Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Besi Ortamlarında Yetişen Chlorella Vulgaris Türüne Ait Protein Ve Aminoasit Komposizyonunun Karşılaştırılması

Yıl 2020, Cilt: 3 Sayı: 2, 130 - 137, 29.12.2020

Öz

Bu çalışmada, Kırıkkale Kapulukaya barajından izole edilen ve TAP (Tris-Acetate-Phosphate) besiyeri, Nitrat eklemeli TAP medium (N-TAP), Kırıkkale Üniversitesi kampüs gölü (GÖL), Makina ve Kimya Endüstrisi Kurumu (MKEK) atık suyu olmak üzere 4 farklı besi ortamında yetiştirilen mikroalg Chlorella vulgaris’in büyüme parametreleri (hücre sayımı, Optik Dansite ve Klorofil-a) takip edilmiştir. Durgun faza 15. günde ulaşan örneklerde biyokütle olarak en yüksek alg miktarı GÖL besiyerinde elde edilmiştir. Hasatı gerçekleştirilen alglerin toplam protein analizi Lowry metodu ile yapılmış ve protein miktarı sırasıyla; N-TAP (2,17 mg/BSA), TAP (1,96 mg/BSA), MKEK atık suyu (0,87 mg/BSA) ve GÖL besi ortamı (0,69 mg/BSA) olarak tespit edilmiştir. İyon Kromatografi kullanılarak yapılan besi ortamı anyon ölçümleri değerlendirildiğinde, MKEK ve GÖL besi ortamında yetişen Chlorella vulgaris türünde fosfat sınırlamasının diğer TAP ve N-TAP ortamlarına göre daha erken oluştuğu sonucuna varılmıştır. Fosfat sınırlamasının, N-TAP ve TAP besi ortamlarında yetişen alglerin protein içeriğinde artışa sebep olduğu FTIR analizleri ile belirlenmiştir. Amino asit ölçüm sonuçlarında tüm besi ortamlarında Arjinin amino asidi en yüksek olarak bulunmuştur. N-TAP ve TAP besi ortamlarında yetişen alglerde esansiyel ve esansiyel olmayan amino asit içerikleri bakımından yaklaşık 5 kat yüksek olduğu tespit edilmiştir.

Destekleyen Kurum

Kırıkkale Üniversitesi Bilimsel Araştırmalar Proje Birimi

Proje Numarası

2019/162

Kaynakça

  • Angel AR, Mata L, Nys R, Paul NA. 2016. The Protein Concent of Seaweds: A Universal Nitrogen-to-protein Conversion Factor of Five. Chapter 2.
  • Angell AR. 2016. Seaweeds as an alternative crop for the production of protein. Phd Thesis, James Cook University. Jcu, Research online. Chapter 1.
  • Becker EW. 1994. Microalgae - Biotechnology and Microbiology. Cambridge: Cambridge University Press.
  • Becker EW. 2007. Micro-algae as a source of protein. Biotechnol Adv. 25:207–210.
  • Bleakly S, Hayes M. 2017. Algal Proteins: Exraction, Application and Challenges Concerning Production. A Review, Foods 6(5): 33. doi.org/10.3390/foods6050033
  • Clemens P, Steven FC. (Eds.) 2016. Microalgae Biotechnology. Springer. ISBN 978-3-319-23808-1.
  • Jeffrey SW, Humphrey GF. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen (BBP), Bd. 167: 191-194.
  • López CVG, García MCC, Fernández FGA, Bustos CS, Chisti Y, Sevilla JMF. 2010. Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol.101(19):7587–91.
  • Lowry OH, Rosebrough, NJ, Farr AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275.
  • Lu Q, Zhou W, Min M, Ma X, Ma Y, Chen P, Zheng H, Doan YTT, Liu H, Chen C, Urriola PE, Shurson GC, Ruan R. 2016. Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation. Bioresour Technol. 201: 33–40.
  • Martınez ME, Jime´nez JM, El-Yousfi F. 1999. Influence of phosphorous concentration and temperature on growth and phosphorous uptake by the microalga Scenedesmus obliquus. Bioresour Technol. 67: 233–40.
  • Md Asraful, Jing-Liang X, Zhongming W (eds) 2020. Microalgae Biotechnology for Food, Health and High Value Products. Springer. ISBN 978-981-15-0169-2.
  • Molazadeh M, Danesh S, Ahmadzadeh H, Pourianfar HR. 2019. Influence of CO2 concentration and N-P ratio on Chlorella vulgaris-assisted nutrient bioremediation, CO2 biofixation and biomass production in a lagoon treatment plant. J Taiwan Inst Chem E. 96: 114–20.
  • Monfet E, Unc A. 2017. Defining wastewaters used for cultivation of algae. Algal Research. 24: 520–26.
  • Otten JJ, Hellwig JP, Meyers LD. 2006. Dietary drı reference intakes the essential guide to nutrient requirements. Instıtute of Medicine Of The National Academies. Washington DC. pp. 144-156.
  • Pistorius AMA, DeGrip WJ, Egorova-Zachernyuk TA. 2009. Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotecnol and Bioeng. 103:123-129.
  • Richmond A. 2004. Handbook of Microalgal Culture. Biotechnology and Applied Phycology. Oxford: Blackwell Science.
  • Sonkar S, Mallick N. 2018. An alternative strategy for enhancing lipid accumulation in chlorophycean microalgae for biodiesel production. J Appl Phycol. 30: 2179–2192.
  • Soto-Sierra L, Stoykova P, Nikolov ZL. 2018. Exraction and fractionation of microalgea-based protein products. Algal Research. 36: 175-192.
  • Xie T, Xia Y, Zeng Y, Li X, Zhang Y. 2017. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy. Bioresour Technol. 233: 247–55.

