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ABSTRACT 

In this paper, a bivariate compound Poisson model is proposed for calculating the aggregate claims distribution 
in a discrete framework and the probabilistic characteristics of this model, such as the joint probability function, 
joint probability generating function, correlation coefficient and covariance are derived. Then, an algorithm is 
prepared in Oracle database to obtain the probabilities quickly. By means of prepared algorithm some numerical 
examples are also given to illustrate the usage of the bivariate compound Poisson model. 
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1. INTRODUCTION

A central problem in risk theory is the modeling of the 
probability distribution for the total claims. The total 
claims distribution and its components, the frequency and 
severity distributions are used to compute ruin 
probabilities and to provide other information of interest 
to decision makers [1].  

For most organizations, total claims arise from exposure 
to multiple perils, each of which typically can produce 
more than one type of claim. However, there are practical 
situations for which this assumption is not appropriate. 
For example, weather conditions can affect the frequency 
of both fires and automobile accidents. Ignoring such 
dependencies can lead to serious underestimates in loss 
statistics used for decision making [2].  The purpose of 
this article is to present a methodology for dealing with 
this problem through the use of single claim frequency 
and bivariate claims severity distributions. 

The risk theory describes the computation of bivariate 
aggregate distributions. Sundt [3] extended Panjer 
recursions to multiple dimesions. Homer and Clark [4] 
described bivarite examples using two-dimesional 
discrete Fourier transforms. Walhin [5] obtained an 
application of two-dimensional Panjer recursions. Like 
their univariate counterparts, these methods work best 
when the expected claim counts are small due to 
computer memory constraints [6]. 

In this paper a methodology for the evaluation of the 
bivariate compound Poisson distribution is obtained when 
the claim count distribution is the Poisson distribution 
and claim severities are discrete. The paper is organized 
as follows. In Section 2, the univariate compound Poisson 
distribution and its key properties are given. In Section 3, 
the joint probability function, correlation coefficient and 
covariance of the bivariate compound Poisson 
distribution are derived and an algorithm is prepared in 
Oracle database to compute probabilities quickly. This 
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algorithm can be obtained from author upon request. In 
Section 4, some numerical examples are given by means 
of prepared algorithms in Oracle database.  Some 
concluding remarks are given in Section 5. 

2. UNIVARIATE COMPOUND POISSON MODEL 

Let N denote the random variable representing the 
number of claims occuring in an insurance portfolio 
within a given period of time., i.e. the non-negative, 
integer-valued random variable counting the number of 
claims occuring in an insurance portfolio. Let 

...} ,2 ,1i ,X{ i =  denote the severity random variables, i.e. 
the random variables representing the individual claim 
amount. It is assumed that they are discrete, positive, 
mutually independent and independent of the counting 
variable N. Then, the aggregate claims amount is given 
by the following variable  

.XS
N

1i
i∑

=

=                                                                          (1) 

If N is Poisson distributed random variable with 
parameter λ , then the total number of claims X follows a 
(discrete) compound Poisson distribution. This model is 
used to describe the aggregate claims for a single line or 
book of business [6]. 

In Equation (1), )X(E  and )X(V  are the common mean 
and variance of the claim severities ,...}2 ,1i ,X{ i = , then 
the expected value of aggregate claims is the product of 
the expected of claim severity and the expected number 
of claims 

)X(E)S(E λ= ,                                                               (2) 

while the variance of aggregate claims is the sum of two 
components where first is attributed to the variability of 
claim severity and the other to the variability of the 
number of claims 

2)X(E)X(V)S(V λ+λ= .                                                     (3) 

If iX , ,...,2 ,1i =  are discrete random variables with 
probability ji p)jX(P == , ,...2 ,1 ,0j =  in Equation (1), then 

the (defective) probability function of S is given by 
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However, the explicit evaluation of probability )s(pS  in 
Eq. (4) is mostly impossible because of the complicated 
nature of convolutions [7]. It occurs in underflow 
problems which are not always easy to overcome and 
which therefore further restrict their applicability [3]. 
Thus, they can be applied only in some practical 
circumtances or in an approximated way.  

