Araştırma Makalesi
BibTex RIS Kaynak Göster

Lactobacillus Cinsi Bakteriler Tarafından Üretilen Biyosürfektanların Anti-Biyofilm ve Anti-Mikrobiyal Aktivitelerinin Belirlenmesi

Yıl 2022, Cilt: 3 Sayı: 2, 102 - 115, 25.11.2022

Öz

Öz Bu çalışmada, 20 Lactobacillus sp. tarafından üretilen biyosürfektanlar ile Staphylococcus aureus suşlarının biyofilm oluşumunun engellemesi ve/veya azaltılması ve antimikrobiyal aktivitelerinin belirlenmesi amaçlanmıştır. Öncelikle 52 S. aureus suşlarının Kongo Kırmızısı katı besi yerinde biyofilm yapma yetenekleri nitel olarak belirlenmiştir. Bakterilerin Kongo Kırmızısı katı besi yerinde siyah renkte koloniler oluşturması biyofilm pozitif, pembemsi renkte koloniler oluşturması ise biyofilm negatif olarak değerlendirilmiştir. 52 S. aureus suş arasından sadece yedisinin (26, 36, 38, 43, 55, 56, 60) çok kuvvetli (+++) biyofilm oluşturma yeteneğine sahip olduğu belirlenmiş ve çalışmalarda bu bakteriler kullanılmıştır. 20 Lactobacillus sp. suş arasından sekizinin (Lactobacillus acidophilus BAZ 22, L. acidophilus BAZ 51, L. acidophilus BAZ 61, L. brevis YG 7, L. rhamnosus MP 1, L. rhamnosus BAZ 78, Limosilactobacillus fermentum FKK 3 ve L. fermentum LB 16) ürettiği biyosürfektan yedi S. aureus suşun oluşturduğu biyofilmi %0,90-%80,60 arasında değişen oranlarda engellemiştir. En fazla engelleyici etki %80,60 oranı ile S. aureus 26 suşuna karşı L. rhamnosus MP1 suşunun ürettiği biyosürfektanda gözlemlenmiştir. Ancak yapılan çalışmada, laktobasiller tarafından üretilen biyosürfektanların S. aureus’lara karşı anti-mikrobiyal aktivite göstermediği belirlenmiştir.

