Research Article
BibTex RIS Cite
Year 2017, Volume: 4 Issue: 2, 50 - 57
https://doi.org/10.1501/nuclear.2023.26

Abstract

References

  • [1] Adamiec, G., 2005. Properties of the 360 and 550 nm TL Emissions of the ‘110 ◦C Peak’ in Fired Quartz. Radiat. Meas. 39, 105–110.
  • [2] Adamiec, G., Garcia-Talavera, M., Bailey, R.M., La Torre, P.I. de, 2004. Application of a genetic algorithm to finding parameter values for numerical simulation of quartz luminescence. Geochronometria 23, 9–14.
  • [3] Afouxenidis, D., Polymeris, G. S., Tsirliganis, N. C., Kitis, G., 2012. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program. Radiation Protection Dosimetry. 149 (4): 363–370.
  • [4] Bailey, R.M., 2001. Towards a general kinetic model for optically and thermally stimulated luminescence in quartz. Radiat. Meas. 33, 17–45.
  • [5] Bailey, R., 2002. Simulations of variability in the luminescence characteristics of natural quartz and its implications for estimates of absorbed dose. Radiation Protection Dosimetry 100, 33–38.
  • [6] Bailey, R., 2004. Paper I - Simulation of dose absorption in quartz over geological timescales and its implications for the precision and accuracy of optical dating. Radiation Measurements 38, 299–310.
  • [7] Basun, S., Imbusch, G.F., Jia, D.D. and Yen, M.W., 2003. The Analysis of Thermoluminescence Glow Curves. Journal of Luminescence. 104, 283-294.
  • [8] Chen, G. and Li, S. H., 2000. Studies of Quartz 110oC Thermoluminescence Peak Sensitivity Change and its Relevance to Optically Stimulated Luminescence Dating. J. Phys. D: Appl. Phys. 33,437–443.
  • [9] Chen, R. and Pagonis, V, 2011. Thermally and Optically Stimulated Luminescence: A Simulation Approach. John Wiley and Sons Ltd, UK.
  • [10] Figel, M. and Geodicke, C. 1999. Simulation of the pre-dose effect of the 100oC TL peak in quartz. Radiation Protection Dosimetry 84, 433-438.
  • [11] Friedrich, J., Kreutzer, S., Schmidt, C., 2016. Solving ordinary differential equations to understand luminescence: ’RLumModel’, an advanced research tool for simulating luminescence in quartz using R. Quaternary Geochronology 35, 88–100.
  • [12] Friedrich, J., Pagonis, V., Chen, R., Kreutzer, S., Schmidt, C., 2017. Quartz radiofluorescence: A modelling approach. Journal of Luminescence 186, 318–325.
  • [13] Horowitz, Y. S. Yossian, D., 1995. Computerized glow curve deconvolution application to thermoluminescence dosimetry. Radiation Protection Dosimetry. Spec. Issue, 60.
  • [14] Kitis G., and Furetta, C., 2006. Simulation of competing irradiation and fading effects in thermoluminescence dosimetry. Radiation Effects and Defects in Solids 160, 285-296.
  • [15] Kitis, G. Gomez-Ros, J. M. Tuyn and J. W. N., 1998. Thermoluminescence glowcurve deconvolution functions for first, second and general orders of kinetics. Journal of Physics D. Applied Physics 31: 2636-2641.
  • [16] Kitis, G., 2001. TL glow-curve deconvoluion functions for various kinetic orders and continuous trap distribution. Acceptance criteria for E and s values. Journal of Radioanalytical and Nuclear Chemistry. 247 (3): 697-703.
  • [17] Koul, D.K., 2008. 110oC Thermoluminescence Glow Peak of Quartz -A Brief Review. Pranama Journal of Physics 71, 1209-1229.
  • [18] Kristianpoller, N., Chen, R., Israel, M., 1974. Dose dependence of thermoluminescence peaks. J. Phys. D: Appl. Phys. 7, 1063–1071.
  • [19] Marcazzo, J., Santiago, M., Spano, F., Lester, M., Ortege, F., Molina, P. and Caselli, E., 2007. Effect of the Interaction among Traps on the shape of Thermoluminescence Glow Curves. Journal of Luminescence. 126, 245-250.
