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Abstract

In this study, the exact first five natural frequencies of three-span Timoshenko
beams on Winkler foundation are calculated using dynamic stiffness
formulation. Different elastic foundation spring constants and different beam
cross-sections are used to reflect their effects on natural frequencies. Moreover,
the natural frequencies are also calculated via structural analysis software
SAP2000 and tabulated with exact results. It is seen that the influence of elastic
foundation spring stiffness in inner span is high in comparison with outer spans.
The cross-section of the beam plays an important role on natural frequencies of
multi-span Timoshenko beams on Winkler foundation.
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1. INTRODUCTION

The calculation of exact natural frequencies of beams is of great interest to researchers for a long time. In the recent
years, free vibration analyses of different types of beams with various loading conditions are performed using
different methods [1-5]. The vibration problem of beams on elastic foundations can be encountered especially in
civil engineering and mechanical engineering applications. The elastic foundations are modeled using elastic
springs. The effects of elastic foundation can be important for beams or beam assembly structures. Thus, there are
numerous studies about different foundation models carrying various types of beams and structures [6-10]. The
dynamic stiffness method (DSM) is an effective method for calculating exact natural frequencies of beams or beam
like structures as the method uses the exact shape functions. Vibration analyses of many types of beams and plates
are performed by using DSM in recent years [11-17].

In this study, free vibration analysis of three-span simply supported beams on Winkler foundation is performed
using DSM. Timoshenko Beam Theory (TBT) which considers shear deformation and rotational inertia is used.
In the numerical analysis, different spring stiffness values for spans are selected to reveal the effect of elastic
foundation on natural frequencies. To reflect the importance of beam geometry, several analyses are completed
for different beam geometries. SAP2000 is a well known and widely used structural analysis software worldwide.
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Thus, SAP2000 is used to obtain natural frequencies of beams on Winkler foundation and the results are compared
with exact values.

2. MODEL AND FORMULATION

The mathematical model of three-span Timoshenko beam on Winkler foundation can be seen in Figure 1. Here, x
and y represents the axes, ks1, ks2 and ks are Winkler foundation spring stiffnesses, L is the span length, b is width
of the beam and h is the height of the beam.
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Figure 1. Three-span Timoshenko beam on Winkler foundation
Let the denomination of span AB as 1, span BC as 2 and span CD as 3.
The assumptions listed below are considered to clarify and simplificate the analysis procedure:
1) The beam is constructed by using an isotropic and homogenous material.
2) The cross-section of the beam is uniform.
3) The beam behaves linear and elastic.
4) The damping is neglected.
5) The foundation springs are linear and distributed along the beam length.

The governing equations of motion of vibrating Timoshenko beam resting on Winkler foundation are given as
follows:

AG{aZyH(x,t) - aen(x,t)J_mazyn(x,t)
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In Eq. (1), A is cross-sectional area, | is area moment of inertia, G is shear modulus, E is Young’s modulus, k is
shear coefficient, M is mass per unit length. yn(x,t) and 6n(x,t) are n th beam span’s deflection function and rotation
function, respectively (n=1, 2, 3).

If the motion of the beam is harmonic and separation of variables method is applied, the following equation is
obtained:

AG d?y,(2) _AG do,(2)

_ +mMa?y (z)-k z2)=0
kLZ dZZ kl_ dZ a)yn( ) snyn( )
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where z=x/L and o is natural frequency.
The solution is assumed as:
n(2)={C} e 3
6,(z2)= {lS}n e
Substituting Eq.(3) into Eq.(2), yn(z) and On(z) functions are given in Eq.(4) and Eq. (5), respectively.
yn( 7 ) — ( 6n1eisnlz + 6nzeisnzz + 6n3eisn3z + CMeiSMZ ) (4)
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Hn( z ) = ( |‘<r\1c7:n1eisn1Z + anéﬂzeisnzz + l‘(l‘li%ci:nfieis"KZ + |‘<I'14CEn4eisMZ ) (5)
‘(%j +(mo?) -k,
where K, = ym=1,234;j=1234

AG ).
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The bending moment function and shear force function are defined in Eq.(6) and Eq.(7), respectively.

