Research Article
BibTex RIS Cite
Year 2016, Volume: 3 Issue: 1, 0 - 0, 29.01.2016
https://doi.org/10.1501/nuclear_0000000015

Abstract

References

  • International Atomic Energy Agency (IAEA), “Clearance levels for radionuclides in solid materials”, IAEA-TECDOC-855, IAEA, Vienna (1996).
  • F.J. Maringer, J. Šuráň, P. Kovář, B. Chauvenet, V. Peyres, E. García-Toraño, M.L. Cozzella, P. D. Felice, B. Vodenik, M. Hult, et al. “Radioactive waste management: Review on clearance levels and acceptance criteria
  • legislation, requirements and standards”, Appl. Radiat. Isot. 81, 255-260 (2013).
  • S. Merz, M. Djuricic, M. Villa, H. Bock, G. Steinhauser, “Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield”, Appl. Radiat. Isot. 69, 1621–1624 (2011).
  • S. Alhajali, M.H. Kharita, B. Naoom, S. Yousef, M. Al Nassar, “Estimation of the activation of local reactor shielding concretes”, Prog. Nucl. Energ. 51, 374–377 (2009).
  • A. Suzuki, T. Iida, J. Moriizumi, Y. Sakuma, J. Takada, J. Yamasaki, T. Yoshimoto, “Trace elements with large activation cross section in concrete materials in Japan”, J. Nucl. Sci. Technol. 38, 542-550 (2001).
  • M. Kinno, K. Kimura, T. Ishikawa et al., “Studies on induced activities and target nuclei in low-activation concrete structure for thermal neutron irradiation”, J. Nucl. Sci. Technol. Suppl. 1, 821-826 (2000).
  • M. Kinno, K. Kimura, T. Nakamura, “Raw materials for low activation concrete neutron shields”, J. Nucl. Sci. Technol. 39, 1275-1280 (2002).
  • T. Žagar, M. Božič, M. Ravnik, “Long-lived activation products in TRIGA MARK II research reactor concrete shield: calculation and experiment”, J. Nucl. Mater. 335, 379-386 (2004).
  • B.K. Bylkin, A.I. Berela, I.I. Kopytov, “Development in a nuclear power station project of matters concerning the dismantling of equipment at the stage of power unit decommissioning”, Thermal Eng+. 53, 743–748 (2006).
  • L.R. Carroll, “Predicting Long-lived neutroninduced activation of concrete in a cyclotron vault”,AIP Conf. Proc. 576, 301–304 (2001).
  • Y. Abdullah, M.R. Yusof , A. Muhamad, Z. Samsu, N.E. Abdullah, “Cement-boron carbide concrete as radiation shielding material”, J. Nucl. Rel. Technol. 7, 74-79 (2010).
  • V. Ramasamy, M. Sundarrajan, K. Paramasivam, V. Meenakshisundaram, G.Suresh, “Assessment of spatial distribution and radiological hazardous nature of radionuclides in high background radiation area, Kerala, India”, Appl. Radiat. Isot. 73, 21-31 (2013).
  • S.I. Bhuiyan, F.U. Ahmed, A. S. Mollah, M. A. Rahman, “Studies of neutron shielding properties of Ilmenite-Magnetite concrete using a Cf-252 source”, Nucl. Technol. 93, 357-361 (1991).
  • F.U. Ahmed, M. A. Rahman, S.R. Husain, M.M. Rahman, “An evaluation of two aggregates for use in a concrete reactor shield”, Nucl. Sci. Eng. 85, 427-430 (1983).
  • M.N. Alam, M.I. Chowdhury, M. Kamal, S. Ghose, M.N. Islam, M.N. Mustafa, M.M.H. Miah, M.M. Ansary, “The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of Cox's Bazar, Bangladesh”, J. Environ.
  • Radioact. 46, 243-250 (1999).
  • V. Ramasamy, M. Sundarrajan, G. Suresh, K. Paramasivam, V. Meenakshisundaram, “Role of
  • light and heavy minerals on natural radioactivity level of high background radiation area, Kerala, India”, Appl. Radiat. Isot. 85,1-10 (2014).
  • P. P. Haridasan, P. M. B. Pillai, A. H. Khan, V. D. Puranik, “Natural radionuclides in zircon and
  • related radiological impacts in mineral separation plants”, Radiat. Prot. Dosim. 121,364–369 (2006).
  • F. P. Carvalho, O. F. Matine, S. Taímo, J. M. Oliveira, L. Silva, M. Malta, “Radionuclides and radiation doses in heavy mineral sands and other mining operations in Mozambique”, Radiat. Prot. Dosim. 158,181-186 (2013).
  • M.F. Kaplan, Concrete Radiation Shielding. John Wiley & Sons, New York (1989). [20] M.E. Medhat, M. Fayez-Hassan, “Elemental analysis of cement used for radiation shielding by instrumental neutron activation analysis”, Nucl. Eng. Des. 241,2138-2142 (2011).
  • M. Cometto, D. Ridikas, M.C. Aubert, F. Damoy, D. Ancius, “Activation analysis of concrete and graphite in the experimental reactor RUS”, Radiat. Prot. Dosim. 115,104-109 (2005).
  • H. Murahashi, H. Tomura, T. Ishitsuka, H. Kadotani, S. Harasawa, “Neutron activation study of radiation shielding concrete”, Smirt-12, No 3/5, (1993).
  • (www.iasmirt.org/SMiRT12/N03-5.pdf).
  • V.M. Nazarov, M.V. Frontasyeva, P.A. Lavdanskij, N.I. Stephanov, “NAA for optimization of radiation shielding of nuclear power plants”, J. Radioanal. Nucl. Chem. 180, 83– 95 (1994).
  • JENDL3.3. Nuclear Data Center, Japan Atomic Energy Agency (JAEA), (2010).
  • http://wwwndc.jaea.go.jp/jendl/j33/j33.html.
  • M. A. Islam, S. A. Latif, S. M. Hossain, M. S.Uddin, J. Podder, “Concentration and stribution of trace elements in coals and ashes of the Barapukuria thermal power plant, Bangladesh”, Energy Sources A 33, 92–400 (2011).
  • Islam et.al/Journal of Nuclear Sciences Vol 3(1) ) (2016) 7-14
  • M.A. Rouf, “An investigation of radioactivity level in heavy minerals of Cox’s Bazar beach
  • sand by neutron activation analysis”, M. Phil. Thesis, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh (2012).
  • T. Sukegawa, N. Sasamoto, K. Fujiki, “Accuracy verification for calculation of
  • inventory in JPDR due to neutron activation”, INDC (JPN)-164, IAEA-NEA (1993).

