Araştırma Makalesi
BibTex RIS Kaynak Göster

Vertebral Çökme Kırıklarında Vertebral Korpusu Çökme Derecesinin Radyolojik ve Biyokimyasal Ölçüm Parametreleri ile Değerlendirilmesi

Yıl 2019, Cilt: 16 Sayı: 3, 545 - 549, 25.12.2019
https://doi.org/10.35440/hutfd.634131

Öz

Amaç: Bu çalışmanın amacı, retrospektif olarak çökme kırığı olan hastaların
başlangıç ile altıncı ay takiplerindeki radyolojik bulgularını ve kan
biyokimyasal değerlerini analiz etmektir.

Materyal ve
Metod:
Haziran 2014 ile Aralık
2018 tarihleri arasında takipli 70torakolomber çökme kırık olgusu retrospektif
olarak değerlendirildi. Herhangi bir yaş ve cinsiyet ayrımı yapılmayıp, sadece
multipl çökme kırıkları, enfeksiyonlar ve metastazlar çalışma dışında bırakıldı.
Radyolojik ve biyokimyasal veriler retrospektif olarak kayıt edildi.
İstatistiksel olarak analiz edildi.

Bulgular: 70 torakolomber omurga çökme kırık olgusu retrospektif olarak
değerlendirildiğinde vakaların 41’i (53,68±19,27) erkek, 29’ı (61,1±16,87)
kadındı. Ortalama yaş 56,76±18,56 (14-98) idi. Erkek ve kadınlar arasında
erkeklerin sayısı fazla olmakla birlikte, istatistiksel açıdan
karşılaştırdığımızda anlamlılık bulunmadı (p=0,09). İleri yaşlarda ise
kadınlarda sık görülmekteydi. Torakolomber çökme kırıkları sıklıkla T11-L2
düzeyinde görüldü. Vakaların başlangıç kifoz açıları (10,56±6,97) ile altıncı
ay kifoz açıları (12,25±7,47) karşılaştırıldığında, istatistiksel açıdan
anlamlı bulundu (p<0.001). Biyokimyasal değerler kendi aralarında pozitif yönde
korele iken, yaş ile albumin değerlerinin negatif yönde korele olduğu görüldü.
Kifoz açısı ile yaş, biyokimyasal değerler arasında anlamlı korelasyon
görülmedi.







Sonuç: Çalışmamızda torakolomber omurga çökme kırıklarında zamanla kifoz
açısının arttığını gördük. Bu durum yaş ve kan biyokimyasal değerlerinden total
protein, albumin, kalsiyum ile ilişkili olmadığı görüldü.

