Research Article
BibTex RIS Cite

Determination of the Mass Attenuation Coefficient, Effective Atomic Number and Electron Density for Nano Manganese Hydroxyapatite by using 778-1457 keV Gamma Rays

Year 2018, Volume: 5 Issue: 2, 24 - 29, 02.03.2019
https://doi.org/10.1501/nuclear_0000000044

Abstract

In this study, Nano Manganese
substituted hydroxyapatite artificial bone powders (nMnHAp) have been
investigated by means of mass attenuation coefficients, effective atomic
numbers and electron densities experimentally. The samples were excited with
using 778 keV, 964 keV, 1085 keV, 1111 keV, 1408 keV and 1457 keV gamma photons
from Europium-152 (Eu152).The gamma photons from the source were
counted by using gamma spectroscopy, a High Purity Germanium (HPGe) detector. The
mass attenuation coefficients of the hydroxyapatites artificial bone powders (including
hydroxyapatite without any substituted metal and real bone powder) were
compared with each other.
This study has been dealt with as a
guide to medical field. Also the results have been evaluated in terms of the electron
density and effectice atomic number.

References

  • [1] S.G. Prasad, K. Parthasaradhi, W.D. Bloomer, Effective atomic numbers for photoabsorption in alloys in the energy region of absorption edges, Radiat Phys Chem, 53, 449-453 (1998).
  • [2] D.K. Dubey, V. Tomar, Understanding the influence of structural hierarchy and its coupling with chemical environment on the strength of idealized tropocollagen-hydroxyapatite biomaterials, J Mech Phys Solids, 57, 1702-1717 (2009).
  • [3] D.E. Wagner, K.M. Eisenmann, A.L. Nestor-Kalinoski, S.B. Bhaduri, A microwave-assisted solution combustion synthesis to produce europium-doped calcium phosphate nanowhiskers for bioimaging applications, Acta Biomater, 9, 8422-8432 (2013).
  • [4] X. Wei, M.Z. Yates, Yttrium-Doped Hydroxyapatite Membranes with High Proton Conductivity, Chem Mater, 24,1738-1743 (2012).
  • [5] Y. Watanabe, T. Ikoma, Y. Suetsugu, H. Yamada, K. Tamura, Y. Komatsu, J. Tanaka, Y. Moriyoshi, The densification of zeolite/apatite composites using a pulse electric current sintering method: A long-term assurance material for the disposal of radioactive waste, J Eur Ceram Soc, 26, 481-486 (2006).
  • [6] J. Vamze, M. Pilmane, A. Skagers, Biocompatibility of pure and mixed hydroxyapatite and alpha-tricalcium phosphate implanted in rabbit bone, J Mater Sci-Mater M, 26 (2015).
  • [7] C.T. Wong, W.W. Lu, W.K. Chan, K.M.C. Cheung, K.D.K. Lukl, D.S. Lu, A.B.M. Rabie, L.F. Deng, J.C.Y. Leong, In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (Sr-HA) bioactive cement, J Biomed Mater Res A, 68a, 513-521 (2004).
  • [8] L. Nie, D. Chen, J. Fu, S.H. Yang, R.X. Hou, J.P. Suo, Macroporous biphasic calcium phosphate scaffolds reinforced by poly-L-lactic acid/hydroxyapatite nanocomposite coatings for bone regeneration, Biochem Eng J, 98, 29-37 (2015).
