Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 41 Sayı: 1, 85 - 92, 22.03.2020
https://doi.org/10.17776/csj.543851

Öz

Kaynakça

  • [1] Evis, Z. and Webster, T. Nanosize hydroxyapatite: doping with various ions, Adv Appl Ceram, 110 (2011) 311-321.
  • [2] Abutalib, M. and Yahia, I. Novel and facile microwave-assisted synthesis of Mo-doped hydroxyapatite nanorods: Characterization, gamma absorption coefficient, and bioactivity, Mater Sci Eng-C, 78 (2017) 1093-1100.
  • [3] Kaygili, O., Keser, S., Ates, T., Tatar, C. and Yakuphanoglu, F. Controlling of dielectric parameters of insulating hydroxyapatite by simulated body fluid, Mater Sci Eng-C, 46 (2015) 118-124.
  • [4] Jadalannagari, S., Deshmukh, K., Ramanan, S.R. and Kowshik, M. Antimicrobial activity of hemocompatible silver doped hydroxyapatite nanoparticles synthesized by modified sol–gel technique, Appl Nanosci, 4 (2014) 133-141.
  • [5] Adzila, S., Sopyan, I., Singh, R., Pusparini, E. and Hamdi, M. Mechanochemical synthesis of sodium doped hydroxyapatite powder, (2013).
  • [6] Vamze, J., Pilmane, M. and Skagers, A. Biocompatibility of pure and mixed hydroxyapatite and alpha-tricalcium phosphate implanted in rabbit bone, J Mater Sci-M, 26 (2015).
  • [7] Wang, Q., Huang, W., Wang, D., Darvell, B.W., Day, D.E. and Rahaman, M.N. Preparation of hollow hydroxyapatite microspheres, J Mater Sci- M, 17 (2006) 641-646.
  • [8] Nie, L., Chen, D., Fu, J., Yang, S.H., Hou, R.X. and Suo, J.P. Macroporous biphasic calcium phosphate scaffolds reinforced by poly-L-lactic acid/hydroxyapatite nanocomposite coatings for bone regeneration, Biochem Eng J, 98 (2015) 29-37.
  • [9] Fielding, G.A., Roy, M., Bandyopadhyay, A. and Bose, S. Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings, Acta Biomater, 8 (2012) 3144-3152.
  • [10] Akazawa, H. and Ueno, Y.Low-temperature crystallization and high-temperature instability of hydroxyapatite thin films deposited on Ru, Ti, and Pt metal substrates, Surf Coat Tech, 266 (2015) 42-48.
  • [11] Duraccio, D., Mussano, F. and Faga, M.G. Biomaterials for dental implants: current and future trends, J Mater Sci, 50 (2015) 4779-4812.
  • [12] Razavi, M., Fathi, M., Savabi, O., Vashaee, D. and Tayebi, L. In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications, Metall Mater Trans-A, 46a (2015) 1394-1404.
  • [13] Kaygili, O., Keser, S., Ates, T., Al-Ghamdi, A.A. and Yakuphanoglu, F. Controlling of dielectrical and optical properties of hydroxyapatite based bioceramics by Cd content, Powder technol, 245 (2013) 1-6.
  • [14] Badran, H., Yahia, I., Hamdy, M.S. and Awwad, N. Lithium-doped hydroxyapatite nano-composites: synthesis, characterization, gamma attenuation coefficient and dielectric properties, Radiat Phys Chem, 130 (2017) 85-91.
  • [15] Pandya, H.M. and Anitha, P. Influence of Manganese on the Synthesis of Nano Hydroxyapatite by Wet Chemical Method for in vitro Applications, Int J Med Res Rev, 3 (2015) 394-402.
  • [16] Limkitjaroenporn, P., Kaewkhao, J., Limsuwan, P. and Chewpraditkul, W. Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses, J Phys Chem Solids, 72 (2011) 245-251.
  • [17] Kaçal, M., Akman, F. and Sayyed, M. Evaluation of gamma-ray and neutron attenuation properties of some polymers, Nucl Eng Technol, (2018).
  • [18] Abbasova, N., Yüksel, Z., Abbasov, E., Gülbiçim, H. and Tufan, M.Ç. Investigation of gamma-ray attenuation parameters of some materials used in dental applications, Results in Phys, (2019).
  • [19] Köksal, O.K., Cengiz, E., Apaydın, G., Tozar, A. and Karahan, İ.H. Determination of the Mass Attenuation Coefficient, Effective Atomic Number and Electron Density for Nano Manganese Hydroxyapatite by using 778-1457 keV Gamma Rays, J Nucl Sci, 5 (2019) 24-29.
  • [20] Koksal, O.K., Apaydın, G., Tozar, A., Karahan, İ.H. and Cengiz, E. Assessment of the Mass Attenuation Parameters with using Gamma-Rays for Manganese Substituted Nano Hydroxyapatite, Radiat Phys Chem, (2019).
  • [21] Wei, G.B. and Ma, P.X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering, Biomaterials, 25 (2004) 4749-4757.
  • [22] Stipniece, L., Stepanova, V., Narkevica, I., Salma-Ancane, K. and Boyd, A.R. Comparative study of surface properties of Mg-substituted hydroxyapatite bioceramic microspheres, J Eur Ceram Soc, 38 (2018) 761-768.
