

DOI: 10.59474/nuclear.2023.61

Estimation of Strontium-90 Concentrations in Pakistan Using Combination of TBP Solvent Extraction, Precipitation and Cherenkov Counting Methods

I. Ahmad¹, M. I. Anjum², S.U. Rehman³, J. Ali^{4*}

<u>ORCID:</u> 0009-0009-5839-5264, 0009-0007-8845-7345, 0000-0002-3668-8404, 0000-0001-7392-3912

¹Larkana Institute of Nuclear Medicine & Radiotherapy (LINAR) Cancer Hospital, Larkana, Sindh, Pakistan
²Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, Pakistan
³Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
⁴Larkana Institute of Nuclear Medicine & Radiotherapy (LINAR) Hospital, Larkana, Sindh, Pakistan

Received 21.07.2024; received in revised form 16.08.2024; accepted 04.09.2024

ABSTRACT

⁹⁰Sr does not exist in nature. Its main sources in the environment are global fallout of past nuclear accidents or nuclear detonations. ⁹⁰Sr is radiologically significant because of its relatively long physical and biological half-lives and its chemical resemblance to calcium. In order to estimate the radioactivity level of ⁹⁰Sr around Pakistan Institute of Nuclear Science and Technology (PINSTECH) Islamabad, environmental samples (soil, water, vegetation, and water) and food samples (wheat, milk, poultry) were collected from the different selected sites around PINSTECH within the area of about 12.5 km in radius. All samples were pretreated using the guidelines of International Atomic Energy Agency (IAEA) Technical Reports Series No. 295. ⁹⁰Sr was indirectly determined through its progeny ⁹⁰Y in secular radioactive equilibrium. ⁹⁰Y was radiochemically separated using combination of Tri-n-butyl Phosphate (TBP) solvent extraction and precipitation. Finally, the activity was measured on Tri-Carb Liquid Scintillation Counter (LSC) through Cherenkov radiation. The activity concentrations of ⁹⁰Sr in all samples were too low to be detected by the LSC system, except for a vegetation sample from Rawal Dam where a minimum activity of 0.16 ± 0.04 Bq/kg of fresh weight was found. No considerable activity concentration of ⁹⁰Sr was found around PINSTECH research facilities.

Keywords: ⁹⁰Sr, ⁹⁰Y, TBP Solvent Extraction, Precipitation, Cherenkov counting, Liquid Scintillation Analyzer

1. Introduction

Radio-strontium is not found in nature. The most important radioactive form of strontium is ⁹⁰Sr [1]. The main source of ⁹⁰Sr in environment (soils, vegetations, water etc.) is nuclear fission [1], global fallout after nuclear accidents & nuclear explosions [2-6]. The hazardous effects of ⁹⁰Sr on human health are due to its high radioactivity and relatively long physical and biological half-lives [7]. The chemical properties of ⁹⁰Sr are similar to calcium so it follows the same path in food chain as calcium. Like calcium, ⁹⁰Sr is accumulated in bones for years posing a high risk to human health [4, 6, 8, 9]. ⁹⁰Sr follows various paths to penetrate the human

*Corresponding author.

E-mail address: javaidalitarakai@gmail.com, (J. Ali) Journal of Nuclear Sciences, Vol. 9, No. 1, July 2022, 1-7 Copyright [©], Ankara University, Institute of Nuclear Sciences ISSN: 2148-7736 body e.g. direct exposure, inhalation (fine particles in air), and ingestion (food and water). Therefore, in the events of nuclear accidents, nuclear explosions, and routine monitoring of nuclear facilities, the determination of 90 Sr in environmental and various food samples is one of the important tasks regarding radiation protection [4, 6, 8].