  • [20] Ogundare, F.O. and Chithambo, M.L., 2007. Thermoluminescence Kinetic Analysis of Quartz with a Glow Peak that Shifts in an Unusual Manner with Irradiation Dose. J. Phys. D: Appl. Phys. 40, 247-253.
  • [21] Ogundare, F.O., Chithambo, M.L. and Oniya, E.O., 2006. Anomalous Behaviour of Thermoluminescence from Quartz: A Case of Glow Peaks From a Nigerian Quartz. Radiat. Meas. 41, 549-553.
  • [22] Oniya E. O. (2015). Dependence of heating rates of thermal activation on thermal activation characteristics of 110oC TL peak of quartz: A simulation approach. Radiation Physics and Chemistry. Elsevier Ltd UK. 115 pages 171–178 http://dx.doi.org/10.1016/j.radphyschem.2015.06.020
  • [23] Oniya, E.O., Polymeris, G.S., Jibiri N. N., Tsirliganis, N.C., Babalola I. A., Kitis, G., (2015). Contributions of pre-exposure dose and thermal activation in pre-dose sensitizations of unfired and annealed quartz. Radiation Physics and Chemistry. Elsevier Ltd UK. 110), pages 105–113 http://dx.doi.org/10.1016/j.radphyschem.2015.01.033
  • [24] Oniya, E.O., Polymeris, G.S., Tsirliganis, N.C., Kitis, G., 2012. On the Pre-dose Sensitization of the Various Components of the LM-OSL Signal of Annealed Quartz; Comparison with the Case of 110oC TL Peak. Radiat Meas. 47, 864-869.
  • [25] Pagonis, V., Wintle, A.G., Chen, R., 2007. Simulations of the Effect of Pulse Annealing on Optically-Stimulated Luminescence of Quartz. Radiat. Meas. 42, 1587–1599.
  • [26] Pagonis, V., Balsamo, E., Barnold, C., Duling, K., McCole, S., 2008 (b). Simulations of the predose technique for retrospective dosimetry and authenticity testing. Radiation Measurements 43, 1343–1353.
  • [27] Pagonis, V., Wintle, A.G., Chen, R., Wang, X.L., 2008 (a). A Theoretical Model for a New Dating Protocol for Quartz Based on Thermally Transferred OSL (TT-OSL). Radiat. Meas. 43, 704 – 708.
  • [28] Preusser, F., Chithambo, M. L., Götte, T., Martini, M., Ramseyer, K., Sendezera, E. J., Susino, G. J., Wintle, G. J., 2009. Quartz as a Natural Luminescence Dosimeter. Earth-Science Reviews 97, 184–214.
  • [29] Popko, E.A. and Weinstein I.A., 2016. Thermoluminescence curves simulation using genetic algorithm with factorial design. Modern Physics Letters B 30, 1650144 (7 pages).
  • [30] Rasheedy, M.S., Algethami, N.T., 2012. Adaptation of the OTOR-model to explain exactly the thermoluminescence processes during thermal excitation. Physica Scripta, 86, 045703 (7 pages).
  • [31] Rodine, E.T., Land, P.L., 1971. Electronic Defect Structure of Single-crystal ThO2 by Thermoluminescence. Phys. Rev. B 4 (8), 2701–2724.
  • [32] Singh, L. L, Gartia R.K., 2013. Derivation of an expression for lifetime ("τ" ) in OTOR model. Nuclear Instruments and Methods in Physics Research B. 308, 21-23
  • [33] Singh, L., Kaur, N., Singh, M., 2012. Thermoluminescence Characteristics of High Gamma Dose Irradiated Muscovite Mica. Indian Journal of Pure and Applied Physics 50, 14-18.
  • [34] Subedi, B., Oniya, E., Polymeris, G.S., Afouxenidis, D., Tsirliganis, N. C., Kitis, G., 2011. Thermal quenching of thermoluminescence in quartz samples of various origin. Nuclear Instruments and Methods in Physics Research B. 269, 572–581.
  • [35] Subedi, B., Kitis, G., Pagonis, V., 2010. Simulation of the influence of thermal quenching on thermoluminescence glow-peaks. Phys. Status Solidi A 207, 1216-1226.
  • [36] Wintle, A. G., 1997. Luminescence dating. laboratory procedures and protocols. Radiation Measurements. 27, 769-817.
  • [37] Yazici, A.N., Chen, R., Solak, S., Yegingil, Z., 2002. The Analysis of Thermoluminescence Glow Peaks of CaF2: Dy (TLD-200) after β-Irradiation. J. Phys. D: Appl. Phys. 35, 2526-2535.

