypro.2017.11.119.
  • [14] M.R. Usikalu, C.A. Onumejor, J.A. Achuka, A. Akinpelu, M. Omeje, T.A. Adagunodo, Monitoring of radon concentration for different building types in Covenant University, Nigeria, Cogent Eng. 7 (2020). https://doi.org/10.1080/23311916.2020.1759396.
  • [15] L. Ferguson, J. Taylor, M. Davies, C. Shrubsole, P. Symonds, S. Dimitroulopoulou, Exposure to indoor air pollution across socio-economic groups in high-income countries: A scoping review of the literature and a modelling methodology, Environ. Int. 143 (2020) 105748. https://doi.org/10.1016/j.envint.2020.105748.
  • [16] A. Curado, J.P. Silva, S.I. Lopes, Radon risk assessment in a low-energy consumption school building: A dosimetric approach for effective risk management, Energy Reports. 6 (2020) 897–902. https://doi.org/10.1016/j.egyr.2019.11.155.
  • [17] S. Antignani, G. Venoso, M. Ampollini, M. Caprio, C. Carpentieri, C. Di Carlo, B. Caccia, N. Hunter, F. Bochicchio, A 10-year follow-up study of yearly indoor radon measurements in homes, review of other studies and implications on lung cancer risk estimates, Sci. Total Environ. 762 (2021) 144150. https://doi.org/10.1016/j.scitotenv.2020.144150.
  • [18] I. Maryam, K. Omoniyi, N. Zaharaddeen, Determination of concentrations and Annual Effective Dose of Pb, Cr, Rn in Groundwater Sources in Shika and Zaria City, Kaduna State, Nigeria, J. Appl. Sci. Environ. Manag. 22 (2018) 659. https://doi.org/10.4314/jasem.v22i5.8.
  • [19] J.A. Ademola, O.R. Ojeniran, Radon-222 from different sources of water and the assessment of health hazard, J. Water Health. 15 (2017) 97–102. https://doi.org/10.2166/wh.2016.073.
  • [20] D.T. Esan, R.I. Obed, O.T. Afolabi, M.K. Sridhar, B.B. Olubodun, C. Ramos, Radon risk perception and barriers for residential radon testing in Southwestern Nigeria, Public Heal. Pract. 1 (2020) 100036. https://doi.org/10.1016/j.puhip.2020.100036.
  • [21] A. Asere, I. Ajayi, Estimation of Indoor Radon and Its Progeny in Dwellings of Akoko Region, Ondo State, Southwestern Nigeria, J. Sci. Res. Reports. 14 (2017) 1–7. https://doi.org/10.9734/jsrr/2017/32246.
  • [22] Y. Ajiboye, O. Badmus, O. Ojo, M. Isinkaye, Measurement of Radon Concentration and Radioactivity in Soil Samples of Aramoko, Ekiti State, Nigeria, Int. J. Public Heal. Res. 4 (2016) 37–41.
  • [23] N. Vogeltanz-Holm, G.G. Schwartz, Radon and lung cancer: What does the public really know?, J. Environ. Radioact. 192 (2018). https://doi.org/10.1016/j.jenvrad.2018.05.017.
  • [24] T. Perko, C. Turcanu, Is internet a missed opportunity? Evaluating radon websites from a stakeholder engagement perspective, J. Environ. Radioact. 212 (2020). https://doi.org/10.1016/j.jenvrad.2019.106123.
  • [25] M. Martell, T. Perko, Y. Tomkiv, S. Long, A. Dowdall, J. Kenens, Evaluation of citizen science contributions to radon research, J. Environ. Radioact. 237 (2021) 106685. https://doi.org/10.1016/j.jenvrad.2021.106685.
  • [26] R. Nilsson, J. Tong, Opinion on reconsideration of lung cancer risk from domestic radon exposure, Radiat. Med. Prot. 1 (2020) 48–54. https://doi.org/10.1016/j.radmp.2020.01.001.
  • [27] V. Jobbágy, M. Hult, Performance evaluation of a European scale proficiency test on radon-in-water measurements in Europe, Appl. Radiat. Isot. 160 (2020). https://doi.org/10.1016/j.apradiso.2020.109111.
  • [28] S.M. Khan, J. Gomes, D.R. Krewski, Radon interventions around the globe: A systematic review, Heliyon. 5 (2019) e01737. https://doi.org/10.1016/j.heliyon.2019.e01737.
  • [29] A. A. M, A. I. R, Estimation of Outdoor Gamma Dose Rates and Lifetime Cancer Risk in Akoko Region, Ondo State, Southwestern, Nigeria., IOSR J. Environ. Sci. Toxicol. Food Technol. 11 (2017) 49–52. https://doi.org/10.9790/2402-1105024952.
  • [30] H. Hassanvand, M.S. Hassanvand, M. Birjandi, B. Kamarehie, Iranian Journal of Medical Physics Indoor Radon Measurement in Dwellings of Khorramabad, (2018). https://doi.org/10.22038/ijmp.2017.24851.1252.
  • [31] A.M. Maghraby, K. Alzimami, M. Abo-Elmagd, Estimation of the residential radon levels and the population annual effective dose in dwellings of Al-kharj, Saudi Arabia, J. Radiat. Res. Appl. Sci. 7 (2014) 577–582. https://doi.org/10.1016/j.jrras.2014.09.013.
  • [32] A.A. Al-Hamzawi, N.F. Tawfiq, M.S. Aswood, F.A. Najim, Determination of radon concentrations near mobile towers in selected cities of Babylon governorate, Iraq, J. Phys. Conf. Ser. 1234 (2019). https://doi.org/10.1088/1742-6596/1234/1/012026.
  • [33] E. Abuelhia, Evaluation of annual effective dose from indoor radon concentration in Eastern Province, Dammam, Saudi Arabia, Radiat. Phys. Chem. 140 (2017) 137–140. https://doi.org/10.1016/j.radphyschem.2017.03.004.
  • [34] S. Sherafat, S. Nemati Mansour, M. Mosaferi, N. Aminisani, Z. Yousefi, S. Maleki, First indoor radon mapping and assessment excess lifetime cancer risk in Iran, MethodsX. 6 (2019) 2205–2216. https://doi.org/10.1016/j.mex.2019.09.028.
  • [35] R.C. Ramola, M. Prasad, T. Kandari, P. Pant, P. Bossew, Dose estimation derived from the exposure to radon , thoron and their progeny in the indoor environment, Nat. Publ. Gr. (2016) 1–16. https://doi.org/10.1038/srep31061.
Year 2020, Volume: 7 Issue: 2, 20 - 27, 20.04.2022
https://doi.org/10.1501/nuclear.2023.55

Abstract

Project Number

Nil

References

  • [1] D. Vienneau, S. Boz, L. Forlin, B. Flückiger, K. de Hoogh, C. Berlin, M. Bochud, J.L. Bulliard, M. Zwahlen, M. Röösli, Residential radon – Comparative analysis of exposure models in Switzerland, Environ. Pollut. 271 (2021). https://doi.org/10.1016/j.envpol.2020.116356.
  • [2] R. Copes, E. Peterson, Indoor Radon a Public Health Perspective, (2014).
  • [3] UNSCEAR, Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes, 2000. https://doi.org/10.1097/00004032-199907000-00007.
  • [4] G. Espinosa, L. Tommasino, Surface-deposition and Distribution of the Radon (222Rn and 220Rn) Decay Products Indoors, Phys. Procedia. 80 (2015) 101–104. https://doi.org/10.1016/j.phpro.2015.11.103.
  • [5] ICRP, Annals of the ICRP Radiological Protection against Radon Exposure, 00 (2011) 1–54.
  • [6] A.C. Syuryavin, S. Park, M.M. Nirwono, S.H. Lee, Indoor radon and thoron from building materials: Analysis of humidity, air exchange rate, and dose assessment, Nucl. Eng. Technol. 52 (2020) 2370–2378. https://doi.org/10.1016/j.net.2020.03.013.
  • [7] J. Wang, X. Yan, W. Yang, D. Ye, L. Fan, Y. Liao, Y. Zhang, Y. Yang, X. Li, X. Yao, L. Wan, X. Wang, Association between indoor environment and common cold among children aged 7–9 years in five typical cities in China, Environ. Sustain. Indic. 6 (2020) 0–9. https://doi.org/10.1016/j.indic.2020.100033.
  • [8] D.E. Tchorz-Trzeciakiewicz, M. Rysiukiewicz, Ambient gamma dose rate as an indicator of geogenic radon potential, Sci. Total Environ. 755 (2021). https://doi.org/10.1016/j.scitotenv.2020.142771.
  • [9] C. Kim, D. Choi, Y.G. Lee, K. Kim, Diagnosis of indoor air contaminants in a daycare center using a long-term monitoring, Build. Environ. 204 (2021) 108124. https://doi.org/10.1016/j.buildenv.2021.108124.
  • [10] R. Rabi, L. Oufni, M. Amrane, Modeling of indoor 222 Rn distribution in ventilated room and resulting radiation doses measured in the respiratory tract , J. Radiat. Res. Appl. Sci. 10 (2017) 273–282. https://doi.org/10.1016/j.jrras.2017.05.003.
  • [11] J.A. McGrath, R. Aghamolaei, J. O’Donnell, M.A. Byrne, Factors influencing radon concentration during energy retrofitting in domestic buildings: A computational evaluation, Build. Environ. 194 (2021) 107712. https://doi.org/10.1016/j.buildenv.2021.107712.
  • [12] N.F. Salih, M.S. Aswood, A.A. Hamzawi, Effect of porosity on evaluation of radon concentration in soil samples collected from Sulaymania governorate, Iraq, in: J. Phys. Conf. Ser., Institute of Physics Publishing, 2019. https://doi.org/10.1088/1742-6596/1234/1/012024.
  • [13] G. Gandolfo, L. Lepore, A. Pepperosa, R. Remetti, D. Franci, Radiation protection considerations on radon and building materials radioactivity in Near Zero Energy Buildings, Energy Procedia. 140 (2017) 13–22. https://doi.org/10.1016/j.egypro.2017.11.119.
  • [14] M.R. Usikalu, C.A. Onumejor, J.A. Achuka, A. Akinpelu, M. Omeje, T.A. Adagunodo, Monitoring of radon concentration for different building types in Covenant University, Nigeria, Cogent Eng. 7 (2020). https://doi.org/10.1080/23311916.2020.1759396.
  • [15] L. Ferguson, J. Taylor, M. Davies, C. Shrubsole, P. Symonds, S. Dimitroulopoulou, Exposure to indoor air pollution across socio-economic groups in high-income countries: A scoping review of the literature and a modelling methodology, Environ. Int. 143 (2020) 105748. https://doi.org/10.1016/j.envint.2020.105748.
  • [16] A. Curado, J.P. Silva, S.I. Lopes, Radon risk assessment in a low-energy consumption school building: A dosimetric approach for effective risk management, Energy Reports. 6 (2020) 897–902. https://doi.org/10.1016/j.egyr.2019.11.155.
  • [17] S. Antignani, G. Venoso, M. Ampollini, M. Caprio, C. Carpentieri, C. Di Carlo, B. Caccia, N. Hunter, F. Bochicchio, A 10-year follow-up study of yearly indoor radon measurements in homes, review of other studies and implications on lung cancer risk estimates, Sci. Total Environ. 762 (2021) 144150. https://doi.org/10.1016/j.scitotenv.2020.144150.
