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I. INTRODUCTION 

In an era dominated by technology and connectivity, the safeguarding of cyber networks against intelligent and 

persistent attacks has become paramount. Cybersecurity threats, driven by sophisticated attackers employing 

advanced techniques, demand innovative and robust defense strategies. The significance of cybersecurity cannot 

be overstated, given the escalating frequency and complexity of cyber-attacks. According to the Cybersecurity & 

Infrastructure Security Agency (CISA), there was a 33% increase in reported cyber incidents in 2022 compared to 

the previous year [1]. This surge highlights the pressing need for effective defense mechanisms against evolving 

threats. 

Computer security has been studied extensively in literature. The main tools for protecting networked systems 

include cryptography, “demilitarized zones” (designated places on a computer network where public services are 

located), virtual private networks (VPN), honey pots, vulnerability scanners, firewalls, and intrusion detection 

systems (IDSs) [2]. Encryption is a strong tool for securing data packets, but it is not always realistic to encrypt 

every packet in a network, and in any case encryption keys can often be stolen or acquired through “social 

engineering” even if the encryption code cannot be “cracked” by brute computational force. A VPN is a way to 

connect securely with the network a private network from outside; however, this connection can also provide a 
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 We propose a comprehensive game-theoretic model pertaining to the security of computer networks, 
specifically addressing the interaction between defenders and attackers. The model incorporates attack graphs 
to outline potential attacker strategies and defender responses. To account for the attacker's capacity to execute 
multiple attempts, we introduce a probabilistic element, wherein the success or failure at any arc of the attack 
graph is treated as stochastic. This characterization gives rise to a multi-stage stochastic network-interdiction 
problem. In this problem formulation, the defender strategically interdicts a set of arcs in anticipation of the 
likely actions of the attacker, who, in turn, can make multiple attempts to traverse the network. We 
mathematically articulate this scenario as a stochastic bilevel mixed-integer program with a "min-max" 
objective. The defender's aim is to minimize the probability of the attacker's success, while the attacker seeks 
to maximize the probability of successfully traversing the network across multiple attempts.  The defender's 
stochastic bilevel optimization model is solved using the integer L-shaped method. Upon analyzing the 
defender's perspective, we observe the anticipated trend that the overall success probability of the attacker 
diminishes with an increasing level of defense. Notably, in the sensitivity analysis involving relatively small 
attack graphs, we discover that the optimal defense strategy against a myopic attacker often aligns with that 
against a non-myopic attacker. Furthermore, in instances where deviations exist, the disparity in performance 
is generally marginal. However, our findings demonstrate a potential divergence in optimal defense strategies 
when the available attack paths share numerous common arcs. 

Keywords: 
cybersecurity 
stochastic programming 
defender attacker model 
bilevel optimization 
network interdiction 
integer L-shaped method 

 

 
  

mailto:mertem@ogu.edu.tr
https://orcid.org/0000-0001-5363-3619
https://orcid.org/0000-0001-5984-8717


 
 J. Innovative Eng. Nat. Sci. vol. 4, no.1, pp. 245-262, 2024.                                                                   Cyber attacks                   

246 
 

way for attackers to get inside the network, if they are able to obtain the privileges of an authorized user. Honey 

pots are decoys designed to attract the interest of attackers; however, if an attacker can identify the honey pots, 

this could provide knowledge of the network structure. Vulnerability scanners are used to scan a given network 

for potential weaknesses, but their findings are not always reliable. Finally, firewalls are designed to protect 

networks from malicious activities, and IDSs identify attack signatures and detect anomalous system behavior. 

However, if cyber attackers know their general capabilities, they may be able to take advantage of security holes 

or gaps. Attackers can also exploit the complexity of computer networks by finding a multiplicity of ways to attack 

them [3]. 

When computer networks were first introduced, they were not designed to protect against potential attacks [2]. 