  • [9] H. Akazawa, Y. Ueno, Low-temperature crystallization and high-temperature instability of hydroxyapatite thin films deposited on Ru, Ti, and Pt metal substrates, Surf Coat Tech, 266, 42-48 (2015).
  • [10] D. Duraccio, F. Mussano, M.G. Faga, Biomaterials for dental implants: current and future trends, J Mater Sci, 50, 4779-4812 (2015).
  • [11] M. Razavi, M. Fathi, O. Savabi, D. Vashaee, L. Tayebi, In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications, Metall Mater Trans A, 46a, 1394-1404 (2015).
  • [12] N. Demirkol, Koyun Hidroksiapatit Esaslı Kompozitlerin Üretimi ve Karakterizasyonu, Fen Bilimleri Enstitüsü, 2013.
  • [13] H.M. Pandya, P. Anitha, Influence of Manganese on the Synthesis of Nano Hydroxyapatite by Wet Chemical Method for in vitro Applications, International Journal of Medical Research and Review, 3, 394-402 (2015).
  • [14] K. Singh, H. Singh, V. Sharma, R. Nathuram, A. Khanna, R. Kumar, S.S. Bhatti, H.S. Sahota, Gamma-ray attenuation coefficients in bismuth borate glasses, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 194, 1-6 (2002).
  • [15] H. Singh, K. Singh, L. Gerward, K. Singh, H.S. Sahota, R. Nathuram, ZnO–PbO–B2O3 glasses as gamma-ray shielding materials, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 207, 257-262 (2003).
  • [16] P. Limkitjaroenporn, J. Kaewkhao, P. Limsuwan, W. Chewpraditkul, Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses, J Phys Chem Solids, 72, 245-251 (2011).
  • [17] C.T. Chantler, C.Q. Tran, Z. Barnea, D. Paterson, D. Cookson, D. Balaic, Measurement of the x-ray mass attenuation coefficient of copper using 8.85–20 keV synchrotron radiation, Physical Review A, 64, 062506 (2001).
  • [18] G. Apaydın, E. Cengiz, E. Tıraşoğlu, V. Aylıkcı, Ö.F. Bakkaloğlu, Studies on mass attenuation coefficients, effective atomic numbers and electron densities for CoCuAg alloy thin film, Phys Scripta, 79, 055302 (2009).
  • [19] M.J. Berger, J.H. Hubbell, S.M. Seltzer, J.S. Coursey, D.S. Zucker, XCOM: photon cross section database (version 1.2), 1999.
  • [20] N. Kaya, E. Tıraşoğlu, G. Apaydın, V. Aylıkcı, E. Cengiz, K-shell absorption jump factors and jump ratios in elements between Tm (Z= 69) and Os (Z= 76) derived from new mass attenuation coefficient measurements, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 262, 16-23 (2007).
  • [21] M.J. Berger, J. Hubbell, XCOM: Photon cross sections on a personal computer, National Bureau of Standards, Washington, DC (USA). Center for Radiation Research, 1987.
  • [22] M. Honda, K. Kikushima, Y. Kawanobe, T. Konishi, M. Mizumoto, M. Aizawa, Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route, J Mater Sci-Mater M, 23, 2923-2932 (2012).
  • [23] J. Wang, T. Nonami, K. Yubata, Syntheses, structures and photophysical properties of iron containing hydroxyapatite prepared by a modified pseudo-body solution, J Mater Sci-Mater M, 19, 2663-2667 (2008).
Year 2018, Volume: 5 Issue: 2, 24 - 29, 02.03.2019
https://doi.org/10.1501/nuclear_0000000044