Simulation of an anomalous behavior of thermoluminescence glow peak of quartz from Nigeria

Year 2017, Volume: 4 Issue: 2, 50 - 57
https://doi.org/10.1501/nuclear.2023.26

Abstract

Mechanism
of the experimentally observed anomalous shift of a thermoluminescence (TL)
glow peak that varied with irradiation dose is yet to be fully established. A
theory that the anomalous peak must have contained more than one first order
composite peak each with different TL dose characteristics has been one major
explanation proposed to explain this observation. This work was undertaken to
simulate the anomalous glow peak by using a modified version of a previously
proposed model and numerically solving sets of simultaneous differential
equations governing the stages of TL phenomena (excitation, relaxation and
heating). In the modified model, two additional electron trapping centers were
incorporated in order to simulate accurately this glow curve. Computerized
curve deconvolution (CGCD) analyses was carried
out on the simulated
  glow peak in
attempt to retrieve back the electron trapping cente
r energies and to identify
their respective peak positions. The outcome of this confirmed the peak to be
possibly composite in nature comprising three overlapping glow peaks at 288,
300 and 317
oC with respective energy gaps of 1.70, 1.73 and 1.75eV. It
is therefore further substantiated that this kind of temperature shift of peak
with dose resulting from composite glow peaks is possible.