_E1dg,(2)
M,(2)= ©)
_AG dy,(z) AG
Qn(z)_ lZL dZ lz en(z) (7)

3. DYNAMIC STIFFNESS METHOD (DSM) FOR CALCULATING NATURAL FREQUENCIES

DSM s a technique that can be used for calculating exact natural frequencies using exact mode shapes. First of
all, the dynamic stiffness matrix should be obtained. The dynamic stiffness matrix can be constructed by using end
displacements and end forces of beam. The vector of end displacements of beam and the vector of coefficients are
given in Egs. (8) and (9), respectively.

5n = [yno gno ynl gnl]T (8)
6n = [6n1 6nz 6n3 énA ]T (9)
where

ynO = yn(Z = 0)'0n0 = gn(z ZO),ynl = yn(z :1)'9n1 = an(z :1)

Egs. (8) and (9) can be rewritten in the form below:

Yo 1 1 1 1 ]iC.
Hno — K_nl an Kn3 K_n4 C—Snz (10)
yn1 gisn gitn2 @i @i 6,13
Hnl Knleisn1 aneisn2 Kn3eisn3 KnAEiSM 6n4

The closed form of Eq. (10) is given in Eq. (11):

5,=4C, (11)
where
1 1 1 1
— Knl an Kn3 Kn4
An_ eis,,1 eis,,2 ei5"3 eism,

K g™ K% K. e% K.,e>
The end forces of the beam is given in vector form in Eq. (12):
F=[Qo, M, Q. M,I (12)
where
Qo=Q.(z=0)M,=M_(2=0),Q,=Q,(z=1)M,, =M, (z=1)

Egs. (12) and (9) can be written in the following form:
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Quo A 4, Ay A4 Cu
MnO _ Al AZ, A@ A4 an (13)
in _ﬁ'lelsﬂ1 _/12e|sn2 _ﬂgelsna —146'5”“ Cn3
'\An:l 7A1eIS"1 7A2eIS"2 7A3eIS"3 7A4eIS"4 6n4
where 4 =%isnj —%Km A =E—L|isannj ;j=1234

The closed form of Eq. (13) can be written as:
F.=xC, (14)
where
4 Z A A
. A4 4, 4 4,

n: —ﬂieis"l _Azei:s,,2 _A:ieis,,3 _/L‘eis,,4
_Aleism _Azeisnz _Aseisna _A4ei5n4

Egs.(11) and (14) are used to construct the dynamic stiffness matrix of the n th span of the Timoshenko beam on
elastic foundation.
F =x4,"C, (15)

In Eq.(15), Kn4‘l represents the dynamic stiffness matrix of the n-th span. The natural frequencies of the beam

are calculated by equating the determinant of assembly of K‘lﬁl_l \ K‘ZAZ_l and K3A3‘lto zero. It should be noted

that the related rows and columns of dynamic stiffness matrix of the beam are erased according to boundary
conditions.

4. NUMERICAL ANALYSIS AND DISCUSSION

A three-span Timoshenko beam on Winkler foundation is used for numerical analysis with the following
properties: E=2x107 kN/m?, G=7692308 kN/m?, k =1.2, p=25 kN/m?, L=6 m, b=1 m.

The boundary conditions are same for each span and given below.
Ya(2=0)=0,M,(2=0)=0,y,(z=1)=0,M,(z=1)=0

The analyses are performed for constant ks; and ksz with varying ks, constant ks; and ks with varying ks, constant
spring stiffnesses with various beam height values. The first five natural frequencies of the beam are presented in

Tables (1-3). It should be noted that SAP2000 results are obtained by dividing spans into 1 cm segments for
accuracy.