Kaynakça

  • [1] Tremblay, Y.D., Levesque, C., Segers, R.P., Jacques, M. (2013). Method to grow Actinobacillus pleuropneumoniae biofilm on a biotic surface. BMC Veterinary Research, 9, 213.
  • [2] Muhammad, M.H., Idris, A.L., Fan, X., Guo, Y., Yu, Y., Jin, X., Qiu, J., Guan, X., Huang, T. (2020). Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Frontiers in Microbiology, 11, 928.
  • [3] Vestby, L.K., Grønseth, T., Simm, R., Nesse, L.L. (2020). Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics, 9(2), 59.
  • [4] Jayathilake, G., Jana, P.S., Rushton, S., (2017). Extracellular polymeric substance production and aggregated bacteria colonization influence the competition of microbes in biofilms. Frontier in Microbiology. 11, 698.
  • [5] Costa, O.Y.A., Raaijmakers, J.M., Kuramae, E.E. (2018). Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Frontier in Microbiology, 9, 1636.
  • [6] Del Pozo, J.L., Patel, R. (2007). The challenge of treating biofilm-associated bacterial infections. Clinical Pharmacology Therapeutics, 82(2), 204-209.
  • [7] Wimpenny, J., Manz, W., Szewzyk, U. (2000). Heterogeneity in biofilms. FEMS Microbiology Reviews, 24(5), 661-671.
  • [8] Szczuka, E. and Kaznowski A. (2014). Antimicrobial activity of tigecycline alone or in combination with rifampin against Staphylococcus epidermidis in biofilm. Folia Microbiologica (Praha), 59(4), 283-8.
  • [9] Ceçe, E.N. (2011). Staphylococcus epidermidis biyofilmlerine karşı antimikrobiyal aktivite gösteren bakteriyofajların izolasyon ve karakterizasyonu, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 16-23.
  • [10] Galie, S., Garcia-Gutierrez, C., Miguelez, E.M., Villar, C.J., Lombo, F. (2018). Biofilms in the food industry: Health aspects and control methods. Frontier in Microbiology, 9, 898.
  • [11] Percival, S.L., Suleman, L., Vuotto, C., Donelli, G. (2015). Healthcare-associated infections, medical devices and biofilms: Risk, tolerance, and control. Journal of Medical Microbiology, 64, 323-334.
  • [12] Bi, Y., Xia, G., Shi, C., Wan, J., Liu, L., Chen, Y., Wu, Y., Zhang, W., Zhou, M., He, H., Liu, R. (2021). Therapeutic strategies against bacterial biofilms. Fundamental Research, 1(2), 193-212.
  • [13] Francolini, I., Donelli, G. (2010) Prevention and control of biofilm-based medical device-related infections. FEMS Immunology and Medical Microbiology, 59, 227-238.
  • [14] Garrett, T.R., Bhakoo, M., Zhang, Z. (2008). Bacterial adhesion and biyofims on surfaces. Progress in Natural Science, 9(18), 1049-1056.
  • [15] Kavanaug, N.L. and Ribbeck, K. (2012). Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Applied and Environmental Microbiology, 78(11), 4057-61.
  • [16] Timmusk, S., Behers, L., Muthoni, J., Muraya, A., Aronsson, A.C. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science, 8:49.
  • [17] Martinez, P., Vera, M., Bobadilla-Fazzini, R.A. (2015). Omics on bioleaching: Current and future impacts. Applied Microbiology and Biotechnology, 99, 8337-8350.
  • [18] Naidoo, S., Olaniran, A.O. (2013). Treated wastewater effluent as a source of microbial pollution of surface water resources. International Journal of Environmental Research and Public Health, 11, 249-270.
  • [19] Ali, J., Sohail, A., Wang, L., Rizwan Haider, M., Mulk, S., Pan, G. (2018). Electro-microbiology as a promising approach towards renewable energy and environmental sustainability. Energies, 11(7), 1822.
  • [20] Irankhah, S., Abdi Ali, A., Mallavarapu, M., Soudi, M.R., Subashchandrabose, S., Gharavi, S., Ayati, B. (2019). Ecological role of Acinetobacter calcoaceticus GSN3 in natural biofilm formation and its advantages in bioremediation. Biofouling, 35(4), 377-391.
  • [21] Satpute, S.K., Banpurkar, A.G., Banat, I.M., Sangshetti, J.N., Patil, R.H., Gade, W.N. (2016a). Multiple roles of biosurfactants in biofilms. Current Pharmaceutical Design, 22(11), 1429-448.
  • [22] Díaz De Rienzo, M.A., Stevenson, P., Marchant, R., Banat, I.M., (2016). Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria. FEMS Microbiology Letters, 363(2), 1-8.
  • [23] Yan, X., Gu, S., Cui, X., Shi, Y., Wen, S., Chen, H., Ge, J. (2019). Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microbial Pathogenesis, 127, 12-20.