Abstract

References

  • [1] S.G. Prasad, K. Parthasaradhi, W.D. Bloomer, Effective atomic numbers for photoabsorption in alloys in the energy region of absorption edges, Radiat Phys Chem, 53, 449-453 (1998).
  • [2] D.K. Dubey, V. Tomar, Understanding the influence of structural hierarchy and its coupling with chemical environment on the strength of idealized tropocollagen-hydroxyapatite biomaterials, J Mech Phys Solids, 57, 1702-1717 (2009).
  • [3] D.E. Wagner, K.M. Eisenmann, A.L. Nestor-Kalinoski, S.B. Bhaduri, A microwave-assisted solution combustion synthesis to produce europium-doped calcium phosphate nanowhiskers for bioimaging applications, Acta Biomater, 9, 8422-8432 (2013).
  • [4] X. Wei, M.Z. Yates, Yttrium-Doped Hydroxyapatite Membranes with High Proton Conductivity, Chem Mater, 24,1738-1743 (2012).
  • [5] Y. Watanabe, T. Ikoma, Y. Suetsugu, H. Yamada, K. Tamura, Y. Komatsu, J. Tanaka, Y. Moriyoshi, The densification of zeolite/apatite composites using a pulse electric current sintering method: A long-term assurance material for the disposal of radioactive waste, J Eur Ceram Soc, 26, 481-486 (2006).
  • [6] J. Vamze, M. Pilmane, A. Skagers, Biocompatibility of pure and mixed hydroxyapatite and alpha-tricalcium phosphate implanted in rabbit bone, J Mater Sci-Mater M, 26 (2015).
  • [7] C.T. Wong, W.W. Lu, W.K. Chan, K.M.C. Cheung, K.D.K. Lukl, D.S. Lu, A.B.M. Rabie, L.F. Deng, J.C.Y. Leong, In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (Sr-HA) bioactive cement, J Biomed Mater Res A, 68a, 513-521 (2004).
  • [8] L. Nie, D. Chen, J. Fu, S.H. Yang, R.X. Hou, J.P. Suo, Macroporous biphasic calcium phosphate scaffolds reinforced by poly-L-lactic acid/hydroxyapatite nanocomposite coatings for bone regeneration, Biochem Eng J, 98, 29-37 (2015).
  • [9] H. Akazawa, Y. Ueno, Low-temperature crystallization and high-temperature instability of hydroxyapatite thin films deposited on Ru, Ti, and Pt metal substrates, Surf Coat Tech, 266, 42-48 (2015).
  • [10] D. Duraccio, F. Mussano, M.G. Faga, Biomaterials for dental implants: current and future trends, J Mater Sci, 50, 4779-4812 (2015).
  • [11] M. Razavi, M. Fathi, O. Savabi, D. Vashaee, L. Tayebi, In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications, Metall Mater Trans A, 46a, 1394-1404 (2015).
  • [12] N. Demirkol, Koyun Hidroksiapatit Esaslı Kompozitlerin Üretimi ve Karakterizasyonu, Fen Bilimleri Enstitüsü, 2013.
  • [13] H.M. Pandya, P. Anitha, Influence of Manganese on the Synthesis of Nano Hydroxyapatite by Wet Chemical Method for in vitro Applications, International Journal of Medical Research and Review, 3, 394-402 (2015).
  • [14] K. Singh, H. Singh, V. Sharma, R. Nathuram, A. Khanna, R. Kumar, S.S. Bhatti, H.S. Sahota, Gamma-ray attenuation coefficients in bismuth borate glasses, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 194, 1-6 (2002).
  • [15] H. Singh, K. Singh, L. Gerward, K. Singh, H.S. Sahota, R. Nathuram, ZnO–PbO–B2O3 glasses as gamma-ray shielding materials, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 207, 257-262 (2003).
  • [16] P. Limkitjaroenporn, J. Kaewkhao, P. Limsuwan, W. Chewpraditkul, Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses, J Phys Chem Solids, 72, 245-251 (2011).
  • [17] C.T. Chantler, C.Q. Tran, Z. Barnea, D. Paterson, D. Cookson, D. Balaic, Measurement of the x-ray mass attenuation coefficient of copper using 8.85–20 keV synchrotron radiation, Physical Review A, 64, 062506 (2001).
  • [18] G. Apaydın, E. Cengiz, E. Tıraşoğlu, V. Aylıkcı, Ö.F. Bakkaloğlu, Studies on mass attenuation coefficients, effective atomic numbers and electron densities for CoCuAg alloy thin film, Phys Scripta, 79, 055302 (2009).
  • [19] M.J. Berger, J.H. Hubbell, S.M. Seltzer, J.S. Coursey, D.S. Zucker, XCOM: photon cross section database (version 1.2), 1999.
  • [20] N. Kaya, E. Tıraşoğlu, G. Apaydın, V. Aylıkcı, E. Cengiz, K-shell absorption jump factors and jump ratios in elements between Tm (Z= 69) and Os (Z= 76) derived from new mass attenuation coefficient measurements, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 262, 16-23 (2007).
  • [21] M.J. Berger, J. Hubbell, XCOM: Photon cross sections on a personal computer, National Bureau of Standards, Washington, DC (USA). Center for Radiation Research, 1987.
  • [22] M. Honda, K. Kikushima, Y. Kawanobe, T. Konishi, M. Mizumoto, M. Aizawa, Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route, J Mater Sci-Mater M, 23, 2923-2932 (2012).
  • [23] J. Wang, T. Nonami, K. Yubata, Syntheses, structures and photophysical properties of iron containing hydroxyapatite prepared by a modified pseudo-body solution, J Mater Sci-Mater M, 19, 2663-2667 (2008).
There are 23 citations in total.

