Konferans Bildirisi
BibTex RIS Kaynak Göster

Hermite Operational Matrix for Solving Fractional Differential Equations

Yıl 2020, Cilt: 3 Sayı: 1, 87 - 90, 15.12.2020

Öz

This paper aims to solve the fractional differential equations (FDEs) with operational matrix method by Hermite polynomials in the sense of Caputo derivative. For this purpose, we attempt to re-define the FDEs with a set of algebraic equations with initial conditions which simplifies the complete problem. We achieve either exact or approximated solutions by solving these algebraic equations with the proposed method. To indicate the efficiency of the proposed method, various illustrative examples are solved.

Kaynakça

  • 1 K.S. Miller, B. Ross, (Eds.), Introduction to the Fractional Calculus and Fractional Differential Equations,, John Wiley and Sons, Inc., New York, 1993.
  • 2 K.B. Oldham, J. Spanier, The Fractional Calculus, Theory and Appilcations of Differentiation and Integration to Arbitrary Order., Dover Publication, Mineola, 2006.
  • 3 A. Plonka , J. Spanier, Recent Developments in dispersive kinetics., Progr. React. Kinet. Mech., 25(2)(2000), 109-127.
  • 4 P. Allegrini, M. Buiatti, P. Grinolini, B.L. West Fractional Brownian Motion As a Nonstationary Process: Analternative Paradigm for dNA Sequences., Phys. Rev. E, 57(4)(1998), 558-567.
  • 5 J. Bisquert, Fractional Diffusion in the Multiple-Trapping Regime and Revision of the Equivalence with the Continuous time Random Walk, Phys. Rev. Lett., 91(2003).
  • 6 A. A. Kilbas, H. M. Srivastava, On matrix transformations between some sequence spaces and the hausdorff measure of noncompactness, Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, 2006.
  • 7 A. H. Bhrawy, A. S. Alofi, The Operational Matrix of Fractional Integration for Shifted Chebyshev Polynomials, Appl. Math. Lett., 26(2013), 25-31.
  • 8 E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, A New Jacobi Operational Matrix: An Application for Solving Fractional Differential Equations, Appl. Math. Modell, 36(2013), 4931-4943.
  • 9 A. H. Bhrawy, M. A. Alghamdi, A Shifted Jacobi –Gauss-Lobatto Collocation Method for Solving Nonlinear Fractional Langevin Equation, Bound. Value Probl. 62(2012).
  • 10 M. H. Akrami, M. H, Atabekzadeh, G. H. Erjaee, The Operational Matrix of Fractional Integration for Shifted Legendre Polynomials, Iran. J. Sci. Technol., 37(4)(2013), 439-444.
  • 11 R. Belgacem, A. Bokhari, A. Amir, Bernoulli Operational Matrix of Fractional Derivative for Solution of Fractional Differential Equations, Gen. Lett. Math., 5(1)(2018), 32-46.
  • 12 F. Dusunceli, E. Celik, Numerical Solution for High-Order Linear Complex Differential Equations By Hermite Polynomials, I˘gdır Univ. J. Inst. Sci. Tech., 7(4)(2017), 189-201.
Yıl 2020, Cilt: 3 Sayı: 1, 87 - 90, 15.12.2020