Elemental Analysis of Raw Materials of Nuclear Reactor Shielding to Develop Low Activation Concrete

Year 2016, Volume: 3 Issue: 1, 0 - 0, 29.01.2016
https://doi.org/10.1501/nuclear_0000000015

Abstract

In this study, elemental concentrations of Ce, Hf, Fe, Sb, Tb, Sc, Ta, Zn, Cs, Co and Eu in raw materials of reactor biological shielding (cements, sands and heavy minerals separated from beach sands) are determined by research reactor-based instrumental neutron activation analysis technique (INAA) so that a strategy can be made to develop low-activation concrete. These elements are mainly responsible of long-lived radionuclides induced in biological shielding of a reactor during its operation. The concentrations of the studied elements in white Portland cements are much lower in comparison with those in ordinary Portland cements. This study reveals that inland sands contain low concentrations of the studied elements than those of beach sands. Elemental compositional data of the shielding materials can be effectively used to choose ingredients necessary for constructing radiation shielding of a nuclear installation to reduce radiation hazard.

References

  • International Atomic Energy Agency (IAEA), “Clearance levels for radionuclides in solid materials”, IAEA-TECDOC-855, IAEA, Vienna (1996).
  • F.J. Maringer, J. Šuráň, P. Kovář, B. Chauvenet, V. Peyres, E. García-Toraño, M.L. Cozzella, P. D. Felice, B. Vodenik, M. Hult, et al. “Radioactive waste management: Review on clearance levels and acceptance criteria
  • legislation, requirements and standards”, Appl. Radiat. Isot. 81, 255-260 (2013).
  • S. Merz, M. Djuricic, M. Villa, H. Bock, G. Steinhauser, “Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield”, Appl. Radiat. Isot. 69, 1621–1624 (2011).
  • S. Alhajali, M.H. Kharita, B. Naoom, S. Yousef, M. Al Nassar, “Estimation of the activation of local reactor shielding concretes”, Prog. Nucl. Energ. 51, 374–377 (2009).
  • A. Suzuki, T. Iida, J. Moriizumi, Y. Sakuma, J. Takada, J. Yamasaki, T. Yoshimoto, “Trace elements with large activation cross section in concrete materials in Japan”, J. Nucl. Sci. Technol. 38, 542-550 (2001).
  • M. Kinno, K. Kimura, T. Ishikawa et al., “Studies on induced activities and target nuclei in low-activation concrete structure for thermal neutron irradiation”, J. Nucl. Sci. Technol. Suppl. 1, 821-826 (2000).
  • M. Kinno, K. Kimura, T. Nakamura, “Raw materials for low activation concrete neutron shields”, J. Nucl. Sci. Technol. 39, 1275-1280 (2002).
  • T. Žagar, M. Božič, M. Ravnik, “Long-lived activation products in TRIGA MARK II research reactor concrete shield: calculation and experiment”, J. Nucl. Mater. 335, 379-386 (2004).
  • B.K. Bylkin, A.I. Berela, I.I. Kopytov, “Development in a nuclear power station project of matters concerning the dismantling of equipment at the stage of power unit decommissioning”, Thermal Eng+. 53, 743–748 (2006).
  • L.R. Carroll, “Predicting Long-lived neutroninduced activation of concrete in a cyclotron vault”,AIP Conf. Proc. 576, 301–304 (2001).
  • Y. Abdullah, M.R. Yusof , A. Muhamad, Z. Samsu, N.E. Abdullah, “Cement-boron carbide concrete as radiation shielding material”, J. Nucl. Rel. Technol. 7, 74-79 (2010).