Table.1. First five natural frequencies (h=0.75 m, ks,=10000 kN/m, kss=10000 kN/m)

ko1 (KN/m)
Natural 5000 10000 15000 20000 25000

Frequency

12) DSM SAP2000 DSM  SAP2000 DSM  SAP2000 DSM  SAP2000 DSM  SAP2000
15t Mode 28.0633 279550  28.4933  28.3837  28.8479 28,737  20.1383  20.026 293761  29.263
2nd Mode 34.2849 341590 347388 34.6111 352293 35100 357462 35615  36.2791  36.146
3rd Mode 47.7167 475440 47.8373  47.6645 47.9680  47.795  48.1097  47.936  48.2637  48.089
4th Mode 97.9198 98.8130  98.0322  98.9265 98.1410  99.036 982463  99.142  98.3481  99.245
5th Mode 1082491 1091420 1083922 109.2864 108.5373 109.433  108.6843  109.582 108.8320  109.732
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Table.2. First five natural frequencies (h=0.75 m, ks1=10000 kN/m, kss=10000 kN/m)

] ko (kN/m)

Natural 5000 10000 15000 20000 25000
Frequency

) DSM SAP2000 DSM  SAP2000 DSM SAP2000 DSM  SAP2000 DSM  SAP2000

Lst Mode 28.0891 27.9805 284933 283837 288707 287591 292232 291088 295528 294346
2nd Mode 34.7134 345983 347388 346111 347642 34624 347894 346364 348145 346488
3rd Mode 47.3841 47.2243 478373 47.6645 482986 481141 487671 48.5716 492421 49.0365
4th Mode 97.9209 08.8141 98.0322 989265 O8.1421 99.0373 982505 99.1466 983576 9923545
5th Mode 108.3738 109.2747 1083922 109.2864 1084108 109.2981 1084295 109.3099 108448 109.3218

Table.3. First five natural frequencies (Ks;= kso= ks3=10000 kN/m)

h(m)
0.65 0.75 085 0.95

MNatural 0

Frequency
HD) DSM SAP2000 DSM  SAP2000 DSM  SAP2000 DSM  SAP2000 DSM  SAP2000

1st Mode 23.5876 234357 258912 257561 284933 283837 31.2525 31.1793 34.0842 34.0393
2nd Mode 27.9915 27.8159 312701 31.1127 347388 346111 382623 38.1773 41.7629 41.7336
3rd Mode 37.6891 374618 428127 425751 478373 476645 527395 526141 574279 573597
4th Mode 75.5356 75.6747 87.0604 875351 980322 989265 1083847 109.7625 118.095 119.9983
5th Mode 84.3307 844696 96.7702 97.2515 108.3922 109.2864 119.1587 120.5124 129.078 1309151

Ln
Lh

It is seen from Table 1 that, the natural frequencies are increased with increasing spring stiffness of an outer span
of three-span beam. Table 2 shows that there is also an augmentation in natural frequencies when the spring
stiffness of middle span is increased. There is no significant difference between the particular increment of spring
stiffness of middle span and an outer span on natural frequencies. Table 3 reveals that the natural frequencies are
increased due to increasing beam height and higher modes are more sensitive to this effect.

N 29.5000
~— 293000
29.1000
28.9000
28.7000
28.5000
28.3000
28.1000

Fundamental Frequency

27.9000
5000 10000 15000 20000 25000

Spring Stiffness (kIN/m)

ksl ks2

Figure.2. Fundamental frequencies for different ks: and ksz values

Figure 2 implies that fundamental frequency of three-span Timoshenko beam on Winkler foundation is more
sensitive to spring stiffness of middle span in comparison with outer span especially for high stiffness values.
Figure 3 represents the variation of first three natural frequencies with different beam height values.
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Figure.3. First three natural frequencies for different h values (ks;=ksx=kss=10000 kN/m)

6. CONCLUSIONS

The first five exact natural frequencies of three-span Timoshenko beams on Winkler foundation are obtained using
dynamic stiffness approach. The spring stiffnesses of middle span is more effective than outer span. Different
beam height values are used in the numerical analysis and effects on natural frequencies are observed. SAP2000
provides fairly well results when segment number increased sufficiently. The DSM can be used for calculating
exact natural frequencies of multi-span Timoshenko beams on elastic foundation with different support conditions
and foundation models.
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