Araştırma Makalesi
BibTex RIS Kaynak Göster

Parke taşı üretiminde kükürt polimer beton kullanımının araştırılması

Yıl 2024, Cilt: 4 Sayı: 1, 73 - 83, 31.01.2024
https://doi.org/10.61112/jiens.1349836

Öz

Bu deneysel çalışma kapsamında geleneksel Portland çimentosu yerine petrol endüstrisinde yan ürün olarak açığa çıkan kükürte, inşaat sektöründe alternatif kullanım alanı oluşturmak için beton olarak kullanılması amacıyla yaygınlaşan kükürt polimer betonlardan (KPB) üretilen parke taşlarının yol kaplamasında kullanılabilirliğinin araştırılması amaçlanmıştır. Bu çalışmada; bitüm ile modifiye edilen KPB kullanılarak hazırlanan parke taşları üzerinde böhme aşınma dayanımı, ağırlık kaybı, basınç ve yarmada çekme dayanımı, su emme oranı ile görünür porozite deneyleri yapılmıştır. KPB parke taşlarının deneysel sonuçlarının karşılaştırmalı olarak değerlendirilebilmesi için aynı basınç dayanımına sahip Portland çimento betonu (PÇB) numuneleri hazırlanmış ve Marmara bölgesinde bulunan 2 farklı firmadan fabrikada üretilmiş olan ve uygulamada kullanılan prizma parke (PP) ve kilitli parke (KP) numuneleri temin edilerek aynı deneyler bu numuneler üzerinde de yapılmıştır. Aşınma deneyleri sonucunda PP ve KP numunelerinden elde edilen hacim kaybı değerinin KPB’lerde meydana gelen aşınma miktarının yaklaşık olarak 7 katı olduğu ve kükürt bağlayıcılı beton kullanımı ile aşınmanın %86 oranında azaltılabileceği görülmüştür. PÇB’lerin KPB’lere oranla daha boşluklu olduğu ve bu nedenle KPB’lerin diğer numunelere göre su emme oranlarının daha düşük seviyede olduğu sonucuna varılmıştır. KPB parke taşların ilgili standartlarda verilen limit değerleri sağladığı ve yol kaplaması olarak kullanılabileceği belirlenmiştir.