  • [23] Ciobanu, C.S., Andronescu, E. and Predoi, D. Bet and Xrd Studies on the Hydroxyapatite and Europium Doped Hydroxyapatite, Dig J Nanomater Bios, 6 (2011) 1239-1244.
  • [24] Serro, A.P., Bastos, M., Pessoa, J.C. and Saramago, B. Bovine serum albumin conformational changes upon adsorption on titania and on hydroxyapatite and their relation with biomineralization, J Biomed Mater Res A, 70a (2004) 420-427.
  • [25] Fujii, E., Kawabata, K., Ando, K., Tsuru, K., Hayakawa, S. and Osaka, A. Synthesis and structural characterization of silica-hybridized hydroxyapatite with gas adsorption capability, J Ceram Soc Jpn, 114 (2006) 769-773.
  • [26] Koksal, O.K., Wrobel, P., Apaydin, G., Cengiz, E., Lankosz, M., Tozar, A., Karahan, I.H.and Özkalayci, F. Elemental analysis for iron, cobalt, copper and zinc decorated hydroxyapatite synthetic bone dusts by EDXRF and SEM, Microchem J, 144 (2019) 83-87.
  • [27] Gowda, S., Krishnaveni, S., Yashoda, T., Umesh, T. and Gowda, R. Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds, Pramana, 63 (2004) 529-541.
  • [28] Manohara, S. and Hanagodimath, S. Effective atomic numbers for photon energy absorption of essential amino acids in the energy range 1 keV to 20 MeV, Nucl Instrum Meth B, 264 (2007) 9-14.
  • [29] Büyükyıldız, M. and Kurudirek, M. Radiological properties of healthy, carcinoma and equivalent breast tissues for photon and charged particle interactions, Int j radiat biol, 94 (2018) 70-78.
  • [30] McCullough, E.C. Photon attenuation in computed tomography, Med Phys, 2 (1975) 307-320.
  • [31] Gaikwad, D.K., Pawar, P.P. and Selvam, T.P. Mass attenuation coefficients and effective atomic numbers of biological compounds for gamma ray interactions, Radiat Phys Chem, 138 (2017) 75-80.
  • [32] Biswas, R., Sahadath, H., Mollah, A.S. and Huq, M.F. Calculation of gamma-ray attenuation parameters for locally developed shielding material: Polyboron, J Radiat Res Appl Sci, 9 (2016) 26-34.
  • [33] Gülbiçim, H., Tufan, M.Ç. and Türkan, M.N. The investigation of vermiculite as an alternating shielding material for gamma rays, Radiat Phys Chem, 130 (2017) 112-117.
  • [34] Manohara, S. and Hanagodimath, S. Studies on effective atomic numbers and electron densities of essential amino acids in the energy range 1 keV–100 GeV, Nucl Instrum Meth B, 258 (2007) 321-328.
  • [35] Manjunathaguru, V. and Umesh, T. Effective atomic numbers and electron densities of some biologically important compounds containing H, C, N and O in the energy range 145–1330 keV, J Phys B-At Mol Opt, 39 (2006) 3969.
  • [36] Kaewkhao, J., Laopaiboon, J. and Chewpraditkul, W., Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy, J Quant Spectrosc RA, 109 (2008) 1260-1265.
  • [37] Manici, T., Singh, V. and Tekin, H.O. Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code, (2017).
  • [38] Akar, A., Baltaş, H., Çevik, U., Korkmaz, F. and Okumuşoğlu, N. Measurement of attenuation coefficients for bone, muscle, fat and water at 140, 364 and 662 keV γ-ray energies, J Quant Spectrosc RA, 102 (2006) 203-211.
  • [39] El-Bashir, B., Sayyed, M., Zaid, M. and Matori, K. Comprehensive study on physical, elastic and shielding properties of ternary BaO-Bi2O3-P2O5 glasses as a potent radiation shielding material, J Non-Cryst Solids, 468 (2017) 92-99.
  • [40] Issa, S.A., Hamdalla, T.A. and Darwish, A. Effect of ErCl3 in gamma and neutron parameters for different concentration of ErCl3-SiO2 (EDFA) for the signal protection from nuclear radiation, J Alloy Compd, 698 (2017) 234-240.
  • [41] Akman, F., Kaçal, M., Sayyed, M. and Karataş, H. Study of gamma radiation attenuation properties of some selected ternary alloys, J Alloy Compd, 782 (2019) 315-322.
  • [42] Berger, M.J. and Hubbell, J. XCOM: Photon cross sections on a personal computer, National Bureau of Standards, Washington, DC (USA). Center for Radiation Research, 1987.
  • [43] Hara, T., Kanai, S., Mori, K., Mizugaki, T., Ebitani, K., Jitsukawa, K., Kaneda, K. Highly efficient C− C bond-forming reactions in aqueous media catalyzed by monomeric vanadate species in an apatite framework, J Org Chem, 71 (2006) 7455-7462.
  • [44] Sugiyama, S., Osaka, T., Hashimoto, T. and Sotowa, K.I. Oxidative dehydrogenation of propane on calcium hydroxyapatites partially substituted with vanadate, Catal lett, 103 (2005) 121-123.