  • [24] Mishra, R., Panda, A.K., Mandal, S.D., Shakeel, M., Bisht, S.S., Khan, J. (2020). Natural Anti-biofilm Agents: Strategies to Control Biofilm-Forming Pathogens. Frontiers in Microbiology Antimicrobials, Resistance and Chemotherapy, 11, 1-23.
  • [25] Yuliani, H., Perdani, M.S., Savitria, I., Manurung, M., Sahlan, M., Wijanarkob, A., Hermansyah, H. (2018). Antimicrobial activity of biosurfactant derived from Bacillus subtilis C19. 5th International Conference on Energy and Environment Research, 153, 274-278.
  • [26] Ghasemi, A., Moosavi-nasab, M., Setoodeh, P., Mesbahi, G., Yousefi, G. (2019). Biosurfactant production by lactic acid bacterium Pediococcus dextrinicus SHU1593 grown on different carbon sources: Strain screening followed by product characterization. Scientific Reports, 9, 5287.
  • [27] Mouafo, H.T., Sokamte, A.T., Mbawala, A., Ndjouenkeu, R., Devappa, S. (2022). Biosurfactants from lactic acid bacteria: A critical review on production, extraction, structural characterization and food application. Food Bioscience, 46, 101598.
  • [28] Van Hamme, J.D., Singh, A. and Ward, O.P. (2006). Physiological aspects Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnology Advances. 24(6), 604-620.
  • [29] Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., Smyth, T.J., Marchant, R. (2010). Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology, 87, 427-444.
  • [30] Ron, E.Z. and Rosenberg, E. (2001). Natural roles of biosurfactants. Environmental Microbiology, 3(4): 229-236.
  • [31] Singh, P. and Cameotra, S.S. (2004). Potential applications of microbial surfactants in biomedical sciences. Trends in Biotechnology, 22(3), 142-146.
  • [32] Özden, D. (2021). Plastik Biyodegradasyonu: Genel Sorunlar ve Biyoteknolojik Çözümler. International Journal of Life Sciences and Biotechnology, 4(2), 324-339.
  • [33] Santos, D.K.F., Rufino, R.D., Luna, J.M., Santos, V.A., Sarubbo, L. A. (2016). Biosurfactants: Multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences, 17, 401.
  • [34] Jahan, R., Bodratti, A. M., Tsianou, M. T., and Alexandrisis, P. (2020). Biosurfactants, natural alternatives to syntetic surfactants: Physicochemical properties and applications. Advances in Colloid and Interface Science, 275, 102061.
  • [35] Naughton, P.J., Naughton, R.M.V., Banat, I.M. (2019). Microbial biosurfactants: Current trends and applications inagricultural and biomedical industries. Journal of Applied Microbiology, 127, 12-28.
  • [36] Hussain, T., Khan, A.A., Mohamed, H.I. (2022). Potential efcacy of bioflm-forming biosurfactant Bacillus firmus hussaint-LAB.66 against rhizoctonia solani and mass spectrometry analysis of its metabolites. International Journal of Peptide Research and Therapeutics, 28, 3.
  • [37] Arutchelvi, J.I., Bhaduri, S., Uppara, P.V., Doble, M. (2008). Mannosylerythritol lipids: A review. Journal of Industrial Microbiology and Biotechnology, 35(12), 1559-1570.
  • [38] Soberón-Chávez, G., González-Valdez, A., Soto-Aceves, M.P., Cocotl-Yañez, M. (2020). Rhamnolipids produced by Pseudomonas: From molecular genetics to the market. Microbial Biotechnology, 14 (1), 136-146.
  • [39] Rodrigues, L.R., Van der Mei, H.C., Teixeira, J.A. and Oliveira, R. (2004). Influence of biosurfactants from probiotic bacteria on formation of biofilms on voice prosthesis. Applied and Environmental Microbiology, 70, 4408-4410.
  • [40] Rodrigues, L.R., Banat, I.M., Teixeira, J.A. and Oliveira, R. (2006a). Biosurfactants: potencial applications in medicine. Journal of Antimicrobial Chemotherapy, 57(4), 609-618.
  • [41] Arciola, C.R., Campoccia, D., Montanaro, L. (2002a). Detection of biofilm-forming strains of Staphylococcus epidermidis and S. aureus. Expert Review of Molecular Diagnostics, 2(5), 478-484.
  • [42] Arciola, C.R., Campoccia, D., Gamberini, S., Cervellati M., Donati, E., Montanaro, L. (2002b). Detection of slime production by means of an optimised Congo red agar plate test based on a colourimetric scale in Staphylococcus epidermidis clinical isolates genotyped for ica locus, Biomaterials, 23(21), 4233-4239.
  • [43] Heinemann, C., Van Hylckama, V., Janssen, D., Busscher, H.J., Van der Mei, H.C. and Reid, G. (2000) Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. FEMS Microbiology Letters, 190(1), 177-180.