  • V. Ramasamy, M. Sundarrajan, K. Paramasivam, V. Meenakshisundaram, G.Suresh, “Assessment of spatial distribution and radiological hazardous nature of radionuclides in high background radiation area, Kerala, India”, Appl. Radiat. Isot. 73, 21-31 (2013).
  • S.I. Bhuiyan, F.U. Ahmed, A. S. Mollah, M. A. Rahman, “Studies of neutron shielding properties of Ilmenite-Magnetite concrete using a Cf-252 source”, Nucl. Technol. 93, 357-361 (1991).
  • F.U. Ahmed, M. A. Rahman, S.R. Husain, M.M. Rahman, “An evaluation of two aggregates for use in a concrete reactor shield”, Nucl. Sci. Eng. 85, 427-430 (1983).
  • M.N. Alam, M.I. Chowdhury, M. Kamal, S. Ghose, M.N. Islam, M.N. Mustafa, M.M.H. Miah, M.M. Ansary, “The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of Cox's Bazar, Bangladesh”, J. Environ.
  • Radioact. 46, 243-250 (1999).
  • V. Ramasamy, M. Sundarrajan, G. Suresh, K. Paramasivam, V. Meenakshisundaram, “Role of
  • light and heavy minerals on natural radioactivity level of high background radiation area, Kerala, India”, Appl. Radiat. Isot. 85,1-10 (2014).
  • P. P. Haridasan, P. M. B. Pillai, A. H. Khan, V. D. Puranik, “Natural radionuclides in zircon and
  • related radiological impacts in mineral separation plants”, Radiat. Prot. Dosim. 121,364–369 (2006).
  • F. P. Carvalho, O. F. Matine, S. Taímo, J. M. Oliveira, L. Silva, M. Malta, “Radionuclides and radiation doses in heavy mineral sands and other mining operations in Mozambique”, Radiat. Prot. Dosim. 158,181-186 (2013).
  • M.F. Kaplan, Concrete Radiation Shielding. John Wiley & Sons, New York (1989). [20] M.E. Medhat, M. Fayez-Hassan, “Elemental analysis of cement used for radiation shielding by instrumental neutron activation analysis”, Nucl. Eng. Des. 241,2138-2142 (2011).
  • M. Cometto, D. Ridikas, M.C. Aubert, F. Damoy, D. Ancius, “Activation analysis of concrete and graphite in the experimental reactor RUS”, Radiat. Prot. Dosim. 115,104-109 (2005).
  • H. Murahashi, H. Tomura, T. Ishitsuka, H. Kadotani, S. Harasawa, “Neutron activation study of radiation shielding concrete”, Smirt-12, No 3/5, (1993).
  • (www.iasmirt.org/SMiRT12/N03-5.pdf).
  • V.M. Nazarov, M.V. Frontasyeva, P.A. Lavdanskij, N.I. Stephanov, “NAA for optimization of radiation shielding of nuclear power plants”, J. Radioanal. Nucl. Chem. 180, 83– 95 (1994).
  • JENDL3.3. Nuclear Data Center, Japan Atomic Energy Agency (JAEA), (2010).
  • http://wwwndc.jaea.go.jp/jendl/j33/j33.html.
  • M. A. Islam, S. A. Latif, S. M. Hossain, M. S.Uddin, J. Podder, “Concentration and stribution of trace elements in coals and ashes of the Barapukuria thermal power plant, Bangladesh”, Energy Sources A 33, 92–400 (2011).
  • Islam et.al/Journal of Nuclear Sciences Vol 3(1) ) (2016) 7-14
  • M.A. Rouf, “An investigation of radioactivity level in heavy minerals of Cox’s Bazar beach
  • sand by neutron activation analysis”, M. Phil. Thesis, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh (2012).
  • T. Sukegawa, N. Sasamoto, K. Fujiki, “Accuracy verification for calculation of
  • inventory in JPDR due to neutron activation”, INDC (JPN)-164, IAEA-NEA (1993).
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