A research on the gamma ray attenuation characteristics for real bone and manganese substituted artificial bone dust

Yıl 2020, Cilt: 41 Sayı: 1, 85 - 92, 22.03.2020
https://doi.org/10.17776/csj.543851

Öz

This research focalized on the gamma ray attenuation charesteristics of real bone and manganese substituted Nano hydroxyapatite artificial bone dusts. The current samples were excited with using 59.5 keV photons emitted from an 241Am annular radioisotope source with 50 mCi activity by using a narrow beam transmission geometry and detected with using Ultra Low Energy Germanium detector with a resolution 150 eV at 5,95 keV experimentally. The gamma-ray attenuation parameters such as linear attenuation coefficient, half value layer, tenth value layer and mean free path are also calculated experimentally and theoretically. The present results points out that the attenuation values of the manganese substituted hydroxyapatite artificial bone dust is very close to the value of the real bone.

Kaynakça

  • [1] Evis, Z. and Webster, T. Nanosize hydroxyapatite: doping with various ions, Adv Appl Ceram, 110 (2011) 311-321.
  • [2] Abutalib, M. and Yahia, I. Novel and facile microwave-assisted synthesis of Mo-doped hydroxyapatite nanorods: Characterization, gamma absorption coefficient, and bioactivity, Mater Sci Eng-C, 78 (2017) 1093-1100.
  • [3] Kaygili, O., Keser, S., Ates, T., Tatar, C. and Yakuphanoglu, F. Controlling of dielectric parameters of insulating hydroxyapatite by simulated body fluid, Mater Sci Eng-C, 46 (2015) 118-124.
  • [4] Jadalannagari, S., Deshmukh, K., Ramanan, S.R. and Kowshik, M. Antimicrobial activity of hemocompatible silver doped hydroxyapatite nanoparticles synthesized by modified sol–gel technique, Appl Nanosci, 4 (2014) 133-141.
  • [5] Adzila, S., Sopyan, I., Singh, R., Pusparini, E. and Hamdi, M. Mechanochemical synthesis of sodium doped hydroxyapatite powder, (2013).
  • [6] Vamze, J., Pilmane, M. and Skagers, A. Biocompatibility of pure and mixed hydroxyapatite and alpha-tricalcium phosphate implanted in rabbit bone, J Mater Sci-M, 26 (2015).
  • [7] Wang, Q., Huang, W., Wang, D., Darvell, B.W., Day, D.E. and Rahaman, M.N. Preparation of hollow hydroxyapatite microspheres, J Mater Sci- M, 17 (2006) 641-646.
  • [8] Nie, L., Chen, D., Fu, J., Yang, S.H., Hou, R.X. and Suo, J.P. Macroporous biphasic calcium phosphate scaffolds reinforced by poly-L-lactic acid/hydroxyapatite nanocomposite coatings for bone regeneration, Biochem Eng J, 98 (2015) 29-37.
  • [9] Fielding, G.A., Roy, M., Bandyopadhyay, A. and Bose, S. Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings, Acta Biomater, 8 (2012) 3144-3152.
  • [10] Akazawa, H. and Ueno, Y.Low-temperature crystallization and high-temperature instability of hydroxyapatite thin films deposited on Ru, Ti, and Pt metal substrates, Surf Coat Tech, 266 (2015) 42-48.
  • [11] Duraccio, D., Mussano, F. and Faga, M.G. Biomaterials for dental implants: current and future trends, J Mater Sci, 50 (2015) 4779-4812.
  • [12] Razavi, M., Fathi, M., Savabi, O., Vashaee, D. and Tayebi, L. In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications, Metall Mater Trans-A, 46a (2015) 1394-1404.
  • [13] Kaygili, O., Keser, S., Ates, T., Al-Ghamdi, A.A. and Yakuphanoglu, F. Controlling of dielectrical and optical properties of hydroxyapatite based bioceramics by Cd content, Powder technol, 245 (2013) 1-6.