References

  • [1] Adamiec, G., 2005. Properties of the 360 and 550 nm TL Emissions of the ‘110 ◦C Peak’ in Fired Quartz. Radiat. Meas. 39, 105–110.
  • [2] Adamiec, G., Garcia-Talavera, M., Bailey, R.M., La Torre, P.I. de, 2004. Application of a genetic algorithm to finding parameter values for numerical simulation of quartz luminescence. Geochronometria 23, 9–14.
  • [3] Afouxenidis, D., Polymeris, G. S., Tsirliganis, N. C., Kitis, G., 2012. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program. Radiation Protection Dosimetry. 149 (4): 363–370.
  • [4] Bailey, R.M., 2001. Towards a general kinetic model for optically and thermally stimulated luminescence in quartz. Radiat. Meas. 33, 17–45.
  • [5] Bailey, R., 2002. Simulations of variability in the luminescence characteristics of natural quartz and its implications for estimates of absorbed dose. Radiation Protection Dosimetry 100, 33–38.
  • [6] Bailey, R., 2004. Paper I - Simulation of dose absorption in quartz over geological timescales and its implications for the precision and accuracy of optical dating. Radiation Measurements 38, 299–310.
  • [7] Basun, S., Imbusch, G.F., Jia, D.D. and Yen, M.W., 2003. The Analysis of Thermoluminescence Glow Curves. Journal of Luminescence. 104, 283-294.
  • [8] Chen, G. and Li, S. H., 2000. Studies of Quartz 110oC Thermoluminescence Peak Sensitivity Change and its Relevance to Optically Stimulated Luminescence Dating. J. Phys. D: Appl. Phys. 33,437–443.
  • [9] Chen, R. and Pagonis, V, 2011. Thermally and Optically Stimulated Luminescence: A Simulation Approach. John Wiley and Sons Ltd, UK.
  • [10] Figel, M. and Geodicke, C. 1999. Simulation of the pre-dose effect of the 100oC TL peak in quartz. Radiation Protection Dosimetry 84, 433-438.
  • [11] Friedrich, J., Kreutzer, S., Schmidt, C., 2016. Solving ordinary differential equations to understand luminescence: ’RLumModel’, an advanced research tool for simulating luminescence in quartz using R. Quaternary Geochronology 35, 88–100.
  • [12] Friedrich, J., Pagonis, V., Chen, R., Kreutzer, S., Schmidt, C., 2017. Quartz radiofluorescence: A modelling approach. Journal of Luminescence 186, 318–325.
  • [13] Horowitz, Y. S. Yossian, D., 1995. Computerized glow curve deconvolution application to thermoluminescence dosimetry. Radiation Protection Dosimetry. Spec. Issue, 60.
  • [14] Kitis G., and Furetta, C., 2006. Simulation of competing irradiation and fading effects in thermoluminescence dosimetry. Radiation Effects and Defects in Solids 160, 285-296.
  • [15] Kitis, G. Gomez-Ros, J. M. Tuyn and J. W. N., 1998. Thermoluminescence glowcurve deconvolution functions for first, second and general orders of kinetics. Journal of Physics D. Applied Physics 31: 2636-2641.
  • [16] Kitis, G., 2001. TL glow-curve deconvoluion functions for various kinetic orders and continuous trap distribution. Acceptance criteria for E and s values. Journal of Radioanalytical and Nuclear Chemistry. 247 (3): 697-703.
  • [17] Koul, D.K., 2008. 110oC Thermoluminescence Glow Peak of Quartz -A Brief Review. Pranama Journal of Physics 71, 1209-1229.
  • [18] Kristianpoller, N., Chen, R., Israel, M., 1974. Dose dependence of thermoluminescence peaks. J. Phys. D: Appl. Phys. 7, 1063–1071.
  • [19] Marcazzo, J., Santiago, M., Spano, F., Lester, M., Ortege, F., Molina, P. and Caselli, E., 2007. Effect of the Interaction among Traps on the shape of Thermoluminescence Glow Curves. Journal of Luminescence. 126, 245-250.
  • [20] Ogundare, F.O. and Chithambo, M.L., 2007. Thermoluminescence Kinetic Analysis of Quartz with a Glow Peak that Shifts in an Unusual Manner with Irradiation Dose. J. Phys. D: Appl. Phys. 40, 247-253.
  • [21] Ogundare, F.O., Chithambo, M.L. and Oniya, E.O., 2006. Anomalous Behaviour of Thermoluminescence from Quartz: A Case of Glow Peaks From a Nigerian Quartz. Radiat. Meas. 41, 549-553.
  • [22] Oniya E. O. (2015). Dependence of heating rates of thermal activation on thermal activation characteristics of 110oC TL peak of quartz: A simulation approach. Radiation Physics and Chemistry. Elsevier Ltd UK. 115 pages 171–178 http://dx.doi.org/10.1016/j.radphyschem.2015.06.020
  • [23] Oniya, E.O., Polymeris, G.S., Jibiri N. N., Tsirliganis, N.C., Babalola I. A., Kitis, G., (2015). Contributions of pre-exposure dose and thermal activation in pre-dose sensitizations of unfired and annealed quartz. Radiation Physics and Chemistry. Elsevier Ltd UK. 110), pages 105–113 http://dx.doi.org/10.1016/j.radphyschem.2015.01.033
  • [24] Oniya, E.O., Polymeris, G.S., Tsirliganis, N.C., Kitis, G., 2012. On the Pre-dose Sensitization of the Various Components of the LM-OSL Signal of Annealed Quartz; Comparison with the Case of 110oC TL Peak. Radiat Meas. 47, 864-869.
  • [25] Pagonis, V., Wintle, A.G., Chen, R., 2007. Simulations of the Effect of Pulse Annealing on Optically-Stimulated Luminescence of Quartz. Radiat. Meas. 42, 1587–1599.
  • [26] Pagonis, V., Balsamo, E., Barnold, C., Duling, K., McCole, S., 2008 (b). Simulations of the predose technique for retrospective dosimetry and authenticity testing. Radiation Measurements 43, 1343–1353.
  • [27] Pagonis, V., Wintle, A.G., Chen, R., Wang, X.L., 2008 (a). A Theoretical Model for a New Dating Protocol for Quartz Based on Thermally Transferred OSL (TT-OSL). Radiat. Meas. 43, 704 – 708.
  • [28] Preusser, F., Chithambo, M. L., Götte, T., Martini, M., Ramseyer, K., Sendezera, E. J., Susino, G. J., Wintle, G. J., 2009. Quartz as a Natural Luminescence Dosimeter. Earth-Science Reviews 97, 184–214.
  • [29] Popko, E.A. and Weinstein I.A., 2016. Thermoluminescence curves simulation using genetic algorithm with factorial design. Modern Physics Letters B 30, 1650144 (7 pages).
  • [30] Rasheedy, M.S., Algethami, N.T., 2012. Adaptation of the OTOR-model to explain exactly the thermoluminescence processes during thermal excitation. Physica Scripta, 86, 045703 (7 pages).
  • [31] Rodine, E.T., Land, P.L., 1971. Electronic Defect Structure of Single-crystal ThO2 by Thermoluminescence. Phys. Rev. B 4 (8), 2701–2724.
  • [32] Singh, L. L, Gartia R.K., 2013. Derivation of an expression for lifetime ("τ" ) in OTOR model. Nuclear Instruments and Methods in Physics Research B. 308, 21-23
  • [33] Singh, L., Kaur, N., Singh, M., 2012. Thermoluminescence Characteristics of High Gamma Dose Irradiated Muscovite Mica. Indian Journal of Pure and Applied Physics 50, 14-18.
  • [34] Subedi, B., Oniya, E., Polymeris, G.S., Afouxenidis, D., Tsirliganis, N. C., Kitis, G., 2011. Thermal quenching of thermoluminescence in quartz samples of various origin. Nuclear Instruments and Methods in Physics Research B. 269, 572–581.
  • [35] Subedi, B., Kitis, G., Pagonis, V., 2010. Simulation of the influence of thermal quenching on thermoluminescence glow-peaks. Phys. Status Solidi A 207, 1216-1226.
  • [36] Wintle, A. G., 1997. Luminescence dating. laboratory procedures and protocols. Radiation Measurements. 27, 769-817.
  • [37] Yazici, A.N., Chen, R., Solak, S., Yegingil, Z., 2002. The Analysis of Thermoluminescence Glow Peaks of CaF2: Dy (TLD-200) after β-Irradiation. J. Phys. D: Appl. Phys. 35, 2526-2535.
There are 37 citations in total.

