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ABSTRACT. Bagar and Braha [9], introduced the sequence spaces /oo, ¢ and & of Euler- Cesaro
bounded, convergent and null difference sequences and studied their some properties. The main purpose
of this study is to introduce the sequence spaces [{c), ,.,[c],, and [co],, of Euler- Riesz bounded,
convergent and null difference sequences by using the composition of the Euler mean E; and Riesz
mean R, with backward difference operator A. Furthermore, the inclusions foo C [loc], ., ¢ C [c], ,. and
co C [co], ,. strictly hold, the basis of the sequence spaces [cole.r and [c|ec.r is constucted and alpha-,
beta- and gamma-duals of these spaces are determined. Finally, the classes of matrix transformations

from the Euler- Riesz difference sequence spaces to the spaces £, ¢ and ¢y are characterized.
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1. PRELIMINARIES, BACKGROUND AND NOTATION

In this section, we give some basic definitions and notations for which we refer to [7,12,17,23].

By a sequence space, we understand a linear subspace of the space w = CN of all complex sequences which
contains ¢, the set of all finitely non-zero sequences, where N = {0,1,2,...}. We shall write ¢, ¢ and ¢y for
the spaces of all bounded, convergent and null sequences, respectively. Also by bs,cs, ¢; and ¢, we denote
the spaces of all bounded, convergent, absolutely and p—absolutely convergent series, respectively, where
1<p<oo.

We shall assume throughout unless stated otherwise that p,q¢ > 1 with p~! +¢ ' =1and 0 < r < 1, and
use the convention that any term with negative subscript is equal to naught.

Let A\, p be two sequence spaces and A = (a,) be an infinite matrix of real or complex numbers a,,
where n,k € N. Then, we say that A defines a matrix mapping from A into g, and we denote it by writing
A X — p, if for every sequence x = (x)) € A the sequence Az = {(Az),}, the A—transform of z, is in y;
where

(Az), = Zankaﬁk (n € N). (1.1)
k
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By (A, i), we denote the class of all matrices A such that A : A — p. Thus, A € (A, p) if and only if the series
on the right hand side of (1.1) converges for each n € N and every = € A, and we have Az = {(Ax), }nen €
for all z € A. A sequence zx is said to be A—summable to « if Az converges to « which is called the A—limit
of .

Let X be a sequence space and A be an infinite matrix. The sequence space

Xa={ox=(zp) cw: Az € X}

is called the domain of A in X which is a sequence space.

A sequence space A with a linear topology is called a K — space provided each of the maps p; : A = C
defined by p;(x) = x; is continuous for all i € N. A K— space is called an FK — space provided A is a
complete linear metric space. An F'K— space whose topology is normable is called a BK — space. If a
normed sequence space A contains a sequence (b, ) with the property that for every x € A there is a unique
sequence of scalars (a,,) such that

lim ||x — (Oéobo +aiby + -+ Oénbn)H =0

n—oo
then (b,) is called a Schauder basis (or briefly basis) for A. The series > axby which has the sum z is then
called the expansion of x with respect to (b,), and is written as x = > ayb.

Given a BK —space A D ¢, we denote the nth section of a sequence z = () € A by 2™ = >oreo zre®),
and we say that x has the property
AK if lim,,_, o, ||z — [™||, = 0 (abschnittskonvergenz),

AB if sup,,cy ||z™||x < 0o (abschnittsbeschranktheit),

AD if z € ¢ (closure of ¢ C ) (abschnittsdichte),

KB if the set {ze®} is bounded in A (koordinatenweise beschréinkt),

where e(®) is a sequence whose only non-zero term is a 1 in kth place for each k € N. If one of these properties
holds for every x € A then we say that the space A has that property [16,23]. It is trivial that AK implies
AD and AK iff AB + AD. For example, ¢y and /¢, are AK —spaces and, ¢ and ¢, are not AD—spaces.

A matrix A = (ank) is called a triangle if a, = 0 for k¥ > n and a,,, # 0 for all n € N. It is trivial that
A(Bz) = (AB)z holds for the triangle matrices A, B and a sequence x. Further, a triangle matrix U uniquely
has an inverse U~! = V which is also a triangle matrix. Then, z = U(Vz) = V(Uz) holds for all z € w.

Let us give the definition of some triangle limitation matrices which are needed in the text. A denotes the
backward difference matrix A = (A,;) and A’ = (A],) denotes the transpose of the matrix A, the forward
difference matrix, which are defined by

A _ (_1)n_k ) n_lgkgna
nk = 0 , 0<k<n-—1lork>n,

’ (_1)nik , n<k<n+l,
0 , 0<k<nork>n+41,
for all k,n € N; respectively.

Then, let us define the Euler mean E; = (e,;) of order one and Riesz mean R, = (r,;) with respect to
the sequence ¢ = (gx)

() . <k<
enk: QI'Cn 9 nggna rnk: Q ’ O_k_n7
0 ) k>’l’L7 0 5 k>n,

for all k,n € N and where (gi) is a sequence of positive numbers and @, = > ,_, qx for all n € N. Their
inverses £y ! = (g,1) and R;' = (hni) are given by

gnk:{ (DDmF2E o<k <n, hnk:{ (- hEE L n-l<k<n,

qn
0 , k>n, 0 , otherwise,

for all k,n € N.
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We define the matrix B = (Enk) by the composition of the matrices E1, R, and A as

bk = 2"Qn ’
0 sk >mn,

- { (Z)Qk 0<k< n, (1.2)

for all k,n € N.
In the literature, the notion of difference sequence spaces was introduced by Kizmaz [18], who defined the
sequence spaces

X(A)={z=(zx) ew: Aw = (v —x41) € X}

for X € {{w,c,co}. The difference space bu,, consisting of all sequences = = (xy) such that Az = (2 —zk_1)
is in the sequence space ¢,, was studied in the case 0 < p < 1 by Altay and Basar [5] and in the case
1 < p < 0o by Bagar and Altay [6], and Colak et al. [13]. Kirig¢i and Bagar [19] have introduced and studied
the generalized difference sequence space

X ={z=(vx) cw: B(r,s)z € X},

where X denotes any of the spaces loo, ¢, co and £, with 1 < p < oo, and B(r,s)z = (szr_1 + rz)) with
r,s € R\ {0}. Following Kirig¢i and Basar [19], Sénmez [21] has examined the sequence space X (B) as the
set of all sequences whose B(r, s,t)— trasforms are in the space X € {{«, ¢, co, ¢}, where B(r,s,t) denotes
the triple band matrix B(r, s, t) = {bnx{r, s, t}} defined by

ro, n==k

s , n=k+1
budrst} =3 | ko

0 , otherwise

for all k,n € N and r,s,t € R\ {0}. Quite recently, Bagar has studied the spaces £, of p—absolutely
B—summable sequences, in [8]. In [11], Choudhary and Mishra have defined the sequence space £(p) which
consists of all sequences whose S—transforms are in the space £(p). Also, many authors have constructed new
sequence spaces by using matrix domain of infinite matrices. For instance, e and ef, in [1], e}, and e, in [3],
eh(u,p), e (u,p) in [14], ef(AT), en(A™) and el (AU™) in [20], co(AT), ¢"(AY) and £o (AT in [15],
ry(p), rt(p) and rl (p) in [2], r%(p,A) in [10]. Finally, the new technique for deducing certain topological
properties, for example AB—, K B—, AD—properties, solidity and monotonicity etc., and determining the
f— and a—duals of the domain of a triangle matrix in a sequence space is given by Altay and Bagar [4].

Then, as a natural continuation of Bagar [8], Bagar and Braha [9] introduce the spaces log, & and & of
Euler-Cesaro bounded, convergent and null difference sequences by using the composition of the Euler mean
FE1 and Cesaro mean C of order one with backward difference operator A.

In the present paper, we introduce the [(], ., [c], . and [co], ,.of Euler-Riesz bounded, convergent and null
difference sequences by using the composition of the Euler mean F; and Riesz mean R, with respect to the
sequence ¢ = (gi) with backward difference operator A and prove that the inclusions lo, C [(oc], ,.,c C [d]. ..
and ¢o C [co), . strictly hold. We show that the spaces [co], , and [c],, turn out to be the separable BK
spaces such that [c],,. does not possess any of the following: AK property and monotonicity. Furthermore,
we investigate some properties and compute alpha-, beta- and gamma-duals of these spaces. Afterwards, we
characterize some matrix classes related to Euler-Riesz sequence spaces.
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2. THE EULER-RIESZ SEQUENCE SPACES

In this section, we give some new sequence spaces and investigate their certain properties.
n (n)
. dk
= 2 1 kI =0
{x (xk) €Ew Jim kg 2nank

o= (Daw )
c = z=(x) €w: lim k) T exists
(e, { (k) n*@@,;)Q"Qn k }

k<oo}

With the notation (1.2), we may redefine the spaces [co], ,.,[c]. ., and [{«], ,. as fallows:

[col, .

Usl,, = {x = (z) € w:sup

[COL&.T - (CO)B’ [C]e.r =CB and [éw]e‘r = (éoo)é

In the case (¢x) = e = (1,1,1,...); the sequence spaces [co], ., [c], . and [{s], . are, respectively, reduced to

e.r’

the sequence spaces ¢y, ¢ and oo which are introduced by Bagar and Braha [9]. Define the sequence y = (yx),
which will be frequently used, as the B—transform of a sequence z = (z), i.e.,

=Y e (2.)
=0 2Qr"

Throughout the text, we suppose that the sequences x = (xj) and y = (yx) are connected with the relation
(2.1). One can obtain by a straightforward calculation from (2.1) that

k

R o AV o o
k Z(j)( DF921Quy;, k€N (2.2)

=0

Theorem 2.1. The sets [col, ., [c]., and [lx],, are linear spaces with coordinatewise addition and scalar
multiplication that are BK —spaces with norm ||z||ic,). = l|zllig, = [|zllje), , = 1B2|[oo

e.r’ e.r

Proof. The proof of the first part of the theorem is a routine verification, and so we omit it. Furthermore,
since (2.1) holds, ¢y, ¢ and £y, are BK—spaces with respect to their natural norm, and the matrix Bis a
triangle, Theorem 4.3.2 of Wilansky [23] implies that the spaces [co], ., [c]., and [(x], , are BK—spaces. O
Therefore, one can easily check that the absolute property does not hold on the spaces [co], ,., [c], , and
(el » because [[2llir, . # Nz lllol, s ol # Nlzlll, . and llalli., . # llzlllg., , for at least one
sequence in the spaces [col, ., [c], . and [(s], ., where |z| = (|zg|). This says that [co], ., [c],, and [{s)]

are the sequence spaces of nonabsolute type.

e.r? e.r? e.r

Theorem 2.2. [c], ., [d]., and [¢ are linearly isomorphic to the spaces cg, ¢ and fo, Tespectively, i.e.,

]6.7"
[cole.r = o, [ele., = c and [lu], ;. 2 loo.

o0
loo
Proof. To prove this theorem, we should show the existence of a linear bijection between the spaces [co], .
and cg. Consider the transformation S defined, with the notation of (2.1), from [co], ,. to co by y = Sz = Bz.
The linearity of S is clear. Further, it is obvious that x = 6 whenever Sz = 6 and hence S is injective, where
6 =(0,0,0,...).

Let y € ¢p and define the sequence © = {z,} by

n

1
Tn=— (Z> (=1)""*2"*Quyp; for all n € N.

qn =



H. Bilgin Ellidokuzoglu, S. Demiriz, Turk. J. Math. Comput. Sci., 7(2017), 63-72 67

Then, we have

n—oo n—oo

)
3

)

3

lim (Bz), = lim [i (i) o xk]

=
I
o

g 1 BN 13930,y
= lim ZQ"ankZ<]’)( 1)F7721Q,y;

k=0

= lim y, =0

n—oo

which says us that z € [co], .. Additionally, we observe that

n

1 k o
lollay,, = supzén)gquz()(—nksz@jyj

neN b—0 J
= sup |yn| = [[y[lec < o0
neN

Consequently, S is surjective and is norm preserving. Hence, S is a linear bijection which therefore says
us that the spaces [co], . and ¢y are linearly isomorphic, as desired.