Öz

Kaynakça

  • 1 K.S. Miller, B. Ross, (Eds.), Introduction to the Fractional Calculus and Fractional Differential Equations,, John Wiley and Sons, Inc., New York, 1993.
  • 2 K.B. Oldham, J. Spanier, The Fractional Calculus, Theory and Appilcations of Differentiation and Integration to Arbitrary Order., Dover Publication, Mineola, 2006.
  • 3 A. Plonka , J. Spanier, Recent Developments in dispersive kinetics., Progr. React. Kinet. Mech., 25(2)(2000), 109-127.
  • 4 P. Allegrini, M. Buiatti, P. Grinolini, B.L. West Fractional Brownian Motion As a Nonstationary Process: Analternative Paradigm for dNA Sequences., Phys. Rev. E, 57(4)(1998), 558-567.
  • 5 J. Bisquert, Fractional Diffusion in the Multiple-Trapping Regime and Revision of the Equivalence with the Continuous time Random Walk, Phys. Rev. Lett., 91(2003).
  • 6 A. A. Kilbas, H. M. Srivastava, On matrix transformations between some sequence spaces and the hausdorff measure of noncompactness, Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, 2006.
  • 7 A. H. Bhrawy, A. S. Alofi, The Operational Matrix of Fractional Integration for Shifted Chebyshev Polynomials, Appl. Math. Lett., 26(2013), 25-31.
  • 8 E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, A New Jacobi Operational Matrix: An Application for Solving Fractional Differential Equations, Appl. Math. Modell, 36(2013), 4931-4943.
  • 9 A. H. Bhrawy, M. A. Alghamdi, A Shifted Jacobi –Gauss-Lobatto Collocation Method for Solving Nonlinear Fractional Langevin Equation, Bound. Value Probl. 62(2012).
  • 10 M. H. Akrami, M. H, Atabekzadeh, G. H. Erjaee, The Operational Matrix of Fractional Integration for Shifted Legendre Polynomials, Iran. J. Sci. Technol., 37(4)(2013), 439-444.
  • 11 R. Belgacem, A. Bokhari, A. Amir, Bernoulli Operational Matrix of Fractional Derivative for Solution of Fractional Differential Equations, Gen. Lett. Math., 5(1)(2018), 32-46.
  • 12 F. Dusunceli, E. Celik, Numerical Solution for High-Order Linear Complex Differential Equations By Hermite Polynomials, I˘gdır Univ. J. Inst. Sci. Tech., 7(4)(2017), 189-201.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Hatice Yalman Koşunalp

Mustafa Gülsu

Yayımlanma Tarihi 15 Aralık 2020
Kabul Tarihi 1 Ekim 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 1

Kaynak Göster

APA Yalman Koşunalp, H., & Gülsu, M. (2020). Hermite Operational Matrix for Solving Fractional Differential Equations. Conference Proceedings of Science and Technology, 3(1), 87-90.
AMA Yalman Koşunalp H, Gülsu M. Hermite Operational Matrix for Solving Fractional Differential Equations. Conference Proceedings of Science and Technology. Aralık 2020;3(1):87-90.
Chicago Yalman Koşunalp, Hatice, ve Mustafa Gülsu. “Hermite Operational Matrix for Solving Fractional Differential Equations”. Conference Proceedings of Science and Technology 3, sy. 1 (Aralık 2020): 87-90.
EndNote Yalman Koşunalp H, Gülsu M (01 Aralık 2020) Hermite Operational Matrix for Solving Fractional Differential Equations. Conference Proceedings of Science and Technology 3 1 87–90.
IEEE H. Yalman Koşunalp ve M. Gülsu, “Hermite Operational Matrix for Solving Fractional Differential Equations”, Conference Proceedings of Science and Technology, c. 3, sy. 1, ss. 87–90, 2020.
ISNAD Yalman Koşunalp, Hatice - Gülsu, Mustafa. “Hermite Operational Matrix for Solving Fractional Differential Equations”. Conference Proceedings of Science and Technology 3/1 (Aralık 2020), 87-90.
JAMA Yalman Koşunalp H, Gülsu M. Hermite Operational Matrix for Solving Fractional Differential Equations. Conference Proceedings of Science and Technology. 2020;3:87–90.
MLA Yalman Koşunalp, Hatice ve Mustafa Gülsu. “Hermite Operational Matrix for Solving Fractional Differential Equations”. Conference Proceedings of Science and Technology, c. 3, sy. 1, 2020, ss. 87-90.
Vancouver Yalman Koşunalp H, Gülsu M. Hermite Operational Matrix for Solving Fractional Differential Equations. Conference Proceedings of Science and Technology. 2020;3(1):87-90.