Moreover, with the exponential growth of computer and internet usage, computer networks became extremely 

complex. Therefore, it is difficult if not impossible to secure computer networks completely, and intelligent 

attackers can always take advantage of new weaknesses or combinations of existing vulnerabilities. Moreover, 

operational decisions about updating network security often involve patching newly discovered security holes after 

an attack. In other words, once a new virus or cyber-attack has been detected, firewalls, intrusion-detection 

algorithms, and other defense tools are updated accordingly. However, game-theoretic defense approaches could 

in principle facilitate a more proactive approach to computer security, by anticipating the responses of potential 

attackers [4]. 

Given the intricate nature of cyber networks, attack graphs have emerged as a method for comprehensively 

representing all potential attack scenarios within a specific network context [5]. These graphs serve as concise 

visualizations, illustrating the vulnerabilities inherent in each cyber network. Consequently, numerous scholars 

have incorporated attack graphs into their research, employing them as foundational elements to construct intricate 

security models for cyber networks [6]. 

An attack graph serves as a comprehensive representation of all conceivable attack scenarios within a computer 

network [5]. By utilizing attack graphs, one can construct defender-attacker models aimed at assisting defenders 

in identifying optimal or nearly optimal defense strategies. Additionally, these models can be tailored to defend 

systems against various attacker types, including hackers, spies, terrorists, corporate raiders, and professional 

criminals. Each attacker type may have distinct objectives; for instance, opportunistic attackers seek easy targets 

and may switch focus if a specific target becomes too challenging or costly to attack successfully. Conversely, 

determined attackers, such as hostile governments, are less deterred by increased attack difficulty or cost. 

In the realm of computer network security, numerous defender-attacker models have been developed, primarily 

leveraging game theory to pinpoint equilibrium strategies for both attackers and defenders. However, many of 

these models neglect the integration of attack graphs into their game trees. For example, Liu et al. [7] devised a 

game-theoretic formalization, featuring diverse models tailored to specific situations, such as accounting for the 

correlation among attack actions and the accuracy of intrusion detection. Lye and Wing [8] explore varied game 

strategies within network security, treating interactions between attackers and system administrators as a two-

player stochastic game. They compute Nash equilibria and best-response strategies for both the attacker and the 

administrator using nonlinear programming techniques. By framing the problem as a general-sum stochastic game, 

Lye and Wing identify multiple Nash equilibria, aiding system administrators in anticipating the attacker's optimal 

attack strategies. Similarly, Xiaolin et al. [9] propose a Markov model to assess the risks of computer networks, 
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considering the current and anticipated future security status. They use a Markov chain to model the potential 

actions of attackers to assess the risk, and another Markov chain to represent possible defense strategies to decrease 

the number of system vulnerabilities. Furthermore, Nguyen et al. [10] propose a stochastic game-theoretic model 

for security and intrusion detection in computer networks and apply it to a small sample network. They model the 

security of the network using a weighted directed graph, with nodes representing combinations of security assets 

and vulnerabilities, and with edges representing relations among the nodes. 

Additionally, there exist defender-based methodologies that do not explicitly consider attacker types or strategies. 

For instance, Sheyner et al. [5] propose an approximation method to identify the smallest subset of measures 

necessary to render a system "safe." They acknowledge the NP-completeness of finding such a subset and employ 

a greedy algorithm to derive an approximate solution. In their approach, they treat the identification of a minimum 

critical set in an attack graph akin to solving a minimum hitting-set problem. The resulting algorithm determines 

the minimum critical set covering at least one arc from each possible path on the attack graph. However, it is 

crucial to note that their model may not fully align with real-world scenarios where security systems are subject to 

budget constraints, a factor often influencing defense strategies. 

One way to use attack graphs to develop defensive strategies is to find the optimal set of arcs (or, equivalently, 

attacker actions) for the defender to interdict. This critical set is likely to depend on factors such as interdiction 

costs, the defender’s budget constraint, the effect of an arc interdiction on the attacker’s future actions, etc. In the 

literature, many network-interdiction algorithms have been developed to find the optimal set of arcs to interdict on 

a given graph. Network-interdiction models have been studied in areas such as military applications and 

transportation security. During the Vietnam War, McMasters and Mustin [11] developed deterministic models to 

interdict enemy troops or material flows on a transportation network, using optimization to allocate a limited 

number of aircraft to best interdict the enemy’s supply line. More recently, [12-14] have all applied deterministic 

network-interdiction models to military problems, or to interdiction of illegal drugs or precursor chemicals. 

Similarly, [15-16] study the problem of maximizing the shortest path of an attacker, using a deterministic network-

interdiction algorithm. 

In situations where one or more components of a problem lack certainty, a stochastic network-interdiction problem 

arises. One of the pioneering investigations into stochastic network interdiction was conducted by Cormican et al. 

[17]. They introduced a stochastic network-interdiction model aimed at minimizing the anticipated maximum flow 

achievable by an adversary within a given network. Cormican et al. [17] employed binary random variables to 

represent interdiction success or failure and analyzed the ensuing problem as a two-stage stochastic integer 

program. In the initial stage, the defender's objective is to minimize the maximum network flow attainable by the 

adversary by interdicting a specified set of arcs. In the subsequent stage, the attacker selects the path on the network 

that yields the maximum flow. Cormican et al. [17] employed a sequential-approximation algorithm, generating 

lower and upper bounds for the optimal value of the objective function at each iteration. Israeli and Wood [18] 

focused on a shortest-path network-interdiction problem, wherein the defender interdicts a set of arcs to maximize 

the shortest path achievable by the attacker. The stochastic nature of their problem arises from the assumption that 

the defender lacks precise knowledge of the attacker's actual origin and destination, possessing only a probability 

distribution over potential origin-destination pair. They formulated the resultant bilevel max-min problem as a 

stochastic mixed-integer program. Bayrak and Bailey [19] extended the shortest-path network-interdiction 
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problem to cases where the interdictor and the evader possess varying levels of knowledge about the network. 

Their formulation transformed the problem into a stochastic nonlinear mixed-integer program, subsequently solved 

by converting it into a stochastic linear mixed-integer program. Pan and Morton [20] proposed a stochastic 

network-interdiction model where the interdictor selects a set of arcs for installing radiation sensors to minimize 

the reliability of the evader's maximum-reliability path, with the goal of maximizing the probability of detecting a 

potential nuclear smuggler. Like Cormican et al. [17], Pan and Morton [20] assumed that the interdictor only 

possesses a probability distribution for the evader's origin-destination pair. They formulated the resulting problem 

as a stochastic mixed-integer program and presented a decomposition method for its solution. Similarly, Dimitrov 

and Morton [21] developed various network-interdiction models and applied them to diverse problems. Recently, 

Morton [22] conducted a comparative analysis of deterministic and stochastic network-interdiction models and 

their respective solution algorithms. Additionally, they categorized the types of stochastic network-interdiction 

models based on the defender's information level regarding the attacker's source-terminal pair. 

Stochastic network-interdiction models present a greater computational challenge compared to their deterministic 

counterparts, prompting the introduction of various solution algorithms and heuristics. Cormican [23] has 

classified available solution methods into two categories: decomposition methods and sequential-approximation 

algorithms. Generally, decomposition algorithms iteratively enhance the bounds of the objective function by 

solving both the attacker's and the defender's problems for every conceivable realization of the scenario. Examples 

of decomposition algorithms encompass [17-20, 24]. However, it is imperative for the objective function of the 

problem to be convex for decomposition algorithms to be applicable. Additionally, certain decomposition 

algorithms necessitate the dualization of the objective function, a task that is not always straightforward and, in 

some instances, may prove to be infeasible. Furthermore, when dealing with a large number of potential scenarios, 

computational challenges may arise with decomposition methods due to the escalating number of subproblems 

requiring resolution at each iteration, corresponding to the number of scenarios. In contrast, sequential-