Kaynakça

  • Yue L, Caiyun J, Yunping X (2006) The properties of Sulfur Rubber Concrete (SRC). J. Wuham Univ. Technol. Mater. Sci. 21:129-133.https://doi.org/10.1007/BF02861490
  • Öztürk O, Öner A (2022) Long-term Durability of Bitumen Modified Sulfur Polymer Concrete Under Freeze-Thaw Cycles. Int J Civ Eng 20:529-543. https://doi.org/10.1007/s40999-021-00672-2
  • Fediuk R, Amran Y, Mosaberpanah M, Danish A, El-Zedani M, S. Klyuev S, Vatin N (2020) Investigation Friction Loss of Concrete Pavement Surface with a New Method. Materials 13:4712. https://doi.org/10.3390 /ma13214712
  • Bacon R, Davis H (1921) Recent Advances in the American Sulfur Industry. Chemical and Metallurgical Engineering 53:159-175.
  • Mohamed AMO, Gamal ME (2007) Sulfur Based Hazardous Waste Solidification. Environmental Geology 53:159-175. https://doi.org/10.1007/s00254-006-0631-4
  • Vlahovic M, Martinovic S, Boljanac T, Jovanic P, Volkov-Husovic T (2011) Durability of Sulfur Concrete in Various Aggressive Environments. Construction and Building Materials 25(10):3926-3934. https://doi.org/10.1016/j.conbuildmat.2011.04.024
  • Shin M, Kim K, Gwon S, Cha S (2014) Durability of Sustainable Sulfur Concrete with Fly Ash and Recycled Aggregate Against Chemical and Weathering Environments. Construction and Building Materials 69:167-176. https://doi.org/10.1016/j.conbuildmat.2014.07.061
  • Mmohamed AMO, Gamal ME (2009) Hydro-Mechanical Behavior of a Newly Developed Sulfur Polymer Concrete. Cement & Concrete Composites 31(3):186-194. https://doi.org/10.1016/j.cemconcomp.2008.12.006
  • Anyszka R, Bielinski D, Sicinski M, Imiela M, Szajerski P, Pawlica J, Walendziak R (2016) Sulfur Concrete-Promising Material for Space-Structures Building. European Conference on Spacecraft Structures Materials and Environmental.
  • Hager I, Golonka A, Putanowicz R (2016) 3D Printing of Buildings and Building Components as the Future for Sustainable Construction. Procedia Engineering 151:292-299. https://doi.org/10.1016/ j.proeng.2016.07.35
  • Yang C, Lv X, Tian X, Wang Y, Komarneni S (2014) An Investigation on the Use of Electrolytic Manganese Residue as Filler in Sulfur Concrete. Construction and Building Materials 73:305-310. https://doi.org/10.1016/j.conbuildmat.2014.09.046
  • Contreras M, Gazquez M, Garcia-Diaz I, Alguacil F, Lopez F, Bolivar J (2013) Volarization of Waste Ilmenite Mud in the Manufacture of Sulphur Polymer Cement. Journal of Environmental Management 128: 625-630. https://doi.org/10.1016/j.jenvman.2013.06.015
  • Al-Otaibi S, Al-Aibani A, Al-Bahar S, Abdulsalam M, Al-Fadala S (2019) Potential for Producing Concrete Blocks Using Sulphur Polymeric Concrete in Kuwait. Journal of King Saud University-Engineering Sciences 31(4): 327-331. https://doi.org/10.1016/j.jksues.2018.02.004
  • Ciak N, Harasymiuk J (2013) Sulphur Concrete's Technology and Its Application to the Building Industry. Technical Sciences 16(4):323-331.
  • McBee W, Sullivan T (1983) Industrial Evaluation of Sulfur Concrete in Corrosive Environments. U.S. Bureau of Mines.
  • Mohamed A, El Gamal M (2010) Sulfur Concrete for the Construction Industry. J. Ross Publishing, Florida.
  • Al-Ansary M, Masad E, Stricklan D (2010) Innovative Solutions for Sulphur: Initial Field Monitoring and Performance of Shell Thiopave Trial Road in Qatar. 2nd Annual Gas Processing Symposium, Doha, Qatar, January 10-14.
  • Al-Ansary M (2010) Innovative Solutions for Sulphur in Qatar. The Sulphur Institute’s (TSI) Sulphur World Symposium, Doha, Qatar, April 12-15.
  • Gulzar M, Rahim A, Ali B, Khan A (2021) An investigation on recycling potential of sulfur concrete. Journal of Building Engineering 38. https://doi.org/10.1016/j.jobe.2021.102175
  • Tekmen T (2006) Kireçtaşlarından Üretilen Kilitli Beton Parke Bloklarının Mekanik Özelliklerinin Değerlendirilmesi. Yüksek Lisans Tezi, Çukurova Üniversitesi.
  • Karpuz O, Akpınar M, Aslan H, Çelik M, Çiçek E (2022) Investigation Friction Loss of Concrete Pavement Surface with a New Method. J. Innovative Eng. Nat. Sci. 2:66-75. http://dx.doi.org/10.29228/JIENS.62559
  • TS EN 932-1; Agregaların Genel Özellikleri İçin Deneyler-Kısım 1 Numune Alma Metotları (1997) Türk Standartları Enstitüsü, Ankara.
  • TS EN 933-1; Agregaların Geometrik Özellikleri İçin Deneyler-Bölüm 1: Tane Büyüklüğü Dağılımının Tayini-Eleme Yöntemi (2012) Türk Standartları Enstitüsü, Ankara.
  • TS 2824 EN 1338; Zemin Döşemesi İçin Beton Kaplama Blokları Gerekli Şartlar Ve Deney Metotları (2005) Türk Standartları Enstitüsü, Ankara.
  • ASTM C-39; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens (2018) American Society for Testing and Materials, Pennsylvania.
  • Vlahovic M, Savic M, Martinovic S, Boljanac T, Volkov-Husovic T (2012) Use of Image Analysis for Durability Testing of Sulfur Concrete and Portland Cement Concrete. Materials and Design 34: 346-354. https://doi.org/10.1016/j.matdes.2011.08.026
  • Lee S, Hong K, Park J, Ko J (2014) Influence of Aggregate Coated with Modified Sulfur on the Properties of Cement Concrete. Materials 7: 4739-4754. https://doi.org/10.3390/ma7064739