  • [44] Stepanovic, S., Vukovic, D., Dakic, I., Savic, B., Svabic-Vlahovic, M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods, 40(2), 175-9.
  • [45] Al-Qadsy, I., Saeed, W.S., Al-Odayni, A., Al-Faqeeh, L.A.S., Alghamdi, A.A., Farooqui M. (2020). Novel Metformin-Based Schiff Bases: Synthesis, characterization, and antibacterial evaluation. Materials, 13(3), 514.
  • [46] Öztürk, H. (2009). Jurinea consanguınea’nın antioksidan ve antibakteriyel aktivitesinin belirlenmesi. Yüksek Lisans Tezi, Trakya Üniversitesi Fen Bilimleri Enstitüsü. Edirne, 32.
  • [47] Bakır, E.P., Ünal, S., Bakır, Ş. (2022). Kavite dezenfektanları ile antibakteriyel içerikli adeziv ajanların kombine kullanımının antibakteriyel etkisi.Anadolu Kliniği Tıp Bilimleri Dergisi, 27,1. [48] Gudiña, E.J., Fernandes, E.C., Teixeira, J.A., Rodrigues, L.R. (2015). Antimicrobial and anti-adhesive activities ofcell-bound biosurfactant from Lactobacillus agilis CCUG31450. RSC Advances, 5, 90960-90968.
  • [49] Giani, A.D., Zampolli, J., Di Gennaro, P. (2021). Recent trends on biosurfactants with antimicrobial activity produced by bacteria associated with human health: Different perspectives on their properties, challenges, and potential applications. Frontier in Microbiology, 12, 655150.
  • [50] Rodrigues, L.R., Teixeira, J.A., Van der Mei, H.C. and Oliveira, R. (2006c). Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids and Surfaces B: Biointerfaces, 49(1), 79-86.
  • [51] Van Hoogmoed, C.G., Van der Mei, H.C. and Busscher, H.J. (2004). The influence of biosurfactants released by S. mitis BMS on the adhesion of pioneer strains and cariogenic bacteria. Biofouling, 20(6), 261-267.
  • [52] Ceresa, C., Tessarolo, F., Caola, I., Nollo, G., Cavallo, M., Rinaldi, M. and Fracchia, L. (2015) Inhibition of Candida albicans adhesion on medical-grade silicone by a Lactobacillus-derived biosurfactant. Journal of Applied Microbiology, 118(5), 1116-1125.
  • [53] Ciandrini, E., Campana, R., Casettari, L., Perinelli, D.R., Fagioli, L., Manti, A., Palmieri, G.F., Papa, S. et al.(2016). Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm. Applied Microbiology and Biotechnology, 100(15), 6767-6777.
  • [54] Gomez, N.C., Ramiro, J.M., Quecan, B.X. and de MeloFranco, B.D. (2016) Use of potential probiotic lactic acidbacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli O157:H7 biofilms formation. Frontier in Microbiology, 7, 863.
  • [55] Falagas, M.E., Makris, G.C. (2009). Probiotic bacteria and biosurfactants for nosocomial infection control: A hypothesis. Journal of Hospital Infection, 71(4), 301-306.
  • [56] Abdalsadiq, N., Hassan, Z., Lani, M. (2018). Characterization of the physicochemical properties of the biosurfactant produced by L. acidophilus and L. pentosus. EPH - International Journal of Science and Engineering.
  • [57] Madhu, A.N., Prapulla, S.G. (2014). Evaluation and functional characterization of a biosurfactant produced by Lactobacillus plantarum CFR 2194. Applied Biochemistry and Biotechnology, 172(4), 1777-1789.
  • [58] Morais, I.M.C., Cordeiro, A.L., Teixeira, G.S., Domingues, V.S., Nardi, R.M.D., Monteiro, A.S., et al. (2017). Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P6A and Lactobacillus gasseri P65. Microbial Cell Factories, 16, 155.
  • [59] Rashid, Z., Farzana, K., Sattar, A., Murtaza, G. (2012). Prevalence of nasal Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in hospital personnel and associated risk factors. Acta Poloniae Pharmaceutica, 69(5), 985-991.
  • [60] Çelik, İ., Cihangiroğlu, M., Çabalak, M., Sevim, E., Akbulut, A., Kılıç, S.S. (2005). Hastane kaynaklı koagülaz negatif stafilokoklarda fosfomisin duyarlılığı ile metisilin direnci ve slaym yapımı ilişkisi, ANKEM Dergisi, 19(3), 139-143.
  • [61] Yıldırım, N., Sezen, İ.Y., Ardıç, N., İleri, Ç. (2008). Farklı klinik örneklerden izole edilen koagülaz-negatif stafilokokların slime faktör üretimlerinin ve bazı antibiyotiklere duyarlılıklarının araştırılması. İnfeksiyon Dergisi, 22(4), 209-214.
  • [62] Votava, M., Woznicova, V. (2000). Production of slime by staphylococcal isolates from blood cultures. Central European Journal of Public Health, 8(1), 18-20.