approximation algorithms exhibit enhanced computational efficiency in scenarios involving a substantial number 

of possible scenarios. Similar to decomposition, sequential-approximation algorithms establish upper and lower 

bounds on the optimal value of the objective function. In this approach, the genuine problem is approximated by 

progressively refining the partitioning of the sample space to create more representative subsets, thereby yielding 

tighter bounds on the optimal value of the objective function. Sequential-approximation algorithms utilize 

decomposition at each iteration to ascertain bounds on the optimal value of the objective function within each 

partition, thereby encountering analogous constraints as decomposition. Notable instances of sequential 

approximation algorithms are elucidated in [17, 25]. 

Recently, Janjarassuk and Linderoth [26] introduced a third method, sample-average approximation (SAA), for 

addressing stochastic network-interdiction problems. In SAA, the genuine problem is approximated by generating 

samples from the state space, representing all possible scenarios of the problem. Once the samples are generated, 

the SAA problem transforms into a deterministic optimization problem, effectively approximating the true 

stochastic problem. Deterministic optimization problems can frequently be solved optimally using suitable 

algorithms such as the L-shaped decomposition algorithm [27]. Examples of SAA methods are outlined in [28-

33]. In their publication, Janjarassuk and Linderoth [26] conduct a comparative analysis of different methods for 

solving stochastic network-interdiction problems and conclude that SAA exhibits notable effectiveness for large 

problems, as a relatively modest number of samples proves sufficient to represent numerous possible scenarios. 
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This paper proposes an innovative defense approach grounded in the principles of stochastic network interdiction, 

an area of study gaining traction in cybersecurity research. By integrating bi-level stochastic optimization model, 

this approach aims to optimize the allocation of defensive resources, minimizing vulnerabilities and maximizing 

the network's resilience against intelligent attacks. To address the complexity of the problem, this study employs 

the Integer L-shaped method and SAA which provide a rigorous and efficient solution methodology. 

 

II. THEORETICAL METHOD 

In this study, a fully game-theoretic and non-myopic approach is adopted to represent attacker and defender 

behavior. We set up the game as a defender-attacker model because the defender moves first, and we assume that 

the attacker’s objective is maximizing the probability of success while the defender minimizes the same objective 

function value with limited resources. In our model, we use attack graphs to represent attack success probabilities. 

Each arc on an attack graph represents the probability of successfully traversing one step of a complete attack (as 

represented by a path). We assume that the outcomes of attempting to traverse different arcs are independent. Our 

game is non-cooperative, because the defender wishes to minimize damage while the attacker attempts to 

maximize damage. Also, it is a stochastic game, because it is uncertain whether the attacker will be successful 

when attempting to traverse the network, and the defender develops his strategy anticipating this uncertainty. We 

can further categorize our game as a sequential game because the defender moves first to protect the network, and 

then the attacker launches an attack to traverse the protected network. Further, we assume a complete-information 

game between the attacker and the defender, which means that both the defender and the attacker know each 

other’s possible strategies and payoffs. Finally, we assume a game of perfect information, where the attacker has 

knowledge of the defender’s chosen protection strategy when choosing how to attack the network. 

We formulate the attacker’s problem as a multi-stage stochastic network-interdiction problem (MSNIP). When 

attacking the system, the attacker’s success is uncertain. Thus, the attacker may need to make several attempts. 

The defender should anticipate this in choosing a defensive strategy. Thus, the problem becomes a bi-level 

stochastic programming problem when we consider both the defender and attacker objectives. In our model, each 

of the attacker’s attempts represents a stage of MSNIP. For example, the attacker’s first attempt represents the first 

stage of the MSNIP, the second attempt represents the second stage if the attacker fails at the first attempt, and the 

third attempt represents the third stage if the attacker fails at the second attempt, etc. MSNIP was first introduced 

by Ertem and Bier [34] and details of the model can be found in their study. For the purposes of this study, we 

formulated the defender’s problem using the integer L-shaped method. 