It is clear that if the spaces [co],, and co are replaced by the spaces [c]., and ¢ or [{s],, and f
respectively, then we obtain the fact that [c],,. = c and [(], . = fs. This completes the proof. o

e €, and [€x], ., in the
[], , and [l], , and p denotes any

We wish to exhibit some inclusion relations concerning with the spaces [c]
present section. Here and after, by A\ we denote any of the sets [cg]
of the spaces cg, ¢ or o

e.r’

Theorem 2.3. The inclusions p C A hold.
Proof. Let © = (z1) € p. Then, since it is immediate that
n n
dk
> e
k=0 "

mn TL
l#lloc sup Z QL = [[loo-
M=

lzllx = 1B sup

neN

IA

The inclusion ¢ C A holds.

i
Theorem 2.4. The space [co|, , has AK—property.
Proof. Let x = (x1) € [co], ,. and e = {x1, 29, ..., 2,,0,0, ...}. Hence,
2" ={0,0,..,0, 2041, Tng2, .} = [lz — 2|1 =1(0,0,.,0, 2041, Tng2, .|
and since x € [co], .,
k(@%
o=l = s 12 55,
Then the space [co],, has AK—property. mi

Since the isomorphism S, defined in Theorem 2.1, is surjective, the inverse image of the basis of the spaces
co and c are the basis of the new spaces [c], . and [co], ., respectively. Since the space £ has no Schauder
basis, [(s],, has no Schauder basis. Therefore, we have the following theorem without proof.

Theorem 2.5. Define the sequence b*) = {b k)}neN of elements of the space [col, ,. for every fized k € N by

_1\n—k
b(k):{ W22 o<k<n

an
0 , k> n.
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Let A\, = (Bzx)y, for all k € N. Then the following assertions are true:

(i): The sequence {b®)} e is a basis for the space [co], , and any x € [co], . has a unique representation
of the form
z =Y AbH.
k

(ii): The set {e,b") Y rew is a basis for the space [c]
the form

o and any x € [c], . has a unique representation of

z=le+ Y [A—1b"),
k

where | = limkﬁoo(Bx)k.
Remark 2.6. It is well known that every Banach space X with a Schauder basis is separable.
From Theorem 2.5 and Remark 2.6, we can give the following corollary:
Corollary 2.7. The spaces [co], . and [c], .. are separable.

e.r e.r

3. DuaLs oF THE NEW SEQUENCE SPACES

In this section, we state and prove the theorems determining the a—, 3— and y— duals of the sequence
spaces [co], ., [c]., and [{], , of non-absolute type.
The set S(A, 1) defined by

S\ ) ={z=(21) €w:xz = (zpai) € p for all x = (z1) € A} (3.1)

is called the multiplier space of the sequence spaces A and p. One can eaisly observe for a sequence space v
with A D v D p that the inclusions

S(A, ) C S(v,pu) and S(A, u) C S(A,v)

hold. With the notation of (3.1), the alpha-, beta- and gamma-duals of a sequence space A, which are
respectively denoted by A*, \? and A7 are defined by

XY= S\, 01), N = S(\ ¢s) and XY = S()\, bs).

For giving the alpha-, beta- and gamma-duals of the spaces [cg]
we need the following Lemma;

[], . and [{s], . of non-absolute type,

e.r?)

Lemma 3.1. [22/
(i): A€ (co:41)=(c: 1) = (leo : ¥1) if and only if

oo
wp 3|3

KeF =0 lkek
(ii): A€ (co: o) = (¢ loo) = (o : Uso) if and only if

< 0Q.

su Apf| < 00. 3.2
sup 3 (5:2)
(iii): A € (c:¢) if and only if (3.2) holds, and
I(ag) € w such that li_}In anp = oy, for all k € N, (3.3)
n oo

n—00

da € C such that lim Z Ank = Q.
k=0

Now, we may give the theorems determining the a—, — and y—duals of the Euler-Riesz sequence spaces
[CO]e,r7 [C]e_r and [éoo]e.r'
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Ker )

< oo} .
Then, {leol., }* = {lelo,}" = {llecle, }* = ag-

Proof. We give the proof for the space [co],,. We chose the sequence a = (ax) € w. We can easily derive
with (2.2) that

n n—kok dn
k;(@f)(_l) 2

. (Z) (1" 42 22 Qu = (B, (n € M) (3.4)

k=0
where B = (b,) is defined by the formula

my(—1)rkokdng (0 <k <
bnk = (k)( ) dn Qk ( S n) ) (TL, ke N)
0 , (k>mn)
It follows from (3.4) that az = (a,z,) € {1 whenever z € [¢g], ,. if and only if By € ¢; whenever y € ¢. This
gives the result that {[co], .} = a,. O