M. A. Islam

S. Mahmud

S. M. Hossain

M. H. Ahsan

Sk. A. Latif

Publication Date January 29, 2016
Submission Date June 4, 2015
Published in Issue Year 2016Volume: 3 Issue: 1

Cite

APA Islam, M. A., Mahmud, S., Hossain, S. M., Ahsan, M. H., et al. (2016). Elemental Analysis of Raw Materials of Nuclear Reactor Shielding to Develop Low Activation Concrete. Journal of Nuclear Sciences, 3(1). https://doi.org/10.1501/nuclear_0000000015
AMA Islam MA, Mahmud S, Hossain SM, Ahsan MH, Latif SA. Elemental Analysis of Raw Materials of Nuclear Reactor Shielding to Develop Low Activation Concrete. Journal of Nuclear Sciences. January 2016;3(1). doi:10.1501/nuclear_0000000015
Chicago Islam, M. A., S. Mahmud, S. M. Hossain, M. H. Ahsan, and Sk. A. Latif. “Elemental Analysis of Raw Materials of Nuclear Reactor Shielding to Develop Low Activation Concrete”. Journal of Nuclear Sciences 3, no. 1 (January 2016). https://doi.org/10.1501/nuclear_0000000015.
EndNote Islam MA, Mahmud S, Hossain SM, Ahsan MH, Latif SA (January 1, 2016) Elemental Analysis of Raw Materials of Nuclear Reactor Shielding to Develop Low Activation Concrete. Journal of Nuclear Sciences 3 1
IEEE M. A. Islam, S. Mahmud, S. M. Hossain, M. H. Ahsan, and S. A. Latif, “Elemental Analysis of Raw Materials of Nuclear Reactor Shielding to Develop Low Activation Concrete”, Journal of Nuclear Sciences, vol. 3, no. 1, 2016, doi: 10.1501/nuclear_0000000015.
ISNAD Islam, M. A. et al. “Elemental Analysis of Raw Materials of Nuclear Reactor Shielding to Develop Low Activation Concrete”. Journal of Nuclear Sciences 3/1 (January 2016). https://doi.org/10.1501/nuclear_0000000015.
JAMA Islam MA, Mahmud S, Hossain SM, Ahsan MH, Latif SA. Elemental Analysis of Raw Materials of Nuclear Reactor Shielding to Develop Low Activation Concrete. Journal of Nuclear Sciences. 2016;3. doi:10.1501/nuclear_0000000015.
MLA Islam, M. A. et al. “Elemental Analysis of Raw Materials of Nuclear Reactor Shielding to Develop Low Activation Concrete”. Journal of Nuclear Sciences, vol. 3, no. 1, 2016, doi:10.1501/nuclear_0000000015.
Vancouver Islam MA, Mahmud S, Hossain SM, Ahsan MH, Latif SA. Elemental Analysis of Raw Materials of Nuclear Reactor Shielding to Develop Low Activation Concrete. Journal of Nuclear Sciences. 2016;3(1).