⁹⁰Sr and ⁹⁰Y are pure beta emitters with maximum beta energies of 546 keV and 2280 keV respectively. ⁹⁰Sr has a very long half-life as compared to its progeny ⁹⁰Y, therefore both radionuclides are often found in secular equilibrium [10]. In secular equilibrium, ⁹⁰Sr can be determined by estimation of either ⁹⁰Sr or ⁹⁰Y. However, the environmental and food samples containing 90Sr and ⁹⁰Y also contain ⁸⁹Sr which is also a pure beta emitter with max beta energy of 1463 keV. Therefore, ⁹⁰Sr can not be measured directly using beta counters because of the overlap of spectra of ⁸⁹Sr, ⁹⁰Sr, and ⁹⁰Y. Therefore, the measurement of ⁸⁹Sr or ⁹⁰Sr needs to analyze of the beta spectral distribution obtained by a special beta counting system such as LSC. In this case, ⁹⁰Sr is measured by estimating the activity of its progeny ⁹⁰Y in environmental and food samples in which, 90Y is radiochemically separated from ⁹⁰Sr in secular equilibrium [11] and then indirectly determined through Cherenkov radiation because of its high counting efficiency in aqueous medium. Cherenkov radiation is produced when a charged particle like an electron moves with a speed greater than the speed of light in a transparent medium. This radiation ranges from the ultraviolet region to the visible part (blue), with a peak at 420 nm. [12, 13]. Every transparent medium has a threshold value of beta energy for production of Cherenkov radiation, which is 263 keV for water [10]. The procedure of estimation of high energy beta emitting radionuclides through Cherenkov counting is advantageous than conventional liquid scintillation counting because of low cost, easy sample preparation, automatic counting mechanism of Liquid and Scintillation Counter (LSC) [14]. However, less counting efficiency and more color quenching are the drawbacks of Cherenkov counting.

Several radiochemical separation techniques have been proposed for determination of ⁹⁰Sr in environmental and food samples. Some of these radiochemical separation techniques are extraction chromatography [15, 16], solvent extraction [17, 18], colloid formation [19], and ion exchange methods [20]. In the present study, a combined approach of Solvent Extraction through Tri-n-Butyl Phosphate (TBP), precipitation and measurement through Cherenkov radiation on Tricarb Liquid Scintillation Counter (3170TR/SL) has been used. The LSC used is capable of detecting extremely low levels of beta and alpha radioactivity. The purpose of the study was to estimate the activity concentration of ⁹⁰Sr around PINSTECH Research Reactor in Islamabad within 12.5 km radius.

2. Materials and Methods

2.1 Sample Collection and Sample Preparation

Environmental samples (soil, water and vegetation) were collected from different selected sites around PINSTECH within the area of 12.5 km radius. Food samples (wheat, milk, and poultry) were also collected from neighboring areas of PINSTECH. A rain water sample was also collected from the interior of PINSTECH area. The details of the samples are tabulated in Table 1.

The collection of the samples and their pre-treatment were carried out according to guidelines of International Atomic Energy Agency (IAEA, 1989) Technical Reports Series No. 295. Before analysis, soil, vegetation, wheat, milk, and poultry samples were dried at 105-110°C, ashed at 450-500°C and homogenized in order to get constant reference weight which is used for calculating activity concentrations in the units of Bq/kg of dry weight. The water samples were reduced in volume on hotplate from 10 L to 150 mL after the addition of 10 mL nitric acid (69-70.5%) in each sample as shown in Table 1 [21].

2.2 ⁹⁰Sr Analysis in the Samples

⁹⁰Sr analysis was done using a radiochemical separation procedure. The chemicals and reagents that were used in the study are of analytical grade. The radiochemical procedure used in this research article was divided into three main parts: (1) steps before solvent extraction (2) solvent extraction through Tri-n-Butyl Phosphate (TBP) (3) precipitation, filtration, and counting a vial through LSC.

- 1. For ashed samples, 100 mL of de-ionized water, 1 mL of Sr-carrier (10mg/mL) and 5 g of Na₂CO₃ were added to 10 g of ash the sample in 250 mL beaker and heated for 30 minutes on a hotplate along with magnetic stirring. For water samples, 75 mL of nitric acid and 1 mL of Sr (10mg/mL) and Y carriers (10mg/mL) were added to 50 mL of water sample.
- 2. The ashed samples were then centrifuged and washed with 0.1 M solution of Na₂CO₃. The residue of each sample was leached out through 75 mL 14.4M HNO₃ in the presence of different carrier solutions like Y carrier (10mg/mL), La-Carrier (10mg/mL) and Ba-carrier (10mg/mL) in nitrate form for 2 hours heating on hotplate. The solution was then cooled and filtered. While for water samples, volume was reduced to 50 mL through evaporation using hotplate.
- 3. The solution obtained for ashed samples or water samples was then poured into a separating funnel. Solvent extraction of ⁹⁰Y was carried out using 30 mL of equilibrated Tri-n-Butyl Phosphate (TBP) shacked for 10 minutes with the sample. The solution was then allowed to settle the two layers. The aqueous layer (lower) was separated and the first separation time was noted. The process was repeated three times in order to get maximum extraction. The organic phase containing ⁹⁰Y was then stripped in two steps each with 30 mL of water.