Theorem 3.3. The matriz D(r) = (dni) is defined by

") (=1 Rk Y0, (0<k<n
o[ T DU 0 <k<n .
0 , (k>mn)
for all k,n € N. Then, {[co], . }* = b1 Nba and {[c], .}’ = by Nba N bs where
by = a=(ar) €w:su dpi| < 00
1 { k) negzk: || }
by = {a )Ew: 11_{1;0 dpi = ak} ,
by = {a = (ag) Ew: nlggozd”k exzsts}
Proof. We give the proof for the space [co], ,.. Consider the equation
n n | k k 1
> apzy, = > ( ) (D)7 —Q,y; | ax
k=0 =0 |j=0 \J Uk
n [ n k - a
= S (§) v =0, (36)
k=0 | =k J gk

where D = (d,,x) defined by (3.5).
Thus, we decude by (3.6) that ax = (arxy) € cs whenever x = (x) € [co], . if and only if Dy € ¢ whenever
y = (yr) € co. Therefore, we derive from (3.2) and (3.3) that

lim d, exists for each k € N,
n— oo

n
SUPZ |dng| < o0
n Nk:O

which shows that {[co], . }* = b1 N ba. o
Theorem 3.4. {[co], . }” = {[c], .} = b1.

Proof. This is obtained in the similar way used in the proof of Theorem 3.3. O
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4. MATRIX TRANSFORMATIONS RELATED TO THE NEW SEQUENCE SPACES

In this section, we characterize the matrix transformations from the spaces [co], .,
any given sequence space p and from the sequence space p into the spaces [co], ., [c], . and [(], .

Since [cole.r = o (or [cle., = ¢ and [{x]e.r = ls), we can say: The equivalence “z € [co], . (or « € [c],
and z € [{], ,.), if and only if y € ¢ (or y € c and y € £ )” holds.

In what follows, for brevity, we write,

G =Y (Z) (—1)7l_k2k%ank

k=0 n

.., and [{«],, into

T

for all k,n € N.

Theorem 4.1. Suppose that the entries of the infinite matrices A = (ang) and E = (enr) are connected with
the relation

Enk ‘= &nk (41)
for all k,n € N and p be any given sequence space. Then,
(i): A € ([col, . : 1) if and only if {ank}ren € [Co]f,r foralln e N and E € (¢o : ).
(ii): A€ ([c],, : p) if and only if {ank }tken € {([d],,}° for alln € N and E € (c: p).
(iii): A € (o)., : ) if and only if {ank tren € {[los], . }° for alln €N and E € (loo : p).
Proof. We prove only Part (i). Let p be any given sequence space. Suppose that (4.1) holds between
A = (ank) and E = (en), and take into account that the spaces [co], , and cq are linearly isomorphic.

Let A € ([co], , : p) and take any y = (yx) € ¢o. Then EB exists and {ank }ren € b1 Nby which yields that
{enk }ren € co for each n € N. Hence, Ey exists and thus

§ EnkYk = § AnkTk
k k

for all n € N.

We have that Ey = Az which leads us to the consequence F € (cq : p).

Conversely, let {an}tren € {[co],,}? for each n € N and E € (co : p), and take any @ = (z3) € [co], .-
Then, Az exists. Therefore, we obtain from the equality

o < | F - Q;
kZ:Oankak = Z Z ( .)(—1)k_J2jqkjflkj Yk

k=0 |j=0 \J
for all n € N, that Ey = Az and this shows that A € ([co], ,. : 1). This completes the proof of Part (i). O

Theorem 4.2. Suppose that the elements of the infinite matrices A = (ank) and B = (bny) are connected
with the relation

by = - ()a lkneN
nk -—ZQkaajkfora ,n €N,
j=0

Let p be any given sequence space. Then,
(i): A€ (u:[col,,) if and only if B € (1 : o).
(ii): Ae (n:[c,,) if and only if B € (u : c).
(iii): A€ (p: [ls),,) if and only if B € (pu: lo).
Proof. We prove only Part (iii). Let z = (2x) € p and consider the following equality.