Details

Primary Language English
Subjects Radiobiology
Journal Section Articles
Authors

E.O. Oniya

O.e. Olubi 0000-0002-5162-0846

Publication Date
Submission Date April 29, 2018
Published in Issue Year 2017Volume: 4 Issue: 2

Cite

APA Oniya, E., & Olubi, O. (2018). Simulation of an anomalous behavior of thermoluminescence glow peak of quartz from Nigeria. Journal of Nuclear Sciences, 4(2), 50-57. https://doi.org/10.1501/nuclear.2023.26
AMA Oniya E, Olubi O. Simulation of an anomalous behavior of thermoluminescence glow peak of quartz from Nigeria. Journal of Nuclear Sciences. November 2018;4(2):50-57. doi:10.1501/nuclear.2023.26
Chicago Oniya, E.O., and O.e. Olubi. “Simulation of an Anomalous Behavior of Thermoluminescence Glow Peak of Quartz from Nigeria”. Journal of Nuclear Sciences 4, no. 2 (November 2018): 50-57. https://doi.org/10.1501/nuclear.2023.26.
EndNote Oniya E, Olubi O (November 1, 2018) Simulation of an anomalous behavior of thermoluminescence glow peak of quartz from Nigeria. Journal of Nuclear Sciences 4 2 50–57.
IEEE E. Oniya and O. Olubi, “Simulation of an anomalous behavior of thermoluminescence glow peak of quartz from Nigeria”, Journal of Nuclear Sciences, vol. 4, no. 2, pp. 50–57, 2018, doi: 10.1501/nuclear.2023.26.
ISNAD Oniya, E.O. - Olubi, O.e. “Simulation of an Anomalous Behavior of Thermoluminescence Glow Peak of Quartz from Nigeria”. Journal of Nuclear Sciences 4/2 (November 2018), 50-57. https://doi.org/10.1501/nuclear.2023.26.
JAMA Oniya E, Olubi O. Simulation of an anomalous behavior of thermoluminescence glow peak of quartz from Nigeria. Journal of Nuclear Sciences. 2018;4:50–57.
MLA Oniya, E.O. and O.e. Olubi. “Simulation of an Anomalous Behavior of Thermoluminescence Glow Peak of Quartz from Nigeria”. Journal of Nuclear Sciences, vol. 4, no. 2, 2018, pp. 50-57, doi:10.1501/nuclear.2023.26.
Vancouver Oniya E, Olubi O. Simulation of an anomalous behavior of thermoluminescence glow peak of quartz from Nigeria. Journal of Nuclear Sciences. 2018;4(2):50-7.