Sundt [8] derived the following recursion for the 
compound Poisson distribution  

[ ])0X(P1
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More generally, for large n and x, Eq. (5) may be difficult 
to use because of the high order of convolutions involved, 
which is for the same reason which had motivated 
recursive evaluation of Eq. (4). 

A very useful recent review of literature on the 
probability function of S is Ozel and Inal [9] using the 
probability generating function  
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where 
jj pλ=λ , ,...2 ,1 ,0j =  and the common probability 

generating function of the claims severity 
iX , ,...,2 ,1i =  

is   

...zpzpp)z(g 2
210X +++=  

The probability function of S is derived by [9] as 
follows 
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According to above probabilities for ... ,2 ,1s = , the 
right-hand side terms depend on how s can be partitioned 
into different forms using integers m..., ,2 ,1 . For 
example, if 5s = , it is partitioned in 7 ways and all the 
partitions of 5 are {1,1,1,1,1}, {1,1,1,2}, {1,2,2}, {1,1,3}, 
{2,3}, {1,4}, {5}.  Let us point out that an application of 
Equation (7) is given [10] where N is the number of main 
shocks, iX , ,...,2 ,1i =  is the number of aftershocks of 
ith main shock and S is the total number of aftershocks. 
Furthermore, a special form of Equation (7) is derived by 
[11] when iX , ,...,2 ,1i =  are geometric distributed 
random variables.  
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3. BIVARIATE COMPOUND POISSON MODEL 

Some probability distributions that may be appropriate to 
characterize the single claim count distribution and 
bivariate severity components of the model are presented 
in this section. Over the past two decade there has been 
an increasing interest in bivariate discrete probability 
distributions and many forms of these distributions have 
been studied [12, 13]. The bivariate Poisson distribution 
has been constructed by [14] using three independent 
Poisson variates 0 , , 321 >λλλ  and the joint probability 
function )nN,nN(Pp 2211n,n 21

===  is given by 

∑
=

−−
λ+λ+λ−
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Bivarite compound distributions can be used to model a 
book of business which contains a single claim count 
distribution and bivariate claims severities [15]. In most 
actuarial literature related to risk theory, the assumption 
of independence between classes of business in an 
insurance book of business is made. In practice, however, 
there are situations in which this assumption is not 
verified. In the case of a catastrophe such as an 
earthquake for example, the damages covered by 
homeowners and private passenger automobile insurance 
can not be considered independent [2]. In this situation 
bivariate compound distributions can be used to model 
aggregate loss claim amount. Bivariate compound 
Poisson distribution is useful for when the claim count is 
Poisson distributed and the claim size distribution is 
bivariate. The bivariate compound Poisson distribution 
can be defined as follows: 

Let the claim size pairs iX , iY , ,...,2 ,1i =  are 
seperately i.i.d., independent from each other and also 
independent from the number of claims N. Then, the 
aggregate loss claims amount are given by 

⎟
⎟
⎠

⎞
=⎜

⎜
⎝

⎛
= ∑∑

==

N

1i
i2

N

1i
i1 YS ,XS                                              (9) 

If N is a Poisson distributed random variable, then the 
aggregate claims for a single line or book of business 1S  
and 2S  follow a bivariate compound Poisson distribution 
[6]. However, explicit joint probability function of the 
bivariate compound Poisson model has not been obtained 
yet [16]. 

In this section joint probability function of 1S  and 2S  is 
obtained. Let N is a Poisson distributed random variable 
with parameter λ  and let iX , iY , ,...2 ,1i =  be i.i.d. 
discrete random variables with the probabilities 

ji p)jX(P == , m,...,2 ,1 ,0j =  and ki q)kY(P == , 

r,...,2 ,1 ,0k = . Then, the joint probability function of 1S  
and 2S  is given by the following expression 
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Since the random variables iX , iY , ,...2 ,1i =  are 
independent, we have  
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The joint probability function, given in Equation (10), 
contains a summation from 0 to ∞  and it is not suitable 
to obtain probabilities easily. Thus, this formula is very 
time-consuming and it can be applied only in some 
practical circumtances or in approximated way [16].  

 

We first compute the joint probability generating function 
1S  and 2S  as follows 
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Since the random variables iX , iY , ,...2 ,1i =  are 
independent, we have  
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where )z(g 1X , )z(g 2Y  are the common probability 

generating functions of the random variables iX , iY , 
,...,2 ,1i =   respectively. 

Since N has a Poisson distribution with parameter λ , 
using Equation (11), it is more convenient to deal with 
the joint probability generating function  
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where the probability generating function of N is  
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The joint probability generating function in Equation (12) 
can be differentiated any number of times with respect to 

1s  and 2s  and evaluated at )0 ,0(  yielding 
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Differentiating the joint probability generating function 
given by Equation (12) and substituting in Equation (14) 
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According to above probabilities )sS,sS(P 2211 == , 

..., ,3 ,2 ,1s ,s 21 =  the right-hand side terms depend on 

how 1s  and 2s  can be partitioned into different forms 
using integers ... ,2 ,1  For example, if )3s ,1s( 21 == , 
they are partitioned in three ways and all the partitions of 

)3s ,1s( 21 ==  are { })]3(),1[()],2,1(),1[(,)]1,1,1(),1[( . 
Furthermore, the denominator of right-hand side terms, 

0p  and 0q , are suitable to these partitions. Using these 
properties, an algorithm is prepared in Oracle database 
for the joint probability function of the bivariate 
compound Poisson distribution. The major advantage of 
this algorithm is computation time. One can obtain the 
probabilities )sS,sS(P 2211 == , ..., ,3 ,2 ,1s ,s 21 =  within 
0.05s on a 32 bit machine using the algorithm. 

Note that if the random variables iX , iY , ,...,2 ,1i =  
have infinite values, the joint probability function given 
in Equation (15) can also be used. Since the probabilities 
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ji p)jX(P == , ,...2 ,1 ,0j = , and ki q)kY(P == , 

,...2 ,1 ,0k = , decrease with increasing values of  j and k. 
For this reason, j and k can be taken as finite values. 

In the study of properties of random variables, especially 
discrete random variables, an important role is played by 
the moment characteristics of distributions. As far as we 
know, correlation coefficient and covariance of the 
bivariate compound Poisson distribution have never been 
investigated before [16]. Now consider the correlation 
coefficient and covariance of the random variables 1S  
and 2S . We start with finding the expected value of 
product 21SS . The probability generating function 
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Differentiating the joint probability generating function 
given by Equation (12), we have 
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and substituting in Equation (16), )SS(E 21  has the form 
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right-hand side of Equation (17) takes the form 
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The covariance of 1S  and 2S  is obtained using 
Equations (2) and (18) 
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Let 

1Sσ  and 
2Sσ  be standart deviations of the random 

variables 1S  and 2S , then the correlation coefficient of 

1S  and 2S  is obtained from Equations (2) and (19) as 
follows                                        
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This implies that 0=ρ  is a necessary condition for 1S  
and 2S  to be independent. Also, 1=ρ  if and only if 1S  
and 2S  are linearly dependent. 

4. NUMERICAL EXAMPLES 

The purpose of this section is to provide numerical 
illustrations of the methodology discussed above by using 
several discrete distribution for the random variables iX , 

iY , ,...2 ,1i =  The probabilities )sS,sS(P 2211 == , 
,...2 ,1 ,0s,s 21 =  are presented in Table 1 which are 

calculated from Eq. (15). In these calculations, the claim 
amount variables iX , ..., ,2 ,1i =  have a geometric 

distribution with parameter 18.01 =θ  and iY, 
..., ,2 ,1i =  have a geometric distribution with parameter 
13.02 =θ ; the claim count variable N has a Poisson 

distribution with parameter 2.0=λ .  

Table 2 presents )sS,sS(P 2211 == , ,...2 ,1 ,0s,s 21 =  

where the claim amount 3,..., 2, 1,i  ,Xi =  are Poisson 

distributed with parameter 51 =µ  and iY , ..., ,2 ,1i =  are 
Poisson distributed with parameter 22 =µ ; the claim 
count N is a Poisson random variable with parameter 

9.0=λ .   

The probabilities )sS,sS(P 2211 == , ,...2 ,1 ,0s,s 21 =   is 
computed from Equation (15) and presented in Table 3 
where the claim amount variables 3,..., 2, 1,i  ,Xi =  are 
binomial distributed with parameters 

)15.0 ,15m( 11 =α=  and iY , ..., ,2 ,1i =  are binomial 
distributed with parameters )4.0 ,10m( 22 =α= ; the 
claim count N is a Poisson random variable with 
parameter 4.0=λ .  

 
The expected values and variance of the random variables 
N, 1S , 2S ; expected value of the product 21SS ; 

covariance and corelation coefficient of 1S , 2S  are 
given in Table 4. The claim count N is a Poisson random 
variable with several values of λ , the claim amount 
variables 3,..., 2, 1,i  ,Xi =  are geometric distributed with 

parameter 1θ  and iY , ..., ,2 ,1i =  are geometric distributed 

with parameter 2θ ; 3,..., 2, 1,i  ,Xi =  are Poisson 

distributed with parameter 1µ  and iY , ..., ,2 ,1i =  are 

Poisson distributed with parameter 2µ ; 
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3,..., 2, 1,i  ,Xi =  are binomial distributed with 
parameters ) ,m( 11 α  and iY , ..., ,2 ,1i =  are binomial 

distributed with parameters ) ,m( 22 α . 

Table 1. The probabilities )sS,sS(P 2211 == , ,...2 ,1 ,0s,s 21 =  with the parameters 2.0=λ , 18.01 =θ , 13.02 =θ . 

1s  
2s  

0 1 2 3 4 5 6 7 8 9 

0 0.82246 0.00309 0.00001 0.00211 0.00175 0.00039 0.00008 0.00006 0.0000090 0.0000042 

1 0.00326 0.00270 0.00224 0.00185 0.00154 0.00038 0.00006 0.00005 0.0000070 0.0000032 

2 0.00001 0.00236 0.00196 0.00163 0.00134 0.00037 0.00005 0.00003 0.0000051 0.0000022 

3 0.00248 0.00206 0.00172 0.00143 0.00118 0.00036 0.00004 0.00002 0.0000034 0.0000012 

4 0.00216 0.00180 0.00149 0.00125 0.00001 0.00034 0.00003 0.00002 0.0000030 0.0000010 

5 0.00021 0.00021 0.00053 0.00046 0.00020 0.00031 0.00002 0.00001 0.0000025 0.0000008 

6 0.00019 0.00019 0.00041 0.00043 0.00013 0.00022 0.00001 0.00001 0.0000020 0.0000007 

7 0.00015 0.00017 0.00035 0.00041 0.00013 0.00010 0.00001 0.00001 0.0000016 0.0000006 

8 0.00013 0.00016 0.00026 0.00038 0.00012 0.00009 0.00001 0.00001 0.0000014 0.0000005 

9 0.00009 0.00014 0.00018 0.00029 0.00010 0.00008 0.00001 0.00001 0.0000012 0.0000004 

 

Table 2. The probabilities )sS,sS(P 2211 == , ,...2 ,1 ,0s,s 21 =  with the parameters 9.0=λ , 51 =µ , 22 =µ . 

1s  
2s  

0 1 2 3 4 5 6 7 8 9 10 

0 0.4069 0.00074 0.00001 0.00443 0.00665 0.00039 0.00008 0.00006 0.000009 0.0000042 0.0000037 

1 0.0007 0.00148 0.00443 0.00887 0.01333 0.00038 0.00006 0.00005 0.000007 0.0000032 0.0000021 

2 0.0000 0.00148 0.00444 0.00890 0.01337 0.00037 0.00005 0.00003 0.000005 0.0000022 0.0000011 

3 0.0004 0.00099 0.00297 0.00597 0.00900 0.00036 0.00004 0.00002 0.000003 0.0000012 0.0000009 

4 0.0002 0.00050 0.00149 0.00301 0.00002 0.00034 0.00003 0.00002 0.000003 0.0000010 0.0000008 

5 0.0002 0.00021 0.00053 0.00046 0.00020 0.00031 0.00002 0.00001 0.000002 0.0000008 0.0000007 

6 0.0001 0.00019 0.00041 0.00043 0.00013 0.00022 0.00001 0.00001 0.000002 0.0000007 0.0000006 

7 0.0001 0.00017 0.00035 0.00041 0.00012 0.00010 0.00001 0.00001 0.000001 0.0000006 0.0000005 

8 0.0001 0.00016 0.00026 0.00038 0.00011 0.00009 0.00001 0.00001 0.000001 0.0000005 0.0000004 

9 0.000 0.00014 0.00018 0.00029 0.00009 0.00008 0.00001 0.00001 0.000001 0.0000004 0.0000003 

10 0.00007 0.000132 0.00008 0.00019 0.00007 0.00001 0.000006 0.000005 0.000001 0.0000034 0.0000002 
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Table 3. The probabilities )sS,sS(P 2211 == , ,...2 ,1 ,0s,s 21 =  with the parameters 4.0=λ , )15.0 ,15m( 11 =α= , 
)4.0 ,10m( 22 =α= . 

1s  
2s  

0 1 2 3 4 5 6 7 

0 0.67071 0.00058 0.00000 0.00017 0.00005 0.00039 0.00008 0.00006 

1 0.00263 0.00390 0.00270 0.00116 0.00035 0.00038 0.00006 0.00005 

2 0.00005 0.01172 0.00813 0.00351 0.00105 0.00037 0.00005 0.00003 

3 0.01405 0.02090 0.01455 0.00632 0.00190 0.00036 0.00004 0.00002 

4 0.01645 0.02457 0.01710 0.00749 0.00005 0.00034 0.00003 0.00002 

5 0.00021 0.00021 0.00053 0.00046 0.00020 0.00031 0.00002 0.00001 

6 0.00019 0.00019 0.00041 0.00043 0.00013 0.00022 0.00001 0.00001 

7 0.00015 0.00017 0.00035 0.00041 0.00013 0.00010 0.00001 0.00001 

 

Table 4. Expected values, variances, covariance and correlation coefficients of the random variables. 

Claim Distribution )N(E  )E(S1  )E(S2  )SE(S 21 )V(S1 )V(S2  )SCov(S 21 21 S,Sρ  

Geometric         

(a) 3.01 =θ , 4.02 =θ  5.0=λ  0.150 0.200 0.090 0.150 0.200 0.060 0.346 

(b) 1.01 =θ , 6.02 =θ  5.1=λ  0.150 0.900 0.225 0.150 0.900 0.090 0.244 

(c) 9.01 =θ , 3.02 =θ  0.2=λ  1.800 0.600 1.620 1.800 0.600 0.540 0.519 

Poisson         

(a) 25.01 =µ , 45.02 =µ  5.0=λ  0.125 0.225 0.084 0.156 0.326 0.056 0.249 

(b) 50.01 =µ , 65.02 =µ  5.1=λ  0.750 0.975 1.219 1.125 1.609 0.488 0.362 

(c) 75.01 =µ , 35.02 =µ  0.2=λ  1.500 0.700 1.575 2.625 0.945 0.525 0.333 

Binomial         

(a) )30.0 ,10m( 11 =α=  

    )60.0 ,20m( 22 =α=  
5.0=λ  1.500 4.000 18.000 5.550 34.400 12.000 0.868 

(b) )10.0 ,25m( 11 =α=  

    )60.0 ,35m( 22 =α=  
5.1=λ  3.750 31.500 196.875 12.750 674.100 78.750 0.849 

(c) )90.0 ,30m( 11 =α=  

    )30.0 ,40m( 22 =α=  
0.2=λ  54.000 24.000 1944.000 1463.400 304.800 648.000 0.970 

 

5. CONCLUSION 

In this study, a correlated bivariate version of the 
univariate compound Poisson distribution is defined and 
studied. For this aim, the joint probability function, some 
important parameters as mean, covariance and correlation 
of the bivariate compound Poisson distribution are 
derived. The proposed algorithm gives a simple and 

efficient way for )sS,sS(P 2211 == , ,...2 ,1 ,0s,s 21 =  
We conclude with the comment that the joint 

probabilities )sS,sS(P 2211 == , ,...2 ,1 ,0s,s 21 =  
can be computed easily if ji p)jX(P == , 

m,...,2 ,1 ,0j =  and ki q)kY(P == , r,...,2 ,1 ,0k =  
are known. The joint probability function of the bivariate 
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compound Poisson model which is obtained in this study 
can be a good tool for the probabilistic fitness for 
bivariate aggregate claims.  

REFERENCES 

[1] Cummins, D.J., Wiltbank, L.J., “Estimating the total 
claims distribution using multivariate frequency and 
severity distributions”, Journal of Risk and 
Insurance, 50: 377–403 (1983).  

 
[2] Cossette, H., Gaillardetz, P., Marceau, É., Rioux, J., 

“On two dependent individual risk models”, 
Insurance: Mathematics and Economics, 30: 153–
166 (2002). 

 
[3] Sundt, B., “On some extensions of Panjer’s class of 

counting distributions”, Astin Bulletin, 22: 61-80 
(1992). 

 
[4] Homer, D.L., Clark, D.R., “Insurance applications of 

bivariate distributions”, CAS Forum, 274-307 
(2003). 

 
[5] Walhin, J., “On the Optimality of Multiline Excess 

of Loss Covers”, CAS Forum, 231-243 (2003). 
 
[6] Bruno, M.G., Camerini, E., Manna, A., Tomassetti, 

A., “A new method for evaluating the distribution of 
aggregate claims”, Applied Mathematics and 
Computation, 176: 488-505 (2006). 

 
[7] Rolski, T., Schmidli, H., Schmidt, V., Teugels, J., 

“Stochastic Processes for Insurance and Finance”, 
John Wiley and Sons, (1999). 

 
[8] Sundt, B., “On some extensions of Panjer's class of 

counting distributions”, ASTIN Bulletin, 22: 61-80 
(1992).  

 
[9] Ozel, G., Inal, C., “The Probability Function of the 

Compound Poisson Distribution Using Integer 
Partitions and Ferrer’s Graph”, Bulletin of Statistics 
and Economics, 2 (1): 75-87 (2008). 

 
[10] Ozel, G., Inal, C., “The probability function of the 

compound Poisson process and an application to 
aftershock sequences”, Environmetrics, 19: 79-85 
(2008). 

 
[11] Ozel, G., Inal, C., “The probability function of a 

geometric Poisson distribution”, Journal of 
Statistical Computation and Simulation, 80: 479-
487 (2010).  

 
[12] Kocherlakota, S., Kocherlakota, K., “Bivariate 

Discrete Distributions”, Marcel Decker, New York, 
(1992). 

 
[13] Johnson, N.L., Kotz, S., Balakrishnan, N., “Discrete 

Multivariate Distributions”, Wiley, New York, 
(1997). 

 
[14] Holgate, P., “Estimation for the bivariate Poisson 

distribution”, Biometrika, 51: 241–245 (1964). 
 

[15] Ambagaspitiya, R., “Compound bivariate 
Lagrangian Poisson distributions”, Insurance: 
Mathematics & Economics, 23 (1): 21-31 (1998). 

 
[16] Homer, D.L., “Aggregating bivariate claim 

severities with numerical Fourier inversion”, CAS 
Forum, (2006). 

 
 