  • [14] Badran, H., Yahia, I., Hamdy, M.S. and Awwad, N. Lithium-doped hydroxyapatite nano-composites: synthesis, characterization, gamma attenuation coefficient and dielectric properties, Radiat Phys Chem, 130 (2017) 85-91.
  • [15] Pandya, H.M. and Anitha, P. Influence of Manganese on the Synthesis of Nano Hydroxyapatite by Wet Chemical Method for in vitro Applications, Int J Med Res Rev, 3 (2015) 394-402.
  • [16] Limkitjaroenporn, P., Kaewkhao, J., Limsuwan, P. and Chewpraditkul, W. Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses, J Phys Chem Solids, 72 (2011) 245-251.
  • [17] Kaçal, M., Akman, F. and Sayyed, M. Evaluation of gamma-ray and neutron attenuation properties of some polymers, Nucl Eng Technol, (2018).
  • [18] Abbasova, N., Yüksel, Z., Abbasov, E., Gülbiçim, H. and Tufan, M.Ç. Investigation of gamma-ray attenuation parameters of some materials used in dental applications, Results in Phys, (2019).
  • [19] Köksal, O.K., Cengiz, E., Apaydın, G., Tozar, A. and Karahan, İ.H. Determination of the Mass Attenuation Coefficient, Effective Atomic Number and Electron Density for Nano Manganese Hydroxyapatite by using 778-1457 keV Gamma Rays, J Nucl Sci, 5 (2019) 24-29.
  • [20] Koksal, O.K., Apaydın, G., Tozar, A., Karahan, İ.H. and Cengiz, E. Assessment of the Mass Attenuation Parameters with using Gamma-Rays for Manganese Substituted Nano Hydroxyapatite, Radiat Phys Chem, (2019).
  • [21] Wei, G.B. and Ma, P.X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering, Biomaterials, 25 (2004) 4749-4757.
  • [22] Stipniece, L., Stepanova, V., Narkevica, I., Salma-Ancane, K. and Boyd, A.R. Comparative study of surface properties of Mg-substituted hydroxyapatite bioceramic microspheres, J Eur Ceram Soc, 38 (2018) 761-768.
  • [23] Ciobanu, C.S., Andronescu, E. and Predoi, D. Bet and Xrd Studies on the Hydroxyapatite and Europium Doped Hydroxyapatite, Dig J Nanomater Bios, 6 (2011) 1239-1244.
  • [24] Serro, A.P., Bastos, M., Pessoa, J.C. and Saramago, B. Bovine serum albumin conformational changes upon adsorption on titania and on hydroxyapatite and their relation with biomineralization, J Biomed Mater Res A, 70a (2004) 420-427.
  • [25] Fujii, E., Kawabata, K., Ando, K., Tsuru, K., Hayakawa, S. and Osaka, A. Synthesis and structural characterization of silica-hybridized hydroxyapatite with gas adsorption capability, J Ceram Soc Jpn, 114 (2006) 769-773.
  • [26] Koksal, O.K., Wrobel, P., Apaydin, G., Cengiz, E., Lankosz, M., Tozar, A., Karahan, I.H.and Özkalayci, F. Elemental analysis for iron, cobalt, copper and zinc decorated hydroxyapatite synthetic bone dusts by EDXRF and SEM, Microchem J, 144 (2019) 83-87.
  • [27] Gowda, S., Krishnaveni, S., Yashoda, T., Umesh, T. and Gowda, R. Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds, Pramana, 63 (2004) 529-541.
  • [28] Manohara, S. and Hanagodimath, S. Effective atomic numbers for photon energy absorption of essential amino acids in the energy range 1 keV to 20 MeV, Nucl Instrum Meth B, 264 (2007) 9-14.
  • [29] Büyükyıldız, M. and Kurudirek, M. Radiological properties of healthy, carcinoma and equivalent breast tissues for photon and charged particle interactions, Int j radiat biol, 94 (2018) 70-78.
  • [30] McCullough, E.C. Photon attenuation in computed tomography, Med Phys, 2 (1975) 307-320.