Details

Primary Language English
Subjects Nuclear Sciences
Journal Section Articles
Authors

O.k. Köksal

E. Cengiz

G. Apaydın

A. Tozar

İ. H. Karahan

Publication Date March 2, 2019
Submission Date September 20, 2018
Published in Issue Year 2018Volume: 5 Issue: 2

Cite

APA Köksal, O., Cengiz, E., Apaydın, G., Tozar, A., et al. (2019). Determination of the Mass Attenuation Coefficient, Effective Atomic Number and Electron Density for Nano Manganese Hydroxyapatite by using 778-1457 keV Gamma Rays. Journal of Nuclear Sciences, 5(2), 24-29. https://doi.org/10.1501/nuclear_0000000044
AMA Köksal O, Cengiz E, Apaydın G, Tozar A, Karahan İH. Determination of the Mass Attenuation Coefficient, Effective Atomic Number and Electron Density for Nano Manganese Hydroxyapatite by using 778-1457 keV Gamma Rays. Journal of Nuclear Sciences. March 2019;5(2):24-29. doi:10.1501/nuclear_0000000044
Chicago Köksal, O.k., E. Cengiz, G. Apaydın, A. Tozar, and İ. H. Karahan. “Determination of the Mass Attenuation Coefficient, Effective Atomic Number and Electron Density for Nano Manganese Hydroxyapatite by Using 778-1457 KeV Gamma Rays”. Journal of Nuclear Sciences 5, no. 2 (March 2019): 24-29. https://doi.org/10.1501/nuclear_0000000044.
EndNote Köksal O, Cengiz E, Apaydın G, Tozar A, Karahan İH (March 1, 2019) Determination of the Mass Attenuation Coefficient, Effective Atomic Number and Electron Density for Nano Manganese Hydroxyapatite by using 778-1457 keV Gamma Rays. Journal of Nuclear Sciences 5 2 24–29.
IEEE O. Köksal, E. Cengiz, G. Apaydın, A. Tozar, and İ. H. Karahan, “Determination of the Mass Attenuation Coefficient, Effective Atomic Number and Electron Density for Nano Manganese Hydroxyapatite by using 778-1457 keV Gamma Rays”, Journal of Nuclear Sciences, vol. 5, no. 2, pp. 24–29, 2019, doi: 10.1501/nuclear_0000000044.
ISNAD Köksal, O.k. et al. “Determination of the Mass Attenuation Coefficient, Effective Atomic Number and Electron Density for Nano Manganese Hydroxyapatite by Using 778-1457 KeV Gamma Rays”. Journal of Nuclear Sciences 5/2 (March 2019), 24-29. https://doi.org/10.1501/nuclear_0000000044.
JAMA Köksal O, Cengiz E, Apaydın G, Tozar A, Karahan İH. Determination of the Mass Attenuation Coefficient, Effective Atomic Number and Electron Density for Nano Manganese Hydroxyapatite by using 778-1457 keV Gamma Rays. Journal of Nuclear Sciences. 2019;5:24–29.
MLA Köksal, O.k. et al. “Determination of the Mass Attenuation Coefficient, Effective Atomic Number and Electron Density for Nano Manganese Hydroxyapatite by Using 778-1457 KeV Gamma Rays”. Journal of Nuclear Sciences, vol. 5, no. 2, 2019, pp. 24-29, doi:10.1501/nuclear_0000000044.
Vancouver Köksal O, Cengiz E, Apaydın G, Tozar A, Karahan İH. Determination of the Mass Attenuation Coefficient, Effective Atomic Number and Electron Density for Nano Manganese Hydroxyapatite by using 778-1457 keV Gamma Rays. Journal of Nuclear Sciences. 2019;5(2):24-9.