Investigation of the use of sulfur polymer concrete in paving stone production

Yıl 2024, Cilt: 4 Sayı: 1, 73 - 83, 31.01.2024
https://doi.org/10.61112/jiens.1349836

Öz

Within the scope of this experimental study, it is aimed to investigate the usability of paving stones produced from sulfur polymer concrete (SPC), which has become widespread to use sulfur, which is released as a by-product in the petroleum industry instead of traditional Portland cement, as concrete to create an alternative usage area in the construction industry. In this study, Bohme abrasion rate, weight loss, compressive strength, splitting tensile strength, water absorption rate, and apparent porosity tests were carried out on paving stones prepared using SPC modified with bitumen. Portland cement concrete (PCC) samples with the same compressive strength were prepared and locked parquet (LP) and prism parquet (PP) samples, which were produced in the factory and used in the application, were obtained from 2 different companies in the Marmara region and the same experiments were carried out also done on these samples to compare the experimental results of SPC paving stones. As a result of the abrasion rate tests, it was seen that the volume loss value obtained from the PP and KP samples is approximately 7 times the amount of wear in the KPBs, and the wear can be reduced by 86% with the use of sulfur-based concrete. It was concluded that PCC has more voids than SPC, and therefore, water absorption rates of SPC are lower than other samples. It was determined that SPC paving stones meet the limit values given in the relevant standards and can be used as road pavement.