  • [18] I. Maryam, K. Omoniyi, N. Zaharaddeen, Determination of concentrations and Annual Effective Dose of Pb, Cr, Rn in Groundwater Sources in Shika and Zaria City, Kaduna State, Nigeria, J. Appl. Sci. Environ. Manag. 22 (2018) 659. https://doi.org/10.4314/jasem.v22i5.8.
  • [19] J.A. Ademola, O.R. Ojeniran, Radon-222 from different sources of water and the assessment of health hazard, J. Water Health. 15 (2017) 97–102. https://doi.org/10.2166/wh.2016.073.
  • [20] D.T. Esan, R.I. Obed, O.T. Afolabi, M.K. Sridhar, B.B. Olubodun, C. Ramos, Radon risk perception and barriers for residential radon testing in Southwestern Nigeria, Public Heal. Pract. 1 (2020) 100036. https://doi.org/10.1016/j.puhip.2020.100036.
  • [21] A. Asere, I. Ajayi, Estimation of Indoor Radon and Its Progeny in Dwellings of Akoko Region, Ondo State, Southwestern Nigeria, J. Sci. Res. Reports. 14 (2017) 1–7. https://doi.org/10.9734/jsrr/2017/32246.
  • [22] Y. Ajiboye, O. Badmus, O. Ojo, M. Isinkaye, Measurement of Radon Concentration and Radioactivity in Soil Samples of Aramoko, Ekiti State, Nigeria, Int. J. Public Heal. Res. 4 (2016) 37–41.
  • [23] N. Vogeltanz-Holm, G.G. Schwartz, Radon and lung cancer: What does the public really know?, J. Environ. Radioact. 192 (2018). https://doi.org/10.1016/j.jenvrad.2018.05.017.
  • [24] T. Perko, C. Turcanu, Is internet a missed opportunity? Evaluating radon websites from a stakeholder engagement perspective, J. Environ. Radioact. 212 (2020). https://doi.org/10.1016/j.jenvrad.2019.106123.
  • [25] M. Martell, T. Perko, Y. Tomkiv, S. Long, A. Dowdall, J. Kenens, Evaluation of citizen science contributions to radon research, J. Environ. Radioact. 237 (2021) 106685. https://doi.org/10.1016/j.jenvrad.2021.106685.
  • [26] R. Nilsson, J. Tong, Opinion on reconsideration of lung cancer risk from domestic radon exposure, Radiat. Med. Prot. 1 (2020) 48–54. https://doi.org/10.1016/j.radmp.2020.01.001.
  • [27] V. Jobbágy, M. Hult, Performance evaluation of a European scale proficiency test on radon-in-water measurements in Europe, Appl. Radiat. Isot. 160 (2020). https://doi.org/10.1016/j.apradiso.2020.109111.
  • [28] S.M. Khan, J. Gomes, D.R. Krewski, Radon interventions around the globe: A systematic review, Heliyon. 5 (2019) e01737. https://doi.org/10.1016/j.heliyon.2019.e01737.
  • [29] A. A. M, A. I. R, Estimation of Outdoor Gamma Dose Rates and Lifetime Cancer Risk in Akoko Region, Ondo State, Southwestern, Nigeria., IOSR J. Environ. Sci. Toxicol. Food Technol. 11 (2017) 49–52. https://doi.org/10.9790/2402-1105024952.
  • [30] H. Hassanvand, M.S. Hassanvand, M. Birjandi, B. Kamarehie, Iranian Journal of Medical Physics Indoor Radon Measurement in Dwellings of Khorramabad, (2018). https://doi.org/10.22038/ijmp.2017.24851.1252.
  • [31] A.M. Maghraby, K. Alzimami, M. Abo-Elmagd, Estimation of the residential radon levels and the population annual effective dose in dwellings of Al-kharj, Saudi Arabia, J. Radiat. Res. Appl. Sci. 7 (2014) 577–582. https://doi.org/10.1016/j.jrras.2014.09.013.
  • [32] A.A. Al-Hamzawi, N.F. Tawfiq, M.S. Aswood, F.A. Najim, Determination of radon concentrations near mobile towers in selected cities of Babylon governorate, Iraq, J. Phys. Conf. Ser. 1234 (2019). https://doi.org/10.1088/1742-6596/1234/1/012026.
  • [33] E. Abuelhia, Evaluation of annual effective dose from indoor radon concentration in Eastern Province, Dammam, Saudi Arabia, Radiat. Phys. Chem. 140 (2017) 137–140. https://doi.org/10.1016/j.radphyschem.2017.03.004.
  • [34] S. Sherafat, S. Nemati Mansour, M. Mosaferi, N. Aminisani, Z. Yousefi, S. Maleki, First indoor radon mapping and assessment excess lifetime cancer risk in Iran, MethodsX. 6 (2019) 2205–2216. https://doi.org/10.1016/j.mex.2019.09.028.
  • [35] R.C. Ramola, M. Prasad, T. Kandari, P. Pant, P. Bossew, Dose estimation derived from the exposure to radon , thoron and their progeny in the indoor environment, Nat. Publ. Gr. (2016) 1–16. https://doi.org/10.1038/srep31061.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Adeola Asere 0000-0003-0911-9676