 

2.1 Integer L-shaped Method 

Bilevel stochastic programming problems are difficult to solve. In literature, there are algorithms that can solve 

bilevel stochastic programming problems under certain conditions. However, to our knowledge, all these 

algorithms require the lower-level problem (the attacker’s problem, in our context) to be a linear optimization 

problem [35]. By contrast, in our model, the attacker’s problem is a stochastic mixed-integer program, because we 

use binary decision variables to define the optimal path for the attacker. For the defender’s problem, we also use 

binary decision variables to define which arcs are interdicted by the defender. Several studies have developed 
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solution algorithms for specific stochastic integer programming problems [36-39]. However, Laporte and 

Louveaux [40] introduced the integer L-shaped method, which has general applicability to stochastic integer 

programs. In their study, Laporte and Louveaux [40] show that the integer L-shaped method finds the optimal 

solution of a problem (if it exists) in a finite number of steps, if the problem has a valid set of feasibility cuts and 

a valid set of optimality cuts. According to Laporte and Louveaux [40], stochastic integer programs have both 

valid feasibility cuts and valid optimality cuts. Thus, the integer L-shaped method can be used for the solution of 

stochastic integer programs provided that: 1) the lower-level expectation function 𝐹𝐹(𝑥𝑥, 𝑦𝑦, 𝜉𝜉) (the attacker’s 

problem, in our model) is computable for a given upper-level (defender) decision variable x; and 2) the objective 

value of the lower-level optimal solution has a lower bound. 

We can consider our problem a bilevel stochastic integer program where the defender interdicts a set of arcs at the 

upper level, and then the attacker makes multiple attempts to traverse the network at the lower level. The first 

assumption above (computability) is satisfied if there are enough paths for the attacker to traverse on a given attack 

graph. For the two-stage case, there should be at least two available paths, and for the three-stage case, at least 

three paths should be available, because the attacker must select another path in each attack stage if he fails at the 

previous attack stage. Moreover, for sufficiently large defender budget levels, the defender might be able to 

interdict all or most of the paths, in which case the attacker’s problem 𝐹𝐹(𝑥𝑥,𝑦𝑦, 𝜉𝜉) would not be computable. This 

situation is avoided, however, because of our assumption that if the defender interdicts arc arc (i,j) ∈ A (A: set of 

arcs) on the attack graph, then the probability of successfully attacking arc (i,j) ∈ A will be reduced from pij to qij 

> 0. The second assumption (boundedness) holds because the objective value of the attacker’s problem (the 

probability of succeeding in multiple attempts) is naturally bounded below by 0. 

For stage K of the integer L-shaped method, we define the master problem as follows: 

 

𝑚𝑚𝑚𝑚𝑚𝑚 𝜃𝜃                                                                                                                                                                          (1) 

 

s.t. 

∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵(𝑖𝑖,𝑗𝑗)∈𝐴𝐴                                                                                                                                                        (2) 

 

𝜃𝜃 ≥ 𝑣𝑣(𝑥𝑥𝑘𝑘) − 𝑣𝑣(𝑥𝑥𝑘𝑘)(∑ 𝑥𝑥𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗)∈𝐴𝐴:(𝑥𝑥𝑘𝑘(𝑖𝑖𝑖𝑖)=0) ), 𝑘𝑘 = 1,2, . . . ,𝐾𝐾                                                                                              (3) 

 

𝑣𝑣(𝑥𝑥𝑘𝑘) ≥ 0, 𝜃𝜃 ≥ 0, 𝑘𝑘 = 1,2, . . . ,𝐾𝐾                                                                                                                                 (4) 

 

Here, variable θ represents an appropriate approximation of 𝐹𝐹(𝑥𝑥,𝑦𝑦, 𝜉𝜉); i.e., an approximation satisfying Constraint 

3, which represents the K identified optimality cuts. Function 𝑣𝑣(𝑥𝑥𝑘𝑘) represents the solution of the attacker’s SAA 

problem with N scenarios [34] for a given defender solution 𝑥𝑥𝑘𝑘. Constraint 2 represents the defender’s budget 
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limit. As discussed above, because our problem satisfied both computability and boundedness assumptions, the 

optimality cuts in Constraint 3 will always be valid. 