Kaynakça

  • 1. Kunutsor SK, Voutilainen A, Whitehouse MR, Seidu S, Kauhanen J, Blom AW, et all. Serum Albumin and Future Risk of Hip, Humeral, and Wrist Fractures in Caucasian Men: New Findings from a Prospective Cohort Study. Med Princ Pract. 2019;28(5):401-9.
  • 2. Prestwood KM, Raisz LG. Prevention and treatment of osteoporosis. Clinical Cornerstone. 2002;4(6):31-41.
  • 3. Shimizu K, Nakamura M, Nishikawa Y, Hijikata S, Chiba K, Toyama Y. Spinal kyphosis causes demyelination and neuronal loss in the spinal cord: a new model of kyphotic deformity using juvenile Japanese small game fowls. Spine. 2005;30(21):2388-92.
  • 4. Seo DH, Oh SH, Yoon KW, Ko JH, Kim YJ, Lee JY. Risk Factors of New Adjacent Compression Fracture after Percutaneous Vertebroplasty: Effectiveness of Bisphosphonate in Osteoporotic or Osteopenic Elderly Patients. Korean J Neurotrauma. 2014;10(2):86-91.
  • 5. Kim KT, Suk KS, Kim JM, Lee SH. Delayed vertebral collapse with neurological deficits secondary to osteoporosis. Int Orthop. 2003;27(2):65-9.
  • 6. Zhao P, Wang S, Zhou Y, Zheng H, Zhao G. MicroRNA-185 regulates spinal cord injuries induced by thoracolumbar spine compression fractures by targeting transforming growth factor-β1. Exp Ther Med. 2017;13(3):1127-32.
  • 7. Eschler A, Rocktaeschel P, Herlyn PKE, Roesner JP, Martin H, Vollmar B, et all. Intrabody application of eptotermin alpha enhances bone formation in osteoporotic fractures of the lumbar spine; however, fails to increase biomechanical stability- results of an experimental sheep model. Growth Factors. 2015;33(4):290-7.
  • 8. Johnell O, Kanis JA. An estimate of the world wide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726-33.
  • 9. Ross PD. Clinical consequences of vertebral fractures. Am J Med. 1997;103:30-42.
  • 10. Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, et all. The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 1998;128:793-800.
  • 11. Holdsworth F. Fractures, dislocations, and fracture-dislocations of the spine. J Bone Joint Surg Am. 1970;52:1534-51.
  • 12. James KS, Wenger KH, Schlegel JD, Dunn HK. Biomechanical role of the thoracolumbar ligaments of the posterior ligamentous complex: a finite element study. World Neurosurg. 2018;112:125-133.
  • 13. Schlaich C, Minne HW, Bruckner T, Wagner G, Gebest HJ, Grunze M, et all. Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int 1998;8:261-7.
  • 14. Silverman SL. The clinical consequence of vertebral compression fracture. Bone 1992;13:27-31.
  • 15. Küçükoğlu S. Osteoporoz. In: Aksoy K. Temel Nöroşirurji. 1st ed. Ankara: Türk Nöroşirurji Derneği Yayınları; 2005:1100-9.
  • 16. Ozevren H, Deveci E. Neuroprotective Effects of Lamotrigine on Brain Injury in Rats. AQCH 2017;39(3):163-174.
  • 17. Kaneda K, Asano S, Hashimoto T, Satoh S, Fujiya M. The treatment of osteoporotic-posttraumatic vertebral collapse using the Kaneda device and bioactive ceramic vertebral prosthesis. Spine 1992;17:295-303.
  • 18. Matzaroglou C, Georgiou CS, Panagopoulos A, Assimakopoulos K, Wilke HJ, Habermann B, Panos G, Kafchitsas K. Kummell's disease: Clarifying the mechanisms and Patients' inclusion criteria. Open Orthop J. 2014;8:288-97.
  • 19. Pradhan BB, Bae HW, Kropf MA, Patel VV, Delamarter RB. Kyphoplasty reduction of osteoporotic vertebral compression fractures: correction of local kyphosis versus over all sagittal alignment. Spine 2006;31(4):435-41.
  • 20. Kim CH, Choi YJ, Hwang JK, Kim KH, Lee JH, Song JS. Long term outcome of vertebroplasty in the treatment of osteoporotic compression fracture. J Korean Neurosurg Soc 2005;12:69-74.
  • 21. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J. Bone Miner. Res. 2007;22:465-475.
  • 22. Gertzbein SD. Scoliosis research society: multicenter spine fracture study. Spine 1992;17:528-40.
  • 23. Deng H, Li Y, Zhou J, Wang X, Du J, Gao W, Hao D. Therapeutic efficacy of Transpedicular Intracorporeal cement augmentation with short segmental posterior instrumentation in treating osteonecrosis of the vertebral body: a retrospective case series with a minimum 5-year follow-up. BMC Musculoskelet Disord. 2019;20:305.

The Evaluation of Radiological and Biochemical Measurement Parameters of the Degree of Collapse of the Vertebral Body in Vertebral Compression Fractures

Yıl 2019, Cilt: 16 Sayı: 3, 545 - 549, 25.12.2019
https://doi.org/10.35440/hutfd.634131

Öz

Background: The aim of this study was to retrospectively analyze the radiological
and blood biochemical values of patients with collapse fractures at initial and
sixth month follow-up.

Materials and Methods: Seventy thoracolumbar collapse fractures
followed between June 2014 and December 2018 were evaluated retrospectively.
Age and gender were not discriminated against multiple collapse fractures,
infections and metastases were excluded. Radiology and biochemical data were
recorded retrospectively. Statistical analysis was performed.

Results: When
70 thoracolumbar spine collapse fractures were evaluated retrospectively, 41
(53.68 ± 19.27) were male and 29 (61.1 ± 16.87) were female. The mean age was
56.76 ± 18.56 (14-98) years. Although the number of males was higher when men
and women were compared, no statistically significant difference was found (p=
0.09). It was frequently seen in older women. Thoracolumbar collapse fractures
were frequently occurring at T11-L2 level. Initial kyphosis angles (10.56 ± 6.97)
and sixth month kyphosis angles (12.25 ± 7.47) were compared statistically
(p<0.001). While biochemical values were positively correlated with each
other, age and albumin were correlated negatively. No significant correlation
was found between age and biochemical values when compared with kyphosis angle.







Conclusion: In our study, we observed that the kyphosis angle increases with time
in fractures of the thoracolumbar spine collapse. This condition was not
associated with age and blood biochemical values of total protein, albumin and
calcium.