Comparison of total protein and amino acid compositions of microalgae Chlorella vulgaris grown in different growth media

Yıl 2020, Cilt: 3 Sayı: 2, 130 - 137, 29.12.2020

Öz

The microalgae species in this study, Chlorella vulgaris, isolated from Kapulukaya Reservoir (Kırıkkale), were subjected to four different growth media, being (i) Tris-Acetat-Phosphate (TAP), (ii) Tris-Acetat-Phosphate enriched with N (N-TAP), (iii) Kırıkkale University Campus Lake Water (LW) and (iv) Waste Water from Mechanical and Chemical Industry Company (MKEK) in order to compare its growth by monitoring the parameters, cell count (CC), Optical density (OD) and Chlorophyll-a (Chl-a). Of the experimental trials, all of which reached the stationary phase on day 15, the highest biomass was detected in the LW medium. Following the end of the experiments, amounts of total protein measured on the harvested biomass by using Lowry method were found to be 2,17 mg/BSA (N-TAP), 1,96 mg/BSA (TAP), 0,87 mg/BSA (MKEK) and 0,69 mg/BSA (LW). Results from anion measurements in the media suggested the idea that phosphate limitations occurred during growth but being onset earlier in the MKEK and LW media than that in the TAP and TAP-N media. The greater protein content found in TAP and TAP-N media corresponded with similarly higher values obtained from Fourier Transform Infrared Spectroscopy (FTIR) analysis. The amount of arginine was profoundly higher amongst amino acids. Both essential and non-essential amino acids were five-fold higher in N-TAP and TAP media compared to wastewater (MKEK) and LW. This suggested a general conclusion that the used natural waters were not compatible enough with the controlled media due mainly to that in natural waters phosphorus limited the growth despite efficient N levels.

Proje Numarası

2019/162

Kaynakça

  • Angel AR, Mata L, Nys R, Paul NA. 2016. The Protein Concent of Seaweds: A Universal Nitrogen-to-protein Conversion Factor of Five. Chapter 2.
  • Angell AR. 2016. Seaweeds as an alternative crop for the production of protein. Phd Thesis, James Cook University. Jcu, Research online. Chapter 1.
  • Becker EW. 1994. Microalgae - Biotechnology and Microbiology. Cambridge: Cambridge University Press.
  • Becker EW. 2007. Micro-algae as a source of protein. Biotechnol Adv. 25:207–210.
  • Bleakly S, Hayes M. 2017. Algal Proteins: Exraction, Application and Challenges Concerning Production. A Review, Foods 6(5): 33. doi.org/10.3390/foods6050033
  • Clemens P, Steven FC. (Eds.) 2016. Microalgae Biotechnology. Springer. ISBN 978-3-319-23808-1.
  • Jeffrey SW, Humphrey GF. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen (BBP), Bd. 167: 191-194.
  • López CVG, García MCC, Fernández FGA, Bustos CS, Chisti Y, Sevilla JMF. 2010. Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol.101(19):7587–91.
  • Lowry OH, Rosebrough, NJ, Farr AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275.
  • Lu Q, Zhou W, Min M, Ma X, Ma Y, Chen P, Zheng H, Doan YTT, Liu H, Chen C, Urriola PE, Shurson GC, Ruan R. 2016. Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation. Bioresour Technol. 201: 33–40.
  • Martınez ME, Jime´nez JM, El-Yousfi F. 1999. Influence of phosphorous concentration and temperature on growth and phosphorous uptake by the microalga Scenedesmus obliquus. Bioresour Technol. 67: 233–40.
  • Md Asraful, Jing-Liang X, Zhongming W (eds) 2020. Microalgae Biotechnology for Food, Health and High Value Products. Springer. ISBN 978-981-15-0169-2.
  • Molazadeh M, Danesh S, Ahmadzadeh H, Pourianfar HR. 2019. Influence of CO2 concentration and N-P ratio on Chlorella vulgaris-assisted nutrient bioremediation, CO2 biofixation and biomass production in a lagoon treatment plant. J Taiwan Inst Chem E. 96: 114–20.
  • Monfet E, Unc A. 2017. Defining wastewaters used for cultivation of algae. Algal Research. 24: 520–26.
  • Otten JJ, Hellwig JP, Meyers LD. 2006. Dietary drı reference intakes the essential guide to nutrient requirements. Instıtute of Medicine Of The National Academies. Washington DC. pp. 144-156.
  • Pistorius AMA, DeGrip WJ, Egorova-Zachernyuk TA. 2009. Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotecnol and Bioeng. 103:123-129.
  • Richmond A. 2004. Handbook of Microalgal Culture. Biotechnology and Applied Phycology. Oxford: Blackwell Science.
  • Sonkar S, Mallick N. 2018. An alternative strategy for enhancing lipid accumulation in chlorophycean microalgae for biodiesel production. J Appl Phycol. 30: 2179–2192.
  • Soto-Sierra L, Stoykova P, Nikolov ZL. 2018. Exraction and fractionation of microalgea-based protein products. Algal Research. 36: 175-192.
  • Xie T, Xia Y, Zeng Y, Li X, Zhang Y. 2017. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy. Bioresour Technol. 233: 247–55.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Merve Kavasbasıoglu Bu kişi benim

