Araştırma Makalesi
BibTex RIS Kaynak Göster

Development and Economical Analysis of Innovative Parabolic Trough Collector Integrated Solar Still

Yıl 2024, Cilt: 27 Sayı: 1, 22 - 34, 01.03.2024
https://doi.org/10.5541/ijot.1313878

Öz

Experimental setup of the integrated parabolic trough collector (PTC) with solar still was developed. PTC was designed considering the solar geometry and the physical laws of parabolic shape and the concentrators. Test were conducted at the location with latitude 19.9975ON and longitude 73.7898OE. Theoretical analysis was done using ray tracing and engineering equation solver (EES) software while designing the system. PTC system was developed with dimensions of 1.5 m length, 1 m width and a concentration ratio (CR) of 21.22. Theoretical thermal efficiency was predicted as 48.1% whereas experimental average thermal efficiency is observed as 42.76%. The observed temperature difference between the vapor and the glass cover is about 17 °C and between ambient air and vapor is about 24.4 °C. Maximum water temperature in the conventional solar still was 64.6 °C where as for the PTC coupled solar still was 74.4 °C. PTC coupled solar still is having averagely 37% higher production rate. This has definitely added an advantage because of the higher energy absorption rate compared with the conventional solar still. PTC coupled solar still system has nearly 35% more heat absorption. Total embodied energy of the system is around 896.875 kWh. Total capital cost of the system is Rs. 41300/-. Total annual output of pure water is around 3 L/Day. Estimated energy payback period is around 2.29 years and the total carbon credit earned is Rs. 2165.38 per year.

Kaynakça

  • F. Birol, IEA Report, iea.org, India 2020 Energy Policy Review, https://iea.blob.core.windows.net/assets/2571ae38-c895-430e-8b62-bc19019c6807/ India_2020_Energy_ Policy_Review.pdf, (Accessed Sept 12, 2022).
  • G. Tiwari, “Solar Collectors.” in Solar Energy- Fundamentals, Design, Modelling and Applications, IIIrd ed. Alpha Science International Ltd., 2013, ch. v, pp. 130-145.
  • H. Price, E. Lupfert, D. Kearney, E. Zarza, G. Cohen, R. Gee, and R. Mahoney, “Advances in Parabolic Trough Solar Power Technology,” J. of Sol. Energy Eng., 124, 109-125, 2002. doi: 10.1115/1.1467922
  • D. Kearney, U. Herrmann, P. Nava, B. Kelly, R. Mahoney, J. Pacheco, R. Cable, N. Potrovitza, D. Blake, and H. Price, “Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field,” J. of Sol. Energy Eng., 125, 170-176, 2003. doi: 10.1115/1.1565087
  • A. Fernández-García, E. Zarza, L. Valenzuela, and M. Pérez, “Parabolic-trough solar collectors and their applications,” Renewable and Sustain. Energy Rev., 14, 1695-1721, 2010. doi: 10.1016/j.rser.2010.03.012
  • C. P. Kumar, Fresh water resources: a perspective, http://www.angelfire.com/bc/nihhrrc/documents/fresh.html, (Accessed on Sept 12, 2022).
  • R. Khanna, R. Rathore, C. Sharma, “Solar still an appropriate technology for potable water need of remote villages of desert state of India-Rajasthan,” Desalination, 220, 645–653, 2008. doi: 10.1016/j.desal.2007.01.060.
  • S. Gomkale, “Operational experience with solar stills in an Indian village and their contribution to the drinking water supply,” Desalination 69, 177–182, 1988. doi: 10.1016/0011-9164(88)80020-1.
  • R. Sathyamurthy, S. A. El-agouz, P. K. Nagarajan, J. Subramani, “A Review of integrating solar collectors to solar still,” Renew. Sustain. Energy Rev. 5, 1–28, 2016. doi: 10.1016/j.rser.2016.11.223.
  • G. Tiwari, “Demonstration plant of a multi wick solar still,” Energy Convers. and Manage, 24, 313–316, 1984. doi: 10.1016/0196-8904(84)90011-6.
  • H. P. Garg, H. S. Mann, “Effect of climatic, operational and design parameters on the year round performance of single-sloped and double-sloped solar still under Indian arid zone conditions,” Sol. Energy, 18, 159–63, 1976. doi:10.1016/0038-092X(76)90052-9.
  • G. Tiwari, Madhuri, “Effect of water depth on daily yield of the still,” Desalination, 61, 67–75, 1987. doi: 10.1016/0011-9164(87)80007-3.
  • G. Tiwari, B. Rao VSV, “Transient performance of a single basin solar still with water flowing over the glass cover,” Desalination, 49, 231–241, 1984. doi: 10.1016/0011-9164(84)85035-3.
  • S. A. Lawrence, G. Tiwari, “Theoretical evaluation of solar distillation under natural circulation with heat exchanger,” Energy Convers. and Manage., 30, 205–13, 1990. doi: 10.1016/0196-8904(90)90001-F.
  • S. K. Singh, G. Tiwari, “Analytical expression for thermal efficiency of a passive solar still” Energy Convers. and Manage. 32, 571–576, 1991. doi: 10.1016/0196-8904(91)90117-2.
  • A. Kumar, G. Tiwari, “Use of waste hot water in double slope solar still through heat exchanger,” Energy Convers. and Manage., 30, 81–99, 1990. doi: 10.1016/0196-8904(90)90017-S.
  • P. Valsaraj, “An experimental study on solar distillation in a single slope basin still by surface heating the water mass” Renew. Energy, 25, 607–612, 2002. doi: 10.1016/S0960-1481(01)00094-5.
  • M. Sakthivel, S. Shanmugasundaram, “Effect of energy storage medium (black granite gravel) on the performance of a solar still,” Int. J. of Energy Res., 32, 68–82, 2008. doi: 10.1002/er.1335.
  • M. S. Sodha, A. Kumar, G. Tiwari, R. C. Tyagi, “Simple multiple wick solar still: analysis and performance,” Sol. Energy, 26, 127–131, 1981. doi: 10.1016/0038-092X(81)90075-X.
  • G. Tiwari, S.B. Sharma, M. S. Sodha, “Performance of a double condensing multiple wick solar still,” Energy Convers. and Manage., 24, 155–159, 1984. doi: 10.1016/0196-8904(84)90028-1.
  • N. Dhiman, G. Tiwari, “Effect of water flowing over the glass cover of a multi-wick solar still,” Energy Convers. and Manage., 30, 245–250, 1990. doi: 10.1016/0196-8904(90)90006-K.
  • R. Gupta, S. Rai, G. Tiwari, “Transient analysis of double basin solar still intermittent flow of waste hot water in night,” Energy Convers. and Manage., 28, 245–249, 1988. doi: 10.1016/0196-8904(88)90030-1.
  • A. Kumar, J. Anand, G. Tiwari, “Transient analysis of a double slope-double basin solar distiller,” Energy Convers. and Manage., 31, 129–139, 1991. doi: 10.1016/0196-8904(91)90065-Q.
  • S. Rai, G. Tiwari, “Single basin solar still coupled with flat plate collector. Energy Convers. and Manage., 23, 145-149, 1983. doi: 10.1016/0196-8904(83)90057-2.
  • S. Rai, D. Dutt, G. Tiwari, “Some experimental studies of a single basin solar still,” Energy Convers. and Manage., 30, 149–153, 1990. doi: 10.1016/0196-8904(90)90026-U.
  • Y. Yadav, “Analytical performance of a solar still integrated with a flat plate solar collector: thermo siphon mode,” Energy Convers. and Manage., 31, 255–63, 1991. [27] S. Kumar, G. Tiwari, “Optimization of collector and basin areas for a higher yield for active solar stills,” Desalination; 116, 1–9, 1998. doi: 10.1016/S0011-9164(98)00052-6.
  • H. Singh, G. Tiwari, “Monthly performance of passive and active solar stills for different Indian climatic conditions,” Desalination, 168, 145–50, 2004. doi: 10.1016/j. desa1.2004.06.180.
  • S. Singh, V. Bhatnagar, G. Tiwari, “Design parameters for concentrator assisted solar distillation system,” Energy Convers. and Manage., 37, 247–52, 1996. doi: 10.1016/0196-8904(95)00166-B.
  • F. Mohamed, M. Hassan and A. Salem, “Experimental study on the effect of coupling parabolic trough collector with double slope solar still on its performance,” Sol. Energy, 163, 54–61, 2018.
  • D. Subhedar, G. Dattatraya, K. Chauhan, K. Patel, and B. Ramani, “Performance Improvement of a Conventional Single Slope Single Basin Passive Solar Still by Integrating with Nanofluid-Based Parabolic Trough Collector: An Experimental Study,” Materials Today: Proceedings, 26 (Part 2): 1478–1481, 2020. doi: 10.1016/j.matpr.2020.02.304.
  • J. Madiouli, A. Lashin, I. Shigidi, I. Badruddin, and A. Kessentini, “Experimental Study and Evaluation of single slope solar still combined with flat plate collector, parabolic trough and packed bed,” Sol. Energy, 196, 358–366, 2020. doi: 10.1016/j.solener.2019.12.027.
  • N. Bhavsar, P. Dhruv, M. Patel, S. Vaghela, U. Bhargav, and A. Patel, “New technique for water desalination using novel solar still and parabolic trough collector,” J. of Emerg. Technol. and Innovative Res., 6 (5), 342–346, 2019.
  • S. Abdallah, O. Badran "Sun tracking system for productivity enhancement of solar still ", Desalination, 220, 669-676, 2008. doi:10.1016/j.desal.0000.00.000.
  • M. Iqbal, "An Introduction to Solar Radiation," Academic Press, Toronto, 1983.
  • J. Sheldon, "Optical and Thermal Effects in Linear Concentrating Collectors," Ph.D. dissertation, Diss. George Institute of Technology, Atlanta, US, 1979.
  • V. Dudley, G. Mahoney, A. Mancini, T. Matthews, C. Sloan, and D. Kearney, “Test Results: SEGS LS-2 Solar Collector,” Sandia National Laboratories, SAND, 94, 1994.
  • E. Jacobson, N. Ketjoy, S. Nathakaranakule, and W. Rakwichian, "Solar parabolic trough simulation and application for a hybrid power plant in Thailand," Sci. Asia, 32, 187-199, 2006. doi: 10.2306/scienceasia1513-1874.2006.32.187.
  • V. Dudley, and R. Workhoven, “Performance testing of the Solar Kinetics T-700A Solar Collector”, United States: N. p., 1982. Web. doi:10.2172/6589695.
  • P. Singh, K. Anil, N. Chayut, “Thermo-environomical and drying kinetics of bitter gourd flakes drying under north wall insulated greenhouse dryer,” Sol. Energy, 162, 205–216, 2018. doi: 10.1016/j.solener.2018.01.023.
  • V. Shrivastava and A. Kumar, “Embodied Energy Analysis of the Indirect Solar Drying Unit,” Int. J. of Ambient Energy, 38, 280-285, 2015. doi: 10.1080/01430750.2015.1092471.
  • K. Subbarama, S. Kumar Natarajan, V. Ramesh, S. Mani, T. Pappala, A. Kurada, M. V. Praveen Lakamsani, "Energy, exergy, economic and environmental (4E) analyses of solar still with paraffin wax as phase change energy storage material," Materials Today, 90, 1-5, 2023, doi: 10.1016/j.matpr.2023.03.345.
  • S. Shoeibi, N. Rahbar, A. Abedini, H. Kargarsharifabad, "Energy matrices, economic and environmental analysis of thermoelectric solar desalination using cooling fan," J. of Thermal Anal. and Calorimetry, 147, 9645–9660, 2022. doi: 10.1007/s10973-022-11217-7.
  • K. Skillington, R. Crawford, G. Warren-Myers, K. Davidson, "A review of existing policy for reducing embodied energy and greenhouse gas emissions of buildings," Energy Policy, 168, 2022. doi: 10.1016/j.enpol.2022.112920.
  • Concentrating Solar Power Technology, Second Edition, Principles, Developments, and Applications Woodhead Publishing Series in Energy, Pages 219-266, 2021. doi: 10.1016/C2018-0-04978-6.
Yıl 2024, Cilt: 27 Sayı: 1, 22 - 34, 01.03.2024
https://doi.org/10.5541/ijot.1313878

Öz

Kaynakça

  • F. Birol, IEA Report, iea.org, India 2020 Energy Policy Review, https://iea.blob.core.windows.net/assets/2571ae38-c895-430e-8b62-bc19019c6807/ India_2020_Energy_ Policy_Review.pdf, (Accessed Sept 12, 2022).
  • G. Tiwari, “Solar Collectors.” in Solar Energy- Fundamentals, Design, Modelling and Applications, IIIrd ed. Alpha Science International Ltd., 2013, ch. v, pp. 130-145.
  • H. Price, E. Lupfert, D. Kearney, E. Zarza, G. Cohen, R. Gee, and R. Mahoney, “Advances in Parabolic Trough Solar Power Technology,” J. of Sol. Energy Eng., 124, 109-125, 2002. doi: 10.1115/1.1467922
  • D. Kearney, U. Herrmann, P. Nava, B. Kelly, R. Mahoney, J. Pacheco, R. Cable, N. Potrovitza, D. Blake, and H. Price, “Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field,” J. of Sol. Energy Eng., 125, 170-176, 2003. doi: 10.1115/1.1565087
  • A. Fernández-García, E. Zarza, L. Valenzuela, and M. Pérez, “Parabolic-trough solar collectors and their applications,” Renewable and Sustain. Energy Rev., 14, 1695-1721, 2010. doi: 10.1016/j.rser.2010.03.012
  • C. P. Kumar, Fresh water resources: a perspective, http://www.angelfire.com/bc/nihhrrc/documents/fresh.html, (Accessed on Sept 12, 2022).
  • R. Khanna, R. Rathore, C. Sharma, “Solar still an appropriate technology for potable water need of remote villages of desert state of India-Rajasthan,” Desalination, 220, 645–653, 2008. doi: 10.1016/j.desal.2007.01.060.
  • S. Gomkale, “Operational experience with solar stills in an Indian village and their contribution to the drinking water supply,” Desalination 69, 177–182, 1988. doi: 10.1016/0011-9164(88)80020-1.
  • R. Sathyamurthy, S. A. El-agouz, P. K. Nagarajan, J. Subramani, “A Review of integrating solar collectors to solar still,” Renew. Sustain. Energy Rev. 5, 1–28, 2016. doi: 10.1016/j.rser.2016.11.223.
  • G. Tiwari, “Demonstration plant of a multi wick solar still,” Energy Convers. and Manage, 24, 313–316, 1984. doi: 10.1016/0196-8904(84)90011-6.
  • H. P. Garg, H. S. Mann, “Effect of climatic, operational and design parameters on the year round performance of single-sloped and double-sloped solar still under Indian arid zone conditions,” Sol. Energy, 18, 159–63, 1976. doi:10.1016/0038-092X(76)90052-9.
  • G. Tiwari, Madhuri, “Effect of water depth on daily yield of the still,” Desalination, 61, 67–75, 1987. doi: 10.1016/0011-9164(87)80007-3.
  • G. Tiwari, B. Rao VSV, “Transient performance of a single basin solar still with water flowing over the glass cover,” Desalination, 49, 231–241, 1984. doi: 10.1016/0011-9164(84)85035-3.
  • S. A. Lawrence, G. Tiwari, “Theoretical evaluation of solar distillation under natural circulation with heat exchanger,” Energy Convers. and Manage., 30, 205–13, 1990. doi: 10.1016/0196-8904(90)90001-F.
  • S. K. Singh, G. Tiwari, “Analytical expression for thermal efficiency of a passive solar still” Energy Convers. and Manage. 32, 571–576, 1991. doi: 10.1016/0196-8904(91)90117-2.
  • A. Kumar, G. Tiwari, “Use of waste hot water in double slope solar still through heat exchanger,” Energy Convers. and Manage., 30, 81–99, 1990. doi: 10.1016/0196-8904(90)90017-S.
  • P. Valsaraj, “An experimental study on solar distillation in a single slope basin still by surface heating the water mass” Renew. Energy, 25, 607–612, 2002. doi: 10.1016/S0960-1481(01)00094-5.
  • M. Sakthivel, S. Shanmugasundaram, “Effect of energy storage medium (black granite gravel) on the performance of a solar still,” Int. J. of Energy Res., 32, 68–82, 2008. doi: 10.1002/er.1335.
  • M. S. Sodha, A. Kumar, G. Tiwari, R. C. Tyagi, “Simple multiple wick solar still: analysis and performance,” Sol. Energy, 26, 127–131, 1981. doi: 10.1016/0038-092X(81)90075-X.
  • G. Tiwari, S.B. Sharma, M. S. Sodha, “Performance of a double condensing multiple wick solar still,” Energy Convers. and Manage., 24, 155–159, 1984. doi: 10.1016/0196-8904(84)90028-1.
  • N. Dhiman, G. Tiwari, “Effect of water flowing over the glass cover of a multi-wick solar still,” Energy Convers. and Manage., 30, 245–250, 1990. doi: 10.1016/0196-8904(90)90006-K.
  • R. Gupta, S. Rai, G. Tiwari, “Transient analysis of double basin solar still intermittent flow of waste hot water in night,” Energy Convers. and Manage., 28, 245–249, 1988. doi: 10.1016/0196-8904(88)90030-1.
  • A. Kumar, J. Anand, G. Tiwari, “Transient analysis of a double slope-double basin solar distiller,” Energy Convers. and Manage., 31, 129–139, 1991. doi: 10.1016/0196-8904(91)90065-Q.