Kaynakça

  • 1. Kunutsor SK, Voutilainen A, Whitehouse MR, Seidu S, Kauhanen J, Blom AW, et all. Serum Albumin and Future Risk of Hip, Humeral, and Wrist Fractures in Caucasian Men: New Findings from a Prospective Cohort Study. Med Princ Pract. 2019;28(5):401-9.
  • 2. Prestwood KM, Raisz LG. Prevention and treatment of osteoporosis. Clinical Cornerstone. 2002;4(6):31-41.
  • 3. Shimizu K, Nakamura M, Nishikawa Y, Hijikata S, Chiba K, Toyama Y. Spinal kyphosis causes demyelination and neuronal loss in the spinal cord: a new model of kyphotic deformity using juvenile Japanese small game fowls. Spine. 2005;30(21):2388-92.
  • 4. Seo DH, Oh SH, Yoon KW, Ko JH, Kim YJ, Lee JY. Risk Factors of New Adjacent Compression Fracture after Percutaneous Vertebroplasty: Effectiveness of Bisphosphonate in Osteoporotic or Osteopenic Elderly Patients. Korean J Neurotrauma. 2014;10(2):86-91.
  • 5. Kim KT, Suk KS, Kim JM, Lee SH. Delayed vertebral collapse with neurological deficits secondary to osteoporosis. Int Orthop. 2003;27(2):65-9.
  • 6. Zhao P, Wang S, Zhou Y, Zheng H, Zhao G. MicroRNA-185 regulates spinal cord injuries induced by thoracolumbar spine compression fractures by targeting transforming growth factor-β1. Exp Ther Med. 2017;13(3):1127-32.
  • 7. Eschler A, Rocktaeschel P, Herlyn PKE, Roesner JP, Martin H, Vollmar B, et all. Intrabody application of eptotermin alpha enhances bone formation in osteoporotic fractures of the lumbar spine; however, fails to increase biomechanical stability- results of an experimental sheep model. Growth Factors. 2015;33(4):290-7.
  • 8. Johnell O, Kanis JA. An estimate of the world wide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726-33.
  • 9. Ross PD. Clinical consequences of vertebral fractures. Am J Med. 1997;103:30-42.
  • 10. Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, et all. The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 1998;128:793-800.
  • 11. Holdsworth F. Fractures, dislocations, and fracture-dislocations of the spine. J Bone Joint Surg Am. 1970;52:1534-51.
  • 12. James KS, Wenger KH, Schlegel JD, Dunn HK. Biomechanical role of the thoracolumbar ligaments of the posterior ligamentous complex: a finite element study. World Neurosurg. 2018;112:125-133.
  • 13. Schlaich C, Minne HW, Bruckner T, Wagner G, Gebest HJ, Grunze M, et all. Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int 1998;8:261-7.
  • 14. Silverman SL. The clinical consequence of vertebral compression fracture. Bone 1992;13:27-31.
  • 15. Küçükoğlu S. Osteoporoz. In: Aksoy K. Temel Nöroşirurji. 1st ed. Ankara: Türk Nöroşirurji Derneği Yayınları; 2005:1100-9.
  • 16. Ozevren H, Deveci E. Neuroprotective Effects of Lamotrigine on Brain Injury in Rats. AQCH 2017;39(3):163-174.
  • 17. Kaneda K, Asano S, Hashimoto T, Satoh S, Fujiya M. The treatment of osteoporotic-posttraumatic vertebral collapse using the Kaneda device and bioactive ceramic vertebral prosthesis. Spine 1992;17:295-303.
  • 18. Matzaroglou C, Georgiou CS, Panagopoulos A, Assimakopoulos K, Wilke HJ, Habermann B, Panos G, Kafchitsas K. Kummell's disease: Clarifying the mechanisms and Patients' inclusion criteria. Open Orthop J. 2014;8:288-97.
  • 19. Pradhan BB, Bae HW, Kropf MA, Patel VV, Delamarter RB. Kyphoplasty reduction of osteoporotic vertebral compression fractures: correction of local kyphosis versus over all sagittal alignment. Spine 2006;31(4):435-41.
  • 20. Kim CH, Choi YJ, Hwang JK, Kim KH, Lee JH, Song JS. Long term outcome of vertebroplasty in the treatment of osteoporotic compression fracture. J Korean Neurosurg Soc 2005;12:69-74.
  • 21. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J. Bone Miner. Res. 2007;22:465-475.
  • 22. Gertzbein SD. Scoliosis research society: multicenter spine fracture study. Spine 1992;17:528-40.
  • 23. Deng H, Li Y, Zhou J, Wang X, Du J, Gao W, Hao D. Therapeutic efficacy of Transpedicular Intracorporeal cement augmentation with short segmental posterior instrumentation in treating osteonecrosis of the vertebral body: a retrospective case series with a minimum 5-year follow-up. BMC Musculoskelet Disord. 2019;20:305.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Hüseyin Özevren 0000-0002-5437-4003

Salih Hattapoğlu 0000-0003-4781-9729

Murat Baloğlu 0000-0002-3478-1461

Muhammed Akif Deniz 0000-0002-9586-2425

Yayımlanma Tarihi 25 Aralık 2019
Gönderilme Tarihi 17 Ekim 2019
Kabul Tarihi 18 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 16 Sayı: 3

Kaynak Göster

Vancouver Özevren H, Hattapoğlu S, Baloğlu M, Deniz MA. Vertebral Çökme Kırıklarında Vertebral Korpusu Çökme Derecesinin Radyolojik ve Biyokimyasal Ölçüm Parametreleri ile Değerlendirilmesi. Harran Üniversitesi Tıp Fakültesi Dergisi. 2019;16(3):545-9.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty