

# Statistical Model for Analysis of Lignite Used Combustion of PP "Kosova B"

Ismet Mulliqi<sup>1,\*</sup>, Avni Terziqi<sup>2</sup>, Mensur Kelmendi<sup>1</sup>, Blerim Baruti<sup>1</sup>, Sadije Kadriu<sup>1</sup>

<sup>1</sup> University of Mitrovica "Isa Boletini", Faculty of Food Technology, Republic of KOSOVA; <sup>2</sup>University of Mitrovica "Isa Boletini", Faculty of Mechanical and Computer Engineering, Republic of KOSOVA

Received September 08, 2016; Accepted November 07, 2016

**Abstract:** Enormous power of blocks in PP "Kosova B" requiers knowledge of the physicochemical properties of the combustibles that are used in the combustion process inside the steam generator. The usage of this statistical model for the analysis of lignite that is used for combustion in PP "Kosova B" contributes to solving of the problems that have to do with the combustion of the lignite. The model that is used is designed to show the arrangement of the data of the consumed lignite, ash, moisture, energetic value, and the power for 24 hours. Methodology of this research is based on laboratory research and the designing of the model using Microsoft Excel. Based on the results from out observations during the analysis for the amount of lignite, ash, moisture, energetic value, and power, distribution based on normal and lognormal curve is suggested.

Keywords: Statistical model, simulation, lignite, normal-lognormal curve

## Introduction

Interpolation of the phenomena takes a research character when a function, that shows the distribution of the phenomenon based on the collected data, is required. A typical example of a system with discrete events is the state of lignite's parameters in PP "Kosova B" that change mostly during certain instants of time. Statistical population is a group of N analyses done in laboratory, for the lignite that is used for PP "Kosova B" needs, for each unit of which, the amount of one of its characteristics like: amount of lignite for 24 hours, ash, moisture, energetic value, and power is known. The model for our purpuse is based on the basic knoledge for models, results of measurements, as well as on the famous equations of the authors (Girone & Salvemini 2000; Hubler, 1996).

# **Materials and Methods**

For the construction of statistical tables the following are taken into consideration: a) The values of statistical data of elements characteristics, such as the amount of lignite, ash, moisture, energetics value and power for 24 hours; b) Arithmetic means of classes; c) Frequencies; d) Cumulative densities; e) Cumulative frequencies; f) Relative cumulative frequencies and some other parameters. The model that is used for the construction of statistical tables is designed so that it shows the arrangement of the data for the consumed amount of energetic, ash, moisture, energetics value, and power for 24 hours, during the years 2010-2011. Using the data from the systematized and arranged measurements done in laboratory for the amount of lignite, ash, moisture, energetic value, and power, calculations of statistical tables are done with the help of special program Microsoft Excel. For the construction of statistical set is the set of values for the amount of lignite, ash, moisture, energetic value, and power during the 471 measurements; b). Size of the case -variable (*x*) is the amount of lignite, ash, moisture, energetic value, and power during the 471 measurements; b). Size of the case -variable (*x*) is the amount of lignite, ash, moisture, energetic value, and power during the 471 measurements; b). Size of the case -variable (*x*) is the amount of lignite, ash, moisture, energetic value, and power during the 471 measurements; b). Size of the case -variable (*x*) is the amount of lignite, ash, moisture, energetics value, and power. First of the entire varying interval  $\alpha$  (Girone & Salvemini 2000): where:

$$\alpha = x_{i\max} - x_{i-1\min} \tag{1}$$

Based on equation (1) classes, for statistical treatment, of lignite properties are found for the needs of PP "Kosova B". Arithmetic means of classes are as follows:

$$X_i = \frac{x_{i\max} - x_{i-1\min}}{2} \tag{2}$$

<sup>\*</sup>Corresponding: E-Mail: ismet.mulliqi@umib.net; Tel: +377(0)44176310

Cumulative frequency of a modality is equal to the frequencies of modalities and to the ratio of cumulative density of this modality to the total density.

$$F_{i} = \sum_{a=1}^{i} f_{a} \& F_{i} = \frac{N_{i}}{N}$$
(3)

For asymmetrical statistical variables, it can be empirically verified that the values of arithmetic mean  $(\mu)$ , median (Me), and mode (Mo) are related to each other based on the relations (4-5):  $M_a \cong \mu - 3(\mu - M_a)$  (4)

$$M_e = x_{\left(\frac{N+1}{2}\right)}, \text{ for } : N - odd, \text{ and } : M_e = \frac{x_{\left(\frac{N}{2}\right)} + x_{\left(\frac{N+1}{2}\right)}}{2}, \text{ for } : N - couple$$

$$\tag{5}$$

Coefficient of dispersion is give with the equation:

$$C_v = \frac{\sigma_x}{\overline{X}} \tag{6}$$

| Number of    | lignite, <i>t</i> /24 <i>h</i> Ash, % |       | Moisture, % |       |           | Energetic value, <i>kJ/kg</i> |             | Power, MW |         |       |
|--------------|---------------------------------------|-------|-------------|-------|-----------|-------------------------------|-------------|-----------|---------|-------|
| classes      | $x_i$                                 | $n_i$ | $x_i$       | $n_i$ | $x_i$     | $n_i$                         | $x_i$       | $n_i$     | $x_i$   | $n_i$ |
| 1            | 0-300                                 | 49    | 4.0-6.0     | 9     | 16.0-18.0 | 2                             | 4000-4500   | 1         | 200-210 | 1     |
| 2            | 300-600                               | 64    | 6.0-8.0     | 21    | 18.0-20.0 | 10                            | 4500-5000   | 13        | 210-220 | 1     |
| 3            | 600-900                               | 73    | 8.0-10.0    | 16    | 16.0-19.0 | 14                            | 5000-5500   | 6         | 220-230 | 13    |
| 4            | 900-1200                              | 78    | 10.0-12.0   | 85    | 19.0-22.0 | 6                             | 5500-6000   | 1         | 230-240 | 17    |
| 5            | 1200-1500                             | 69    | 12.0-14.0   | 230   | 22.0-25.0 | 3                             | 6000-6500   | 0         | 240-250 | 15    |
| 6            | 1500-1800                             | 55    | 14.0-16.0   | 98    | 25.0-28.0 | 1                             | 6500-7000   | 0         | 250-260 | 17    |
| 7            | 1800-2100                             | 25    | 16.0-18.0   | 11    | 28.0-31.0 | 4                             | 7000-7500   | 1         | 260-270 | 167   |
| 8            | 2100-2400                             | 23    | 18.0-20.0   | 1     | 31.0-34.0 | 1                             | 7500-8000   | 4         | 270-280 | 63    |
| 9            | 2400-2700                             | 25    |             |       | 34.0-37.0 | 2                             | 8000-8500   | 26        | 280-290 | 87    |
| 10           | 2700-3000                             | 10    |             |       | 37.0-40.0 | 10                            | 8500-9000   | 77        | 290-300 | 44    |
| 11           |                                       |       |             |       | 40.0-43.0 | 24                            | 9000-9500   | 170       | 300-310 | 45    |
| 12           |                                       |       |             |       | 43.0-46.0 | 45                            | 9500-10000  | 93        | 310-320 | 1     |
| 13           |                                       |       |             |       | 43.0-46.1 | 146                           | 10000-10500 | 37        |         |       |
| 14           |                                       |       |             |       | 43.0-46.2 | 176                           | 10500-11000 | 14        |         |       |
| 15           |                                       |       |             |       | 43.0-46.3 | 27                            | 11000-11500 | 5         |         |       |
| 16           |                                       |       |             |       | 43.0-46.4 | 0                             | 11500-12000 | 3         |         |       |
| 17           |                                       |       |             |       |           |                               | 12000-12500 | 7         |         |       |
| 18           |                                       |       |             |       |           |                               | 12500-13000 | 0         |         |       |
| 19           |                                       |       |             |       |           |                               | 13000-13500 | 11        |         |       |
| 20           |                                       |       |             |       |           |                               | 13500-14000 | 2         |         |       |
| Total densit | y N:                                  | 471   |             | 471   |           | 471                           |             | 471       |         | 471   |

**Table 1**. Classes and densities of lignite characteristics

#### **Results and Discussion**

Comulative properties of lignite analysis are shown in Table 2. Type of the function can be chosen based on the results of the analysis for the amount of lignite, ash, moisture, energetic value, and power in 24 hours and distribution based on normal and lognormal curve (7-9) is suggested:

$$f(x) = \frac{N}{\sqrt{2\pi}} \exp\left[-(x-\mu)^2 / 2\sigma^2\right]$$
(7)

$$y^* = \frac{N\sigma}{\sqrt{2\pi(x-\theta)}} \exp\left\{-\frac{1}{2} [\lambda + \delta \log(x-\theta)]^2\right\}$$
(8)

Where: *x* is the value for the amount of lignite, ash, moisture, energetic value, and power in 24 hours. For the calculation of parameters  $N, \mu, \delta, \theta, \lambda$  of normal and lognormal curve, the relation between theoretical and empirical moments is done and these results are shown in table 3:

|                               | Values for some of lignite properties |       |          |                  |        |  |  |
|-------------------------------|---------------------------------------|-------|----------|------------------|--------|--|--|
| Statistical indicators        | Amount,                               | Ash   | Moisture | Energetic value, | Power  |  |  |
|                               | t/24 hour                             | [%]   | [%]      | kJ/kg            | [MW]   |  |  |
| Nr. Results                   | 471                                   | 471   | 471      | 471              | 471    |  |  |
| Maximal value                 | 2967                                  | 18.10 | 45.70    | 13639            | 315    |  |  |
| Minimal value                 | 70                                    | 4.90  | 16.80    | 4269             | 206    |  |  |
| Arithmetic mean               | 1161.58                               | 12.61 | 39.71    | 9326             | 273    |  |  |
| Median                        | 1087.00                               | 13.00 | 41.60    | 9298             | 270    |  |  |
| Mode                          | 439.00                                | 13.30 | 42.00    | 9095             | 267    |  |  |
| Standard deviation            | 701.19                                | 2.17  | 5.88     | 1350             | 19     |  |  |
| Variance                      | 491666                                | 4.70  | 34.53    | 1822402          | 359    |  |  |
| Credibility                   | 63.32                                 | 0.20  | 0.53     | 121.916          | 1.711  |  |  |
| Level of credibility          | 0.05                                  | 1.05  | 2.05     | 3.05             | 3.05   |  |  |
| Lower boundary of credibility | 1098.26                               | 12.41 | 39.18    | 9204.18          | 271.24 |  |  |
| Upper boundary of credibility | 1224.90                               | 12.81 | 40.24    | 9448             | 275    |  |  |

| Table 2. | Cumulative | properties | of lignite  | analysis |
|----------|------------|------------|-------------|----------|
|          | Callander  | properties | or inginice | and you  |

| <b>Table 3.</b> Parameters of interpolative curve |
|---------------------------------------------------|
|---------------------------------------------------|

| Parameters | Amount of lignite | Ash   | Moisture | Energetic value | Power  |
|------------|-------------------|-------|----------|-----------------|--------|
| μ          | 1166.66           | 12.61 | 39.77    | 9319.00         | 273.34 |
| σ          | 694.84            | 2.21  | 5.92     | 1345.51         | 18.91  |
| δ          | 5.92              |       |          |                 | 6.89   |
| λ          | -49.16            |       |          |                 | -33.43 |
| θ          | -2918.94          |       |          |                 | 143.79 |

After the substitutions of values for the parameters  $N, \delta, \theta, and \lambda$  we obtain the function for the lognormal and normal curve that represent the distribution of the amount of lignite, power, ash, moisture, and energetic value using the equations (9-13):

For the amount of lignite: 
$$y^* = \frac{471 \cdot 5.92}{\sqrt{2\pi} (x - 2918.94)} \exp\left\{-\frac{1}{2} \left[-49.16 + 5.92 \log (x - 2918.94)\right]^2\right\} (9)$$

For moisture:

For ash:

$$y^{*} = \frac{471 \cdot 6.89}{\sqrt{2\pi} (x - 143.79)} \exp\left\{-\frac{1}{2} \left[-33.43 + \delta \log(x - 143.79)\right]^{2}\right\}$$
(10)  
$$f(x) = \frac{471}{\sqrt{2\pi}} \exp\left[-(x - 12.61)^{2} / 22.21^{2}\right]$$
(11)

$$f(x) = \frac{471}{\sqrt{2\pi}} \exp\left[-\left(x - 39.77\right)^2 / 25.92^2\right]$$
(12)

(10)

For energetic value:

$$f(x) = \frac{471}{\sqrt{2\pi}} \exp\left[-\left(x - 9319\right)^2 / 21345.51^2\right]$$
(13)

Results from the simulation for lignite analysis that is used in PP "Kosova B" are obtained also from the calculation of statistical properties like the distributions for the amount of lignite, ash, moisture, energetic value and power, and their respective interpolation curves are shown in the Figures 1-15:





90

80

70

60

50

40

30 20

10

0

0 2 4 6 8 10 12 14 16

ž



Figure 5. Approximate distribution of ash



Figure 7. Distribution of moisture



18 20

22 24



Figure 8. Approximate distribution of moisture











Figure 15. Interpolation curve for the distribution of power

Figure 14. Approximate distribution of power

xi. %

# Conclusion

Research character of normal and lognormal functions for the distribution of the analysed phenomenon during the analysis of lignite that is used in PP "Kosova B" is reached by interpolation.

Based on the results from our observations during the analysis of lignite that is used in PP "Kosova B", and other calculations we can conclude that:

- For the amount of lignite for 24 hours and power, distribution is done based on the lognormal curve.
- For the amount of ash, moisture, and energetic value, distribution is done based on normal curved.
- All the statistical indicators reach the highest values for energetic value.
- Except for the credibility level, all of the other statistical indicators have smaller values for ash.
- Level of credibility has the maximum value for the amount of lignite for 24 hours.
- From the parameters of interpolation curve, the value of arithmetic mean is the highest for energetic value whereas theoretical moment has the smallest possible value for the amount of lignite.

## References

Girone G, Salvemini T, (2000): Lezione di statistika, Tiranë, Albania

Hubler J, (1996) Statistiques pour l'economie, Paris (Breal) Prishtina, Kosova.

Instituti kërkimor hulumtues "Inkos" Sh.A. Kastriot

Mulliqi I, (2012) Impact of combustion time of lignite in the model of kinetic combustion in the boiler of "Kosova B", Ph.D. thesis, University of Prishtina, Kosova.

Shërbimi i analizave - Gjenerimi/Inxhinjering - KEK Prishtina, Kosova.