  • S. Rai, G. Tiwari, “Single basin solar still coupled with flat plate collector. Energy Convers. and Manage., 23, 145-149, 1983. doi: 10.1016/0196-8904(83)90057-2.
  • S. Rai, D. Dutt, G. Tiwari, “Some experimental studies of a single basin solar still,” Energy Convers. and Manage., 30, 149–153, 1990. doi: 10.1016/0196-8904(90)90026-U.
  • Y. Yadav, “Analytical performance of a solar still integrated with a flat plate solar collector: thermo siphon mode,” Energy Convers. and Manage., 31, 255–63, 1991. [27] S. Kumar, G. Tiwari, “Optimization of collector and basin areas for a higher yield for active solar stills,” Desalination; 116, 1–9, 1998. doi: 10.1016/S0011-9164(98)00052-6.
  • H. Singh, G. Tiwari, “Monthly performance of passive and active solar stills for different Indian climatic conditions,” Desalination, 168, 145–50, 2004. doi: 10.1016/j. desa1.2004.06.180.
  • S. Singh, V. Bhatnagar, G. Tiwari, “Design parameters for concentrator assisted solar distillation system,” Energy Convers. and Manage., 37, 247–52, 1996. doi: 10.1016/0196-8904(95)00166-B.
  • F. Mohamed, M. Hassan and A. Salem, “Experimental study on the effect of coupling parabolic trough collector with double slope solar still on its performance,” Sol. Energy, 163, 54–61, 2018.
  • D. Subhedar, G. Dattatraya, K. Chauhan, K. Patel, and B. Ramani, “Performance Improvement of a Conventional Single Slope Single Basin Passive Solar Still by Integrating with Nanofluid-Based Parabolic Trough Collector: An Experimental Study,” Materials Today: Proceedings, 26 (Part 2): 1478–1481, 2020. doi: 10.1016/j.matpr.2020.02.304.
  • J. Madiouli, A. Lashin, I. Shigidi, I. Badruddin, and A. Kessentini, “Experimental Study and Evaluation of single slope solar still combined with flat plate collector, parabolic trough and packed bed,” Sol. Energy, 196, 358–366, 2020. doi: 10.1016/j.solener.2019.12.027.
  • N. Bhavsar, P. Dhruv, M. Patel, S. Vaghela, U. Bhargav, and A. Patel, “New technique for water desalination using novel solar still and parabolic trough collector,” J. of Emerg. Technol. and Innovative Res., 6 (5), 342–346, 2019.
  • S. Abdallah, O. Badran "Sun tracking system for productivity enhancement of solar still ", Desalination, 220, 669-676, 2008. doi:10.1016/j.desal.0000.00.000.
  • M. Iqbal, "An Introduction to Solar Radiation," Academic Press, Toronto, 1983.
  • J. Sheldon, "Optical and Thermal Effects in Linear Concentrating Collectors," Ph.D. dissertation, Diss. George Institute of Technology, Atlanta, US, 1979.
  • V. Dudley, G. Mahoney, A. Mancini, T. Matthews, C. Sloan, and D. Kearney, “Test Results: SEGS LS-2 Solar Collector,” Sandia National Laboratories, SAND, 94, 1994.
  • E. Jacobson, N. Ketjoy, S. Nathakaranakule, and W. Rakwichian, "Solar parabolic trough simulation and application for a hybrid power plant in Thailand," Sci. Asia, 32, 187-199, 2006. doi: 10.2306/scienceasia1513-1874.2006.32.187.
  • V. Dudley, and R. Workhoven, “Performance testing of the Solar Kinetics T-700A Solar Collector”, United States: N. p., 1982. Web. doi:10.2172/6589695.
  • P. Singh, K. Anil, N. Chayut, “Thermo-environomical and drying kinetics of bitter gourd flakes drying under north wall insulated greenhouse dryer,” Sol. Energy, 162, 205–216, 2018. doi: 10.1016/j.solener.2018.01.023.
  • V. Shrivastava and A. Kumar, “Embodied Energy Analysis of the Indirect Solar Drying Unit,” Int. J. of Ambient Energy, 38, 280-285, 2015. doi: 10.1080/01430750.2015.1092471.
  • K. Subbarama, S. Kumar Natarajan, V. Ramesh, S. Mani, T. Pappala, A. Kurada, M. V. Praveen Lakamsani, "Energy, exergy, economic and environmental (4E) analyses of solar still with paraffin wax as phase change energy storage material," Materials Today, 90, 1-5, 2023, doi: 10.1016/j.matpr.2023.03.345.
  • S. Shoeibi, N. Rahbar, A. Abedini, H. Kargarsharifabad, "Energy matrices, economic and environmental analysis of thermoelectric solar desalination using cooling fan," J. of Thermal Anal. and Calorimetry, 147, 9645–9660, 2022. doi: 10.1007/s10973-022-11217-7.
  • K. Skillington, R. Crawford, G. Warren-Myers, K. Davidson, "A review of existing policy for reducing embodied energy and greenhouse gas emissions of buildings," Energy Policy, 168, 2022. doi: 10.1016/j.enpol.2022.112920.
  • Concentrating Solar Power Technology, Second Edition, Principles, Developments, and Applications Woodhead Publishing Series in Energy, Pages 219-266, 2021. doi: 10.1016/C2018-0-04978-6.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Sistemleri Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Milind Patil 0000-0002-9811-596X

Ishan Patil 0009-0000-2978-2569

Sanjay Shekhawat 0000-0001-8380-225X

Neelkanth Nikam 0009-0009-3372-2847

Erken Görünüm Tarihi 6 Kasım 2023
Yayımlanma Tarihi 1 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 27 Sayı: 1

Kaynak Göster

APA Patil, M., Patil, I., Shekhawat, S., Nikam, N. (2024). Development and Economical Analysis of Innovative Parabolic Trough Collector Integrated Solar Still. International Journal of Thermodynamics, 27(1), 22-34. https://doi.org/10.5541/ijot.1313878
AMA Patil M, Patil I, Shekhawat S, Nikam N. Development and Economical Analysis of Innovative Parabolic Trough Collector Integrated Solar Still. International Journal of Thermodynamics. Mart 2024;27(1):22-34. doi:10.5541/ijot.1313878
Chicago Patil, Milind, Ishan Patil, Sanjay Shekhawat, ve Neelkanth Nikam. “Development and Economical Analysis of Innovative Parabolic Trough Collector Integrated Solar Still”. International Journal of Thermodynamics 27, sy. 1 (Mart 2024): 22-34. https://doi.org/10.5541/ijot.1313878.
EndNote Patil M, Patil I, Shekhawat S, Nikam N (01 Mart 2024) Development and Economical Analysis of Innovative Parabolic Trough Collector Integrated Solar Still. International Journal of Thermodynamics 27 1 22–34.
IEEE M. Patil, I. Patil, S. Shekhawat, ve N. Nikam, “Development and Economical Analysis of Innovative Parabolic Trough Collector Integrated Solar Still”, International Journal of Thermodynamics, c. 27, sy. 1, ss. 22–34, 2024, doi: 10.5541/ijot.1313878.
ISNAD Patil, Milind vd. “Development and Economical Analysis of Innovative Parabolic Trough Collector Integrated Solar Still”. International Journal of Thermodynamics 27/1 (Mart 2024), 22-34. https://doi.org/10.5541/ijot.1313878.
JAMA Patil M, Patil I, Shekhawat S, Nikam N. Development and Economical Analysis of Innovative Parabolic Trough Collector Integrated Solar Still. International Journal of Thermodynamics. 2024;27:22–34.
MLA Patil, Milind vd. “Development and Economical Analysis of Innovative Parabolic Trough Collector Integrated Solar Still”. International Journal of Thermodynamics, c. 27, sy. 1, 2024, ss. 22-34, doi:10.5541/ijot.1313878.
Vancouver Patil M, Patil I, Shekhawat S, Nikam N. Development and Economical Analysis of Innovative Parabolic Trough Collector Integrated Solar Still. International Journal of Thermodynamics. 2024;27(1):22-34.