İlhami Tuzun Bu kişi benim 0000-0003-4091-976X

Yaşar Aluç 0000-0002-2650-2290

Proje Numarası 2019/162
Yayımlanma Tarihi 29 Aralık 2020
Kabul Tarihi 25 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 2

Kaynak Göster

APA Kavasbasıoglu, M., Tuzun, İ., & Aluç, Y. (2020). Farklı Besi Ortamlarında Yetişen Chlorella Vulgaris Türüne Ait Protein Ve Aminoasit Komposizyonunun Karşılaştırılması. Eurasian Journal of Biological and Chemical Sciences, 3(2), 130-137.
AMA Kavasbasıoglu M, Tuzun İ, Aluç Y. Farklı Besi Ortamlarında Yetişen Chlorella Vulgaris Türüne Ait Protein Ve Aminoasit Komposizyonunun Karşılaştırılması. Eurasian J. Bio. Chem. Sci. Aralık 2020;3(2):130-137.
Chicago Kavasbasıoglu, Merve, İlhami Tuzun, ve Yaşar Aluç. “Farklı Besi Ortamlarında Yetişen Chlorella Vulgaris Türüne Ait Protein Ve Aminoasit Komposizyonunun Karşılaştırılması”. Eurasian Journal of Biological and Chemical Sciences 3, sy. 2 (Aralık 2020): 130-37.
EndNote Kavasbasıoglu M, Tuzun İ, Aluç Y (01 Aralık 2020) Farklı Besi Ortamlarında Yetişen Chlorella Vulgaris Türüne Ait Protein Ve Aminoasit Komposizyonunun Karşılaştırılması. Eurasian Journal of Biological and Chemical Sciences 3 2 130–137.
IEEE M. Kavasbasıoglu, İ. Tuzun, ve Y. Aluç, “Farklı Besi Ortamlarında Yetişen Chlorella Vulgaris Türüne Ait Protein Ve Aminoasit Komposizyonunun Karşılaştırılması”, Eurasian J. Bio. Chem. Sci., c. 3, sy. 2, ss. 130–137, 2020.
ISNAD Kavasbasıoglu, Merve vd. “Farklı Besi Ortamlarında Yetişen Chlorella Vulgaris Türüne Ait Protein Ve Aminoasit Komposizyonunun Karşılaştırılması”. Eurasian Journal of Biological and Chemical Sciences 3/2 (Aralık 2020), 130-137.
JAMA Kavasbasıoglu M, Tuzun İ, Aluç Y. Farklı Besi Ortamlarında Yetişen Chlorella Vulgaris Türüne Ait Protein Ve Aminoasit Komposizyonunun Karşılaştırılması. Eurasian J. Bio. Chem. Sci. 2020;3:130–137.
MLA Kavasbasıoglu, Merve vd. “Farklı Besi Ortamlarında Yetişen Chlorella Vulgaris Türüne Ait Protein Ve Aminoasit Komposizyonunun Karşılaştırılması”. Eurasian Journal of Biological and Chemical Sciences, c. 3, sy. 2, 2020, ss. 130-7.
Vancouver Kavasbasıoglu M, Tuzun İ, Aluç Y. Farklı Besi Ortamlarında Yetişen Chlorella Vulgaris Türüne Ait Protein Ve Aminoasit Komposizyonunun Karşılaştırılması. Eurasian J. Bio. Chem. Sci. 2020;3(2):130-7.