  • [63] Catalanotti, P., Lanza, M., Del Prete, A., Lucido, M., Catania, M.R., Galle, F., Boggia, D., Perfetto, B., Rossano, F. (2005). Slime-producing Staphylococcus epidermidis and S. aureus in acute bacterial conjunctivitis in soft contact lens wearers. New Microbiologica, 28(4), 345-354.
  • [64] Us, E., Tekeli, A., Dolapçı, İ., Karahan, Z.C., Sancak, B., Hasçelik, G. (2009). Çeşitli klinik enfeksiyonlardan elde edilen Staphylococcus aureus izolatlarında insersiyon sekansı IS256’nın biofilm oluşumu üzerine etkisi. Ankara Üniversitesi Tıp Fakültesi Mecmuası, 62(2), 53-57.
  • [65] Öcal, D.N.,, Dolapçı, İ., Karahan, Z.C., Tekeli, A. (2017). Stafilokok izolatlarının biyofilm oluşturma özelliklerinin araştırılması. Mikrobiyoloji Bülteni, 51(1), 10-19.
  • [66] Cucarella, C., Solano, C., Valle, J., Amorena, B., Lasa, I., Penadés, J.R. (2001). Bap, a Staphylococcus aureus surface protein involved in biofilm formation. Journal of Bacteriology, 183(9), 2888-96.
  • [67] Rohde, H., Knobloch, J.K.M., Horstkotte, M.A., Mack, D. (2001). Correlation of Staphylococcus aureus icaABCD genotype and biofilm expression phenotype. Journal of Clinical Microbiology, 39(12), 4595-4596.
  • [68] Şahin, R., Kaleli, İ. (2018). Staphylococcus aureus izolatlarında biyofilm üretiminin genotipik ve fenotipik karakterlerinin karşılaştırılması. Mikrobiyoloji Bülteni, 52(2), 111-122.
  • [69] Das, P., Mukherjee, S., Sen, R. (2008). Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. Journal of Applied Microbiology, 104(6), 1675-84.
  • [70] Satpute, S.K., Bhuyan, S.S., Pardesi, K.R., Mujumdar, S.S., Dhakephalkar, P.K., Shete, A.M., Chopade, B.A. (2010) Molecular genetics of biosurfactant synthesis in microorganisms. Advances in Experimental Medicine and Biology, 672, 14-41.
  • [71] Fracchia, L., Cavallo, M., Allegrone, G., Martinotti, M.G. (2010). A Lactobacillus-derived biosurfactant inhibits biofilm formation of human pathogenic Candida albicans biofilm producers. Applied Microbiology and Biotechnology, 2, 827-837.
  • [72] Xu, C., Yagiz, Y., Hsu, W.Y., Simonne, A., Lu, J., Marshall, M.R. (2014). Antioxidant, antibacterial, and antibiofilm properties of polyphenols from muscadine grape (Vitis rotundifolia Michx.) pomace against selected foodborne pathogens, Journal of Agricultural Food Chemistry, 62(28), 6640-6649.
  • [73] Gudiña, E.J., Rocha, V., Teixeira, J.A., Rodrigues, L.R. (2010). Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Letters in Applied Microbiology, 50(4), 419–424.
  • [74] Velraeds, M.M., Van de Belt-Gritter, B., van der Mei, H.C., Reid, G., Busscher, H.J. (1998). Interference in initial adhesion of uropathogenic bacteria and yeasts to silicone rubber by a Lactobacillus acidophilus biosurfactant. Journal of Medical Microbiology, 47(12), 1081-1085.
  • [75] Kumar, A., Alam, A., Rani, M., Ehtesham, N.Z. and Hasnain, S.E. (2017). Biofilms: Survival and defense strategy for pathogens. International Journal of Medical Microbiology, 307(8), 481-489.
  • [76] Fracchia, L., Banat, J.J., Cavallo, M., Ceresa, C., Banat, I.M. (2015). Potential therapeutic applications of microbial surface-active compounds. AIMS Bioengineering, 2, 144-162.
  • [77] Dίaz de Rienzo, M., Stevenson, P., Marchant, R., Banat, I.M. (2016b). P. aeruginosa biofilm disruption using microbial biosurfactants. Journal of Applied Microbiology, 120, 868-876.
  • [78] Chen, J., Wu, Q., Hua, Y., Chen, J., Zhang, H. and Wang, H. (2017). Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine. Applied Microbiology and Biotechnology. 101, 8309-8319.
  • [79] Ghasemi, A., Moosavi-Nasab, M., Setoodeh, P., Mesbahi, G., Yousefi, G. Biosurfactant production by lactic acid bacterium Pediococcus dextrinicus SHU1593 grown on different carbon sources: Strain screening followed by product characterization. Scientific Reports, 9, 5287.
  • [80] Efe, F. (2017). Lactobacillus cinsi bakterilerde biyosürfektan üretimi ve biyosürfektanın Staphylococcus aureus bakterilerinin oluşturduğu biyofilmi engellemesi. Yüksek Lisans Tezi. Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara
Toplam 79 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Feride Efe 0000-0001-6012-9680

Zehranur Yuksekdag 0000-0002-0381-5876

Berat Çınar Acar 0000-0003-4662-0865

Yayımlanma Tarihi 25 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 3 Sayı: 2

Kaynak Göster

APA Efe, F., Yuksekdag, Z., & Çınar Acar, B. (2022). Lactobacillus Cinsi Bakteriler Tarafından Üretilen Biyosürfektanların Anti-Biyofilm ve Anti-Mikrobiyal Aktivitelerinin Belirlenmesi. Gazi Üniversitesi Fen Fakültesi Dergisi, 3(2), 102-115.
AMA Efe F, Yuksekdag Z, Çınar Acar B. Lactobacillus Cinsi Bakteriler Tarafından Üretilen Biyosürfektanların Anti-Biyofilm ve Anti-Mikrobiyal Aktivitelerinin Belirlenmesi. GÜFFD. Kasım 2022;3(2):102-115.
Chicago Efe, Feride, Zehranur Yuksekdag, ve Berat Çınar Acar. “Lactobacillus Cinsi Bakteriler Tarafından Üretilen Biyosürfektanların Anti-Biyofilm Ve Anti-Mikrobiyal Aktivitelerinin Belirlenmesi”. Gazi Üniversitesi Fen Fakültesi Dergisi 3, sy. 2 (Kasım 2022): 102-15.
EndNote Efe F, Yuksekdag Z, Çınar Acar B (01 Kasım 2022) Lactobacillus Cinsi Bakteriler Tarafından Üretilen Biyosürfektanların Anti-Biyofilm ve Anti-Mikrobiyal Aktivitelerinin Belirlenmesi. Gazi Üniversitesi Fen Fakültesi Dergisi 3 2 102–115.
IEEE F. Efe, Z. Yuksekdag, ve B. Çınar Acar, “Lactobacillus Cinsi Bakteriler Tarafından Üretilen Biyosürfektanların Anti-Biyofilm ve Anti-Mikrobiyal Aktivitelerinin Belirlenmesi”, GÜFFD, c. 3, sy. 2, ss. 102–115, 2022.
ISNAD Efe, Feride vd. “Lactobacillus Cinsi Bakteriler Tarafından Üretilen Biyosürfektanların Anti-Biyofilm Ve Anti-Mikrobiyal Aktivitelerinin Belirlenmesi”. Gazi Üniversitesi Fen Fakültesi Dergisi 3/2 (Kasım 2022), 102-115.
JAMA Efe F, Yuksekdag Z, Çınar Acar B. Lactobacillus Cinsi Bakteriler Tarafından Üretilen Biyosürfektanların Anti-Biyofilm ve Anti-Mikrobiyal Aktivitelerinin Belirlenmesi. GÜFFD. 2022;3:102–115.
MLA Efe, Feride vd. “Lactobacillus Cinsi Bakteriler Tarafından Üretilen Biyosürfektanların Anti-Biyofilm Ve Anti-Mikrobiyal Aktivitelerinin Belirlenmesi”. Gazi Üniversitesi Fen Fakültesi Dergisi, c. 3, sy. 2, 2022, ss. 102-15.
Vancouver Efe F, Yuksekdag Z, Çınar Acar B. Lactobacillus Cinsi Bakteriler Tarafından Üretilen Biyosürfektanların Anti-Biyofilm ve Anti-Mikrobiyal Aktivitelerinin Belirlenmesi. GÜFFD. 2022;3(2):102-15.