m k k )
Z bnkzi = Z 52)52 (Z ajkzk> for all m,n € N
k=0 k=0

Jj=0

which yields as m — oo that (Bz), = {B(Az)}, for all n € N. Therefore, one can observe from here that
Az € [ls],, whenever z € p if and only if Bz € {o whenever z € p. This completes the proof of Part
(ii). O
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The folowing results were taken from Stieglitz and Tietz [22]:

liin @i = 0 for all n, (4.2)

lim | Z ang| exist, (4.3)
k

Jim, > lanel =3 | Y, oni 44
k k

lim_ Ek: |ank| =0, (4.5)

Lemma 4.3. Let A = (anx) be an mﬁmte matriz. Then
(1): A= (ank) € (co: loo) = (€1 loo) = (oo : Uso) if and only if (3.2) holds.
(il): A = (ank) € (co : o) if and only if (3.2) and (4.2) hold.
(iii): A = (ank) € (c: o) if and only if (3.2), (4.2) and (4.5) hold.
(iv): A= (ank) € (b : co) if and only if (4.5) holds.
(v): A= (ank) € (co:c) if and only if (5.2) and (3.3) hold.
(vi): A= (ank) € (c:c) if and only if (3.2), (3.3) and (4.3) hold.
(vii): A = (ank) € (boo : ¢) if and only if (3.3) and (4.4) hold.

Now, we can give the following results:

Corollary 4.4. Let A = (ank) be an infinite matriz. The following statements hold:

(i): A € ([co),, : co) if and only if {ank}rew € {[col, . }? for alln € N and (3.2) and (4.2) hold with
Qnk instead of ang.

(ii): A € ([co),, : ) if and only if {ank}ren € {[co], .}’ for alln € N and (3.2) and (5.3) hold with
ank instead of ang.

(iii): A € ([co),, : loo) if and only if {ank}tren € {[col, }? for alln € N and (3.2) holds with Gy

instead of ang.

Corollary 4.5. Let A = (ank) be an infinite matriz. The following statements hold:

(i): A € ([d,, : co) if and only if {ank}rew € {[c], .}’ for alln € N and (3.2), (4.2) and (4.5) hold
with Gnk instead of ang.

(ii): A € ([d,, : ¢) if and only if {ank}ren € {[d],,}? for alln € N and (3.2), (3.3) and (4.3) hold
with Gnk instead of ang.

(iii): A € ([d],, : loo) if and only if {ank }rew € {[c], . }° for alln € N and (5.2) holds with Gy, instead
of ank-

Corollary 4.6. Let A = (ank) be an infinite matriz. The following statements hold:

(1): A€ ([lo),, : o) if and only if {ank tken € {[loc], . }? for alln € N and (4.5)holds with Gy, instead
of ank.

(ii): A € ([lol,, : ©) if and only if {ank fren € {[leo], .}’ for allm € N and (3.3) and (4.4) hold with
ank instead of ang.

(iii): A € ([loo],, : loo) if and only if {ank}rew € {[loo]., }° for all n € N and (3.2) holds with Gy,
instead of ang.

Corollary 4.7. Let A = (ank) be an infinite matriz. The following statements hold:
(i): A= (ank) € (co : [co, ) if and only if (3.2) and (4.2) hold with by, instead of an.
(ii): A = (ank) € (c: [col,,) if and only if (3.2), (4.2) and (4.5) hold with by, instead of any.
(iii): A = (ank) € ({ss : [col, ) if and only if (4.5) holds with b,y instead of an.
(iv): A= (ank) € (co: [d,,) =(c:[d,,) = (lss : [c],,) if and only if (3.2) and (3.3) hold with by
instead of ang.
(v): A= (ank) € (c:[d,,) if and only if 3.2), (3.3) and (4.3) hold with by, instead of any.
(vi): A= (ank) € (U : [c],,.) if and only if (3.3) and (4.4) hold with by, instead of any.
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(vii): A = (ank) € (co : Usc)e,) = (€1 Uool.,) = (Uss : [lss], ) if and only if (3.2) holds with by

instead of any.
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