Isaac Ajayi 0000-0003-1718-980X

Adedeji Agoyi 0000-0001-8738-5123

Samuel Sedara 0000-0002-2116-1263

Peter Chibuike Okoye 0000-0001-8677-0943

Ebenezer O. Oniya

Project Number Nil
Publication Date April 20, 2022
Submission Date January 6, 2022
Published in Issue Year 2020Volume: 7 Issue: 2

Cite

APA Asere, A., Ajayi, I., Agoyi, A., Sedara, S., et al. (2022). Indoor Radon Levels and Contributory Factors in Southwest Nigeria. Journal of Nuclear Sciences, 7(2), 20-27. https://doi.org/10.1501/nuclear.2023.55
AMA Asere A, Ajayi I, Agoyi A, Sedara S, Okoye PC, Oniya EO. Indoor Radon Levels and Contributory Factors in Southwest Nigeria. Journal of Nuclear Sciences. April 2022;7(2):20-27. doi:10.1501/nuclear.2023.55
Chicago Asere, Adeola, Isaac Ajayi, Adedeji Agoyi, Samuel Sedara, Peter Chibuike Okoye, and Ebenezer O. Oniya. “Indoor Radon Levels and Contributory Factors in Southwest Nigeria”. Journal of Nuclear Sciences 7, no. 2 (April 2022): 20-27. https://doi.org/10.1501/nuclear.2023.55.
EndNote Asere A, Ajayi I, Agoyi A, Sedara S, Okoye PC, Oniya EO (April 1, 2022) Indoor Radon Levels and Contributory Factors in Southwest Nigeria. Journal of Nuclear Sciences 7 2 20–27.
IEEE A. Asere, I. Ajayi, A. Agoyi, S. Sedara, P. C. Okoye, and E. O. Oniya, “Indoor Radon Levels and Contributory Factors in Southwest Nigeria”, Journal of Nuclear Sciences, vol. 7, no. 2, pp. 20–27, 2022, doi: 10.1501/nuclear.2023.55.
ISNAD Asere, Adeola et al. “Indoor Radon Levels and Contributory Factors in Southwest Nigeria”. Journal of Nuclear Sciences 7/2 (April 2022), 20-27. https://doi.org/10.1501/nuclear.2023.55.
JAMA Asere A, Ajayi I, Agoyi A, Sedara S, Okoye PC, Oniya EO. Indoor Radon Levels and Contributory Factors in Southwest Nigeria. Journal of Nuclear Sciences. 2022;7:20–27.
MLA Asere, Adeola et al. “Indoor Radon Levels and Contributory Factors in Southwest Nigeria”. Journal of Nuclear Sciences, vol. 7, no. 2, 2022, pp. 20-27, doi:10.1501/nuclear.2023.55.
Vancouver Asere A, Ajayi I, Agoyi A, Sedara S, Okoye PC, Oniya EO. Indoor Radon Levels and Contributory Factors in Southwest Nigeria. Journal of Nuclear Sciences. 2022;7(2):20-7.