 

We use the following steps to solve the defender’s problem with the integer L-shaped algorithm: 

• Step 0: Set 𝛽𝛽 = 0. The variable θ is the lower bound for the objective function value of the defender problem, 

so is set equal to 0. An initial defender solution 𝑥𝑥𝛽𝛽 is selected, and the corresponding attacker’s problem 

𝑣𝑣(𝑥𝑥𝛽𝛽) is solved. Set 𝛾̅𝛾 = 𝑣𝑣(𝑥𝑥𝛽𝛽), where 𝛾̅𝛾 is the upper bound for the objective function value of the defender 

problem. If 𝛾̅𝛾 = 0, then go to Step 4. Otherwise, set K = 1, add one optimality cut to Constraint 3, and go to 

Step 1. 

• Step 1: Set 𝛽𝛽 = 𝛽𝛽 + 1. Solve the master problem in Eq. 1 through 4. Let (𝑥𝑥𝛽𝛽 ,𝜃𝜃𝛽𝛽) be an optimal solution. 

• Step 2: Compute 𝑣𝑣(𝑥𝑥𝛽𝛽) and set 𝛾𝛾𝛽𝛽 = 𝑣𝑣(𝑥𝑥𝛽𝛽). If 𝛾𝛾𝛽𝛽 < 𝛾̅𝛾, set 𝛾̅𝛾 = 𝛾𝛾𝛽𝛽. 

• Step 3: If 𝜃𝜃𝛽𝛽 = 𝛾̅𝛾, then go to Step 4. Otherwise, set K = K + 1, add one optimality cut to Constraint 3, and 

return to Step 1. 

• Step 4: Set 𝑥𝑥𝛽𝛽 as the optimal defender solution and stop. 

Figure 1 illustrates the flowchart depicting the application of the proposed integer L-shaped method to optimize 

the defender's problem based on the specified attacker's selection. 

 

 

Figure 1. Flowchart of the proposed integer L-shaped method 

 

III. RESULTS AND DISCUSSIONS 

In this section, we explore the effect of the attack graph size and structure, attack success probabilities, attacker 

type, and defense level on the optimal solution of the defender problem. As discussed in Section 2, we will use the 

integer L-shaped method to solve the defender problem. 

 

3.1 Sensitivity Analysis Setup 

In our sensitivity analysis, we use three realistic network topologies (from literature [41-42]) and two levels of 

vulnerability densities per host. When selecting network topologies, our aim was to select common and realistic 
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topologies and use our model to obtain some insight into attacker behaviors and optimal defense policies. 

Therefore, we selected networks like the fully connected, and star-type networks for use in our sensitivity analysis. 

In a fully connected network, each of the nodes (hosts) is connected to every other node, and in a star topology, 

every node is directly connected to the central node. In total, we have six attack graphs (three topologies, with two 

vulnerability densities for each topology). The topologies and corresponding attack graphs for both one and two 

vulnerabilities per host are given in Figures 2 through 4. For each topology, we begin the analysis with one 

vulnerability per host, and then add another appropriate vulnerability to each of the nodes in the network. 

 

 
Figure 2. Case 1: Larger star-type network, and corresponding attack graphs with one vulnerability per host (top left), and two vulnerabilities 

per host (bottom) 

 

The attack graphs used in the case study are generated using the MulVal software [43]. However, the resulting 

attack graphs include some types of nodes that are not necessary for our assessment. Therefore, in order to simplify 

the attack graphs, we deleted those nodes. Also, for each attack graph, we added dummy source and terminal nodes 

(since our model assumes a single source node and terminal node). We connect the source node to the initial nodes 

of the attack graph with arcs that