  • [31] Gaikwad, D.K., Pawar, P.P. and Selvam, T.P. Mass attenuation coefficients and effective atomic numbers of biological compounds for gamma ray interactions, Radiat Phys Chem, 138 (2017) 75-80.
  • [32] Biswas, R., Sahadath, H., Mollah, A.S. and Huq, M.F. Calculation of gamma-ray attenuation parameters for locally developed shielding material: Polyboron, J Radiat Res Appl Sci, 9 (2016) 26-34.
  • [33] Gülbiçim, H., Tufan, M.Ç. and Türkan, M.N. The investigation of vermiculite as an alternating shielding material for gamma rays, Radiat Phys Chem, 130 (2017) 112-117.
  • [34] Manohara, S. and Hanagodimath, S. Studies on effective atomic numbers and electron densities of essential amino acids in the energy range 1 keV–100 GeV, Nucl Instrum Meth B, 258 (2007) 321-328.
  • [35] Manjunathaguru, V. and Umesh, T. Effective atomic numbers and electron densities of some biologically important compounds containing H, C, N and O in the energy range 145–1330 keV, J Phys B-At Mol Opt, 39 (2006) 3969.
  • [36] Kaewkhao, J., Laopaiboon, J. and Chewpraditkul, W., Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy, J Quant Spectrosc RA, 109 (2008) 1260-1265.
  • [37] Manici, T., Singh, V. and Tekin, H.O. Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code, (2017).
  • [38] Akar, A., Baltaş, H., Çevik, U., Korkmaz, F. and Okumuşoğlu, N. Measurement of attenuation coefficients for bone, muscle, fat and water at 140, 364 and 662 keV γ-ray energies, J Quant Spectrosc RA, 102 (2006) 203-211.
  • [39] El-Bashir, B., Sayyed, M., Zaid, M. and Matori, K. Comprehensive study on physical, elastic and shielding properties of ternary BaO-Bi2O3-P2O5 glasses as a potent radiation shielding material, J Non-Cryst Solids, 468 (2017) 92-99.
  • [40] Issa, S.A., Hamdalla, T.A. and Darwish, A. Effect of ErCl3 in gamma and neutron parameters for different concentration of ErCl3-SiO2 (EDFA) for the signal protection from nuclear radiation, J Alloy Compd, 698 (2017) 234-240.
  • [41] Akman, F., Kaçal, M., Sayyed, M. and Karataş, H. Study of gamma radiation attenuation properties of some selected ternary alloys, J Alloy Compd, 782 (2019) 315-322.
  • [42] Berger, M.J. and Hubbell, J. XCOM: Photon cross sections on a personal computer, National Bureau of Standards, Washington, DC (USA). Center for Radiation Research, 1987.
  • [43] Hara, T., Kanai, S., Mori, K., Mizugaki, T., Ebitani, K., Jitsukawa, K., Kaneda, K. Highly efficient C− C bond-forming reactions in aqueous media catalyzed by monomeric vanadate species in an apatite framework, J Org Chem, 71 (2006) 7455-7462.
  • [44] Sugiyama, S., Osaka, T., Hashimoto, T. and Sotowa, K.I. Oxidative dehydrogenation of propane on calcium hydroxyapatites partially substituted with vanadate, Catal lett, 103 (2005) 121-123.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Natural Sciences
Yazarlar

Oğuz Kağan Köksal 0000-0003-2671-6683

Ali Tozar 0000-0003-3039-1834

Erhan Cengiz 0000-0002-4094-5784

İsmail Hakki Karahan 0000-0002-8297-3521

Gökhan Apaydın 0000-0003-3039-1834

Yayımlanma Tarihi 22 Mart 2020
Gönderilme Tarihi 24 Mart 2019
Kabul Tarihi 29 Ocak 2020
Yayımlandığı Sayı Yıl 2020Cilt: 41 Sayı: 1

Kaynak Göster

APA Köksal, O. K., Tozar, A., Cengiz, E., Karahan, İ. H., vd. (2020). A research on the gamma ray attenuation characteristics for real bone and manganese substituted artificial bone dust. Cumhuriyet Science Journal, 41(1), 85-92. https://doi.org/10.17776/csj.543851