⁹⁰Y was then precipitated as Yttrium-oxalate by addition of 80 mL of 2% solution of oxalic acid and adjusting the pH to between 4 and 5. The precipitate was then filtered using vacuum pump filtration assembly.

The filter paper (Whatman-41,125 mm diameter) containing Y-oxalate was then washed two times with 10 mL of ethanol (99.7-100) %. The precipitate stayed on the filter paper. The filter paper was dried in oven to constant weight. The weight of Y-oxalate was found by diminishing the weight of blank filter paper from weight of filter paper containing Y-oxalate.

The filter paper was then dissolved in 15 mL of 2M HCl contained in a 20 mL polythene vial.

The vial was then counted on the LSC.

The LSC system has the ability to read 408 standard 20 mL vials. These vials are placed in the cassettes each with a capacity for 12 vials. Each cassette has its own number and flag. The order of the cassette number and associated flag plays a vital role in counting process. A cassette along with four standard vials containing tritium, ¹⁴C, background and an empty vial having a flag tagged as SNC is used for self normalized calibration.

The whole radiochemical separation process for ashed and water samples are depicted in Fig.1 and Fig.2 respectively.

The gravimetric factor (GF) was calculated with Eq.1 [22].

$$GF = \frac{Y_2}{Y_2(C_2O_4)_3.9H_2O} = \frac{177.81}{603.01} = 0.294$$
(1)

Chemical recovery (η) was calculated using the Eq.2 [22].

$$\eta = \frac{GF \times (Weight of Yttrium Oxalate precipetate)}{(Weight of Yttrium Carrier added)}$$
(2)

The minimum detectable activity (MDA) of the Liquid Scintillation Counter Tri-Carb 3170 model for ⁹⁰Sr was calculated using the Eq.3 [22].

$$MDA\left(\frac{Bq}{Kg \text{ or } L}\right) = \frac{2.71 + 4.66\sqrt{BG}}{t \times \varepsilon \times \eta \times Mass \text{ or Volume}}$$
(3)

where BG is the total background counts, t is the counting time in seconds, ϵ is the efficiency of the counting system and η is the chemical recovery.

Activity concentration (AC) of each sample was calculated using the Eq.4 [22].

AC
$$\left(\frac{Bq}{kg \text{ or } L}\right) = \frac{(C_s - C_{BG}) \times e^{\lambda \times \Delta t}}{60 \times \varepsilon \times \eta \times Mass \text{ or Volume}}$$
 (4)

where C_S is the sample's counts per minute and C_{BG} is the background counts per minute is the decay constant of ⁹⁰Y, Δt is the time difference between counting time and the time of first separation of yttrium and λ is the decay constant of ⁹⁰Y.

The uncertainty in activity concentration (σ) was calculated with Eq. 5 [22].

$$\sigma = \frac{\left(\sqrt{\frac{c_{BG}^2 + \frac{c_S^2}{T}}{T}}\right) \times e^{\lambda \times \Delta t}}{60 \times \varepsilon \times \eta \times Mass \text{ or Volume}}$$
(5)

In above equation, T is the counting time in minute.

3. Results and Discussion

The average percentage chemical recovery ($\%\eta$) of 90 Sr for ashed samples was 83.44% while for water samples, average percentage chemical recovery of 90 Sr was 84.43%. The results of 90 Sr activity concentrations in soil, vegetation, wheat, water, milk and poultry samples are shown in Table 2.

It is clear from Table 3 that the activities found in all samples are too low to be detected by our measuring system (LSC) except for vegetation sample of Rawal dam where minute activity of 0.16 ± 0.04 Bq/kg of fresh weight was found. No activity was detected in the soil sample of the same site. The absence of ⁹⁰Sr activity concentration in the soil sample of Rawal dam may be due to uptake of 90Sr by the plant roots or its high mobility downward in the soil as all soil samples were collected from the upper part (less deep) of the ground. Therefore, the presence of ⁹⁰Sr in deeper soil layers is possible, and deep soil sampling may be required. The activity concentrations of ⁹⁰Sr in soil samples from various regions around the world have been estimated [23-26] and are compared with the present study, as shown in Table 3.