Kaynakça

  • Yue L, Caiyun J, Yunping X (2006) The properties of Sulfur Rubber Concrete (SRC). J. Wuham Univ. Technol. Mater. Sci. 21:129-133.https://doi.org/10.1007/BF02861490
  • Öztürk O, Öner A (2022) Long-term Durability of Bitumen Modified Sulfur Polymer Concrete Under Freeze-Thaw Cycles. Int J Civ Eng 20:529-543. https://doi.org/10.1007/s40999-021-00672-2
  • Fediuk R, Amran Y, Mosaberpanah M, Danish A, El-Zedani M, S. Klyuev S, Vatin N (2020) Investigation Friction Loss of Concrete Pavement Surface with a New Method. Materials 13:4712. https://doi.org/10.3390 /ma13214712
  • Bacon R, Davis H (1921) Recent Advances in the American Sulfur Industry. Chemical and Metallurgical Engineering 53:159-175.
  • Mohamed AMO, Gamal ME (2007) Sulfur Based Hazardous Waste Solidification. Environmental Geology 53:159-175. https://doi.org/10.1007/s00254-006-0631-4
  • Vlahovic M, Martinovic S, Boljanac T, Jovanic P, Volkov-Husovic T (2011) Durability of Sulfur Concrete in Various Aggressive Environments. Construction and Building Materials 25(10):3926-3934. https://doi.org/10.1016/j.conbuildmat.2011.04.024
  • Shin M, Kim K, Gwon S, Cha S (2014) Durability of Sustainable Sulfur Concrete with Fly Ash and Recycled Aggregate Against Chemical and Weathering Environments. Construction and Building Materials 69:167-176. https://doi.org/10.1016/j.conbuildmat.2014.07.061
  • Mmohamed AMO, Gamal ME (2009) Hydro-Mechanical Behavior of a Newly Developed Sulfur Polymer Concrete. Cement & Concrete Composites 31(3):186-194. https://doi.org/10.1016/j.cemconcomp.2008.12.006
  • Anyszka R, Bielinski D, Sicinski M, Imiela M, Szajerski P, Pawlica J, Walendziak R (2016) Sulfur Concrete-Promising Material for Space-Structures Building. European Conference on Spacecraft Structures Materials and Environmental.
  • Hager I, Golonka A, Putanowicz R (2016) 3D Printing of Buildings and Building Components as the Future for Sustainable Construction. Procedia Engineering 151:292-299. https://doi.org/10.1016/ j.proeng.2016.07.35
  • Yang C, Lv X, Tian X, Wang Y, Komarneni S (2014) An Investigation on the Use of Electrolytic Manganese Residue as Filler in Sulfur Concrete. Construction and Building Materials 73:305-310. https://doi.org/10.1016/j.conbuildmat.2014.09.046
  • Contreras M, Gazquez M, Garcia-Diaz I, Alguacil F, Lopez F, Bolivar J (2013) Volarization of Waste Ilmenite Mud in the Manufacture of Sulphur Polymer Cement. Journal of Environmental Management 128: 625-630. https://doi.org/10.1016/j.jenvman.2013.06.015
  • Al-Otaibi S, Al-Aibani A, Al-Bahar S, Abdulsalam M, Al-Fadala S (2019) Potential for Producing Concrete Blocks Using Sulphur Polymeric Concrete in Kuwait. Journal of King Saud University-Engineering Sciences 31(4): 327-331. https://doi.org/10.1016/j.jksues.2018.02.004
  • Ciak N, Harasymiuk J (2013) Sulphur Concrete's Technology and Its Application to the Building Industry. Technical Sciences 16(4):323-331.
  • McBee W, Sullivan T (1983) Industrial Evaluation of Sulfur Concrete in Corrosive Environments. U.S. Bureau of Mines.
  • Mohamed A, El Gamal M (2010) Sulfur Concrete for the Construction Industry. J. Ross Publishing, Florida.
  • Al-Ansary M, Masad E, Stricklan D (2010) Innovative Solutions for Sulphur: Initial Field Monitoring and Performance of Shell Thiopave Trial Road in Qatar. 2nd Annual Gas Processing Symposium, Doha, Qatar, January 10-14.
  • Al-Ansary M (2010) Innovative Solutions for Sulphur in Qatar. The Sulphur Institute’s (TSI) Sulphur World Symposium, Doha, Qatar, April 12-15.
  • Gulzar M, Rahim A, Ali B, Khan A (2021) An investigation on recycling potential of sulfur concrete. Journal of Building Engineering 38. https://doi.org/10.1016/j.jobe.2021.102175
  • Tekmen T (2006) Kireçtaşlarından Üretilen Kilitli Beton Parke Bloklarının Mekanik Özelliklerinin Değerlendirilmesi. Yüksek Lisans Tezi, Çukurova Üniversitesi.
  • Karpuz O, Akpınar M, Aslan H, Çelik M, Çiçek E (2022) Investigation Friction Loss of Concrete Pavement Surface with a New Method. J. Innovative Eng. Nat. Sci. 2:66-75. http://dx.doi.org/10.29228/JIENS.62559
  • TS EN 932-1; Agregaların Genel Özellikleri İçin Deneyler-Kısım 1 Numune Alma Metotları (1997) Türk Standartları Enstitüsü, Ankara.
  • TS EN 933-1; Agregaların Geometrik Özellikleri İçin Deneyler-Bölüm 1: Tane Büyüklüğü Dağılımının Tayini-Eleme Yöntemi (2012) Türk Standartları Enstitüsü, Ankara.
  • TS 2824 EN 1338; Zemin Döşemesi İçin Beton Kaplama Blokları Gerekli Şartlar Ve Deney Metotları (2005) Türk Standartları Enstitüsü, Ankara.
  • ASTM C-39; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens (2018) American Society for Testing and Materials, Pennsylvania.
  • Vlahovic M, Savic M, Martinovic S, Boljanac T, Volkov-Husovic T (2012) Use of Image Analysis for Durability Testing of Sulfur Concrete and Portland Cement Concrete. Materials and Design 34: 346-354. https://doi.org/10.1016/j.matdes.2011.08.026
  • Lee S, Hong K, Park J, Ko J (2014) Influence of Aggregate Coated with Modified Sulfur on the Properties of Cement Concrete. Materials 7: 4739-4754. https://doi.org/10.3390/ma7064739
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri
Bölüm Araştırma Makaleleri
Yazarlar

Onur Öztürk 0000-0003-4195-4364

Adnan Öner 0000-0002-7343-2563

Yayımlanma Tarihi 31 Ocak 2024
Gönderilme Tarihi 25 Ağustos 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 4 Sayı: 1

Kaynak Göster

APA Öztürk, O., & Öner, A. (2024). Parke taşı üretiminde kükürt polimer beton kullanımının araştırılması. Journal of Innovative Engineering and Natural Science, 4(1), 73-83. https://doi.org/10.61112/jiens.1349836