It is clear from Table 3 that the activity concentrations of ⁹⁰Sr in the present study are below the Minimum Detectable Activity (MDA) value, which is much smaller than the ⁹⁰Sr concentrations reported in different regions of the world, as shown in Table 3. Therefore, the population in the interested study areas are not exposed to ⁹⁰Sr activity concentrations higher than those found in other regions, as mentioned in Table 3 [23-26]. The uptake of ⁹⁰Sr from soil to plants and other vegetation depends on different chemical and physical parameters like soil type, plant species, climate etc. The only possible reason for the presence of minute amounts of ⁹⁰Sr in the environment of the study area is the global fallout from past nuclear accidents and nuclear detonations. The current study indicates that there is no significant activity concentration of ⁹⁰Sr around PINSTECH research facilities.

Location	Location Coordinates	Aerial Distance from PINSTECH	Sample Type	Fresh Wt.	Dry Wt./ Reduced Wt.	Sub Sample Dry Wt.	Ash wt.
	33°43′08.0″ N		Soil	4.2 kg	3.7 kg	250 g	237 g
Simli Dam	&	9.8 km	Vegetation	900 g	400 g	N/A	42 g
	73°20′24.9″ E	9.8 KIII	Water	10 L	100 mL	N/A	N/A
	33°38′43.8″ N		Soil	4.2 kg	3.9 kg	372 g	365.5 g
Swan River	&	4.3 km	Vegetation	1.35 kg	300 g	N/A	41 g
Swan River	73°17′58.2″ E	4.3 Km	Water	10 L	100 mL	N/A	N/A
	33°37′10.6″ N		Soil	1.4 kg	1.25 kg	323 g	310 g
Vinna	&	4.5 km	Vegetation	1.1 kg	250 g	N/A	30.5
Kirpa	73°13′55.9″ E	4.3 KIII	Water	10 L	100 mL	N/A	N/A
	33°42′06.0″ N		Soil	1.1 kg	1.07 kg	376 g	365 g
Rawal Dam	&	12.4 km	Vegetation	850 g	500 g	N/A	29.5 g
Kawai Dalli	73°08′31.9″ E	12.4 KIII	Water	10 L	100 mL	N/A	N/A
PINSTECH	33°39'11.1" N & 73°15'32.8" E	0 km	Rain Water	10 L	100 mL	N/A	N/A
			Wheat	2 kg	1.9 kg	N/A	42.5 g
Near	33°39′11.1″ N		Milk	10 L	700 g	N/A	54.4 g
PINSTECH	& 73°15′32.8″ E	3 km	Egg	5.3 kg (Without Shells)	1.3 kg	N/A	37 g

Table 1. Details of environmental and food samples collected

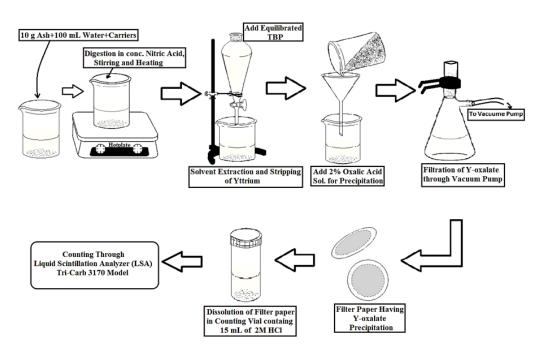


Fig. 1 Radiochemical separation technique for ⁹⁰Sr analysis in ashed samples

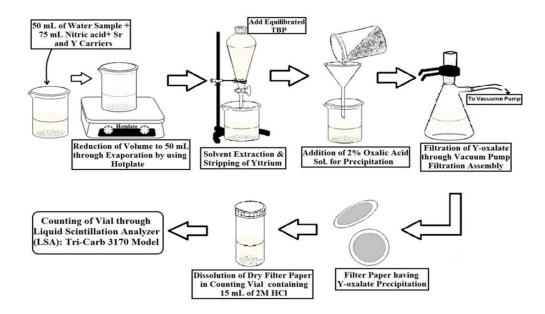


Fig. 2 Radiochemical separation technique for ⁹⁰Sr analysis in water samples

Sr#	Location	Sample Type	Activity (Bq/kg of fresh weight)	Minimum Detectable Activity (MDA)	
1	Simli Dam		< MDA		
2	Swan River	Soil	< MDA	3.04 Bq/kg	
3	Kirpa		< MDA	of fresh weight	
4	Rawal Dam		< MDA		
5	Simli Dam		< MDA		
6	Swan River	Vegetation	< MDA	0.12 Bq/kg of fresh weight	
7	Kirpa		< MDA		
8	Rawal Dam		$\begin{array}{c} 0.164 \pm \\ 0.038 \end{array}$	weight	
9	Near PINSTECH	Wheat	< MDA		
10	Simli Dam		< MDA	0.01 Bq/L of fresh volume	
11	Swan River	Water	< MDA		
12	Kirpa		< MDA		
13	Rawal Dam		< MDA		
14	PINSTECH	Rain Water	< MDA		
15	Near PINSTECH	Milk	< MDA	0.02 Bq/L of fresh volume	
16	Near PINSTECH	Poultry	< MDA	0.01 Bq/kg of fresh weight	

Table 2. ⁹⁰Sr activity concentration in all samples

Table 3. Comparison	of ⁹⁰ Sr activity concentrations in
soil samples [23-26]	

Sr#	Country/site	⁹⁰ Sr (Bq/kg) in ashed		
		sample		
1	Northern Switzerland	30		
2	Western Switzerland	10		
3	Savannah River	15.91		
4	Majorca	4.45		
5	Spain	2.85		
6	Pakistan (present study)	< MDA*		

*MDA: Minimum Detectable Activity = 3.43 Bq/kg of ash

Conclusions

⁹⁰Sr activity concentrations in all samples were too low to be detected by the LSC, however minute activity concentration was found in the vegetation sample of Rawal dam and not in the soil sample. The reason of absence of ⁹⁰Sr activity in the soil sample may be due to its uptake by the plant roots or its downward movement into deeper soil layers. Therefore, deep soil sampling is required for a more detailed study. To expand this study to a larger radius from the PINSTECH research facilities, additional sampling sites should be selected.

Acknowledgment

The Authors are appreciating to Pakistan Institute of Science and Technology (PINSTECH) Islamabad and Larkana Institute of Nuclear Medicine & Radiotherapy (LINAR) cancer hospital, Larkana, Pakistan that supports this research and publication.

Authors' contributions

Muhammad Iftikhar Anjum and Shakeel Ur Rehman prepared concept and designed the study. Israr Ahmad and Muhammad Iftikhar Anjum collected data. Javaid Ali analyzed the data. Israr Ahmad and Javaid Ali wrote the paper. All authors participated in discussion of results, and reviewing and editing of the manuscript.

Conflict of interest

The authors have no conflict of interest. The authors have no conflict of interest. The authors have no competing or financial interests relevant to this article.

Availability of data and materials

The data sets used and analyzed in this study are available from the corresponding author upon reasonable request.

Ethical Approval

All authors have read, understood, and have complied as applicable with the statement on "Ethical responsibilities of Authors" as found in the Instructions for Authors.

References

[1] S. Axelrod, "A Public Health Perspective on Strontium-90", Department of Health of the City of New York, (1960).

[2] Y.A. Izrael, "Radioactive fallout after nuclear explosions and accidents", Elsevier (2002).

[3] S. L. Simon, A. Bouville, H. L. Beck, L. R. Anspaugh, K. M. Thiessen, F.O. Hoffman, S. Shinkarev, "Dose estimation for exposure to radioactive fallout from nuclear detonations", Health Physics, 122(1) (2022).

[4] K. C. Stamoulis, K. G. Ioannides, D. T. Karamanis, D.C. Patiris, "Rapid screening of ⁹⁰Sr activity in water and milk samples using Cherenkov radiation", Journal of Environmental Radioactivity, 93(3), 144-156 (2007).

[5] K. Mück, M. Sinojmeri, F. Steger, "Long-term availability of Sr-90 in foodstuff after nuclear fallout", IRPA 10-10th International Congress of the International Radiation Protection Association (2000).

[6] G. Turkington, K. A. Gamage, J. Graham, "Detection of strontium-90, a review and the potential for direct in situ detection", IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), 1-4 (2018).

[7] N. Shigematsu, J. Fukada, T. Ohashi, O. Kawaguchi, T. Kawata, "Nuclear disaster after the earthquake and tsunami of March 11", The Keio Journal of Medicine, 61(1), 28-34 (2012).

[8] S.K. Sahoo, N. Kavasi, A. Sorimachi, H. Arae, S. Tokonami, J. W. Mietelski, E. Łokas, S. Yoshida, "Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima Daiichi nuclear power plant", Scientific Reports, 6(1), 23925 (2016).

[9] M. Uesugi, R. Watanabe, H. Sakai, A. Yokoyama, "Rapid method for determination of ⁹⁰Sr in seawater by liquid scintillation counting with an extractive scintillator", Talanta, 178, 339-347 (2018).

[10] M. Tayeb, X. Dai, E. C. Corcoran, D.G. Kelly, "Evaluation of interferences on measurements of ⁹⁰Sr/⁹⁰Y by TDCR Cherenkov counting technique", Journal of Radioanalytical and Nuclear Chemistry, 300, 409-414 (2014).

[11] N. Vajda, C. K. Kim, "Determination of radiostrontium isotopes: a review of analytical methodology", Applied Radiation and Isotopes, 68(12), 2306-2326 (2010).

[12] S. El-Shemy, M.F. Eissa, H. Sayed, M. F. Alrakshy, Z. S. Matar, A. H. Aly, "Improving the efficiency counting of Cherenkov detector by using high transmittance photonic crystal materials" Optical and Quantum Electronics, 54(5), 324 (2022).

[13] S. El-Shemy, A. H. Aly, H. Sayed, M. F. Eissa, "Production of intensifying blue light by Cherenkov radiation phenomena and its application as a power source", Optical and Quantum Electronics, 54(2), 70 (2022).

[14] M.F. L'Annunziata, "Handbook of radioactivity analysis", Academic Press (2012).

[15] Ž. Grahek, N. Zečević, S. Lulić, "Possibility of rapid determination of low-level ⁹⁰Sr activity by combination of extraction chromatography separation and Cherenkov counting", Analytica Chimica Acta, 399(3), 237-247 (1999).

[16] M. Tayeb, X. Dai, E. C. Corcoran, D.G. Kelly, "Rapid determination of ⁹⁰Sr from ⁹⁰Y in seawater", Journal of Radioanalytical and Nuclear Chemistry, 304, 1043-1052 (2015).

[17] S.B. Hingorani, A.P. Sathe, "Solvent extraction method for rapid separation of strontium-90 in milk and food samples", Bhabha Atomic Research Centre (1991).

[18] E.J. Baratta, T.C. Reavey, "Rapid determination of strontium-90 in tissue, food, biota, and other environmental media by tributyl phosphate", Journal of Agricultural and Food Chemistry, 17(6), 1337-1339 (1969).

[19] M. Mansur, A. Mushtaq, "Separation of yttrium-90 from strontium-90 via colloid formation" Journal of Radioanalytical and Nuclear Chemistry, 288(2), 337-340 (2011).

[20] Ž. Grahek, A. Ivšić, N. Krljan, M. Nodilo, "Separation of Sr in combination of ion exchange and Sr resin with alcohol-nitric acid solution and rapid determination of ⁹⁰Sr in wine and soil samples" Journal of Radioanalytical and Nuclear Chemistry, 289(2), 437-449 (2011).

[21] Measurement of radionuclides in food and the environment, A guidebook: Technical Reports Series No. STI/DOC/010/295 TRS 295. IAEA, Vienna, Austria, ISBN 92 0 125189 0. 1990, Elsevier (1989).

22] T. Jabbar, K. Khan, M. Subhani, P. Akhter, "Determination of ⁹⁰Sr in environment of district Swat, Pakistan" Journal of Radioanalytical and Nuclear Chemistry, 279(2), 377-384 (2009).

[23] Friedli, J. Geering, P. Lerch, "Some aspects of the behaviour of ⁹⁰Sr in the environment", Radiochimica Acta,52(1), 237-240, (1991).

[24] A.M. Hejl, "A two part thesis: radionuclide concentrations in forest surface fuels at the Savannah River Site: preliminary study of inflammatory effects of wood smoke exposure amongst wildland firefighters University of Georgia", (Doctoral dissertation, University of Georgia), (2011).

[25] E. Gomez, F. Garcias, M. Casas, V. Cerda, "Determination of ¹³⁷Cs and ⁹⁰Sr in calcareous soils: geographical distribution on the Island of Majorca", Applied Radiation and Isotopes, 48(5), 699-704 (1997).

[26] M. Herranz, C. Elejalde, F. Legarda, F. Romero, "⁹⁰Sr content of soils from Biscay (Spain)", Applied Radiation and Isotopes, 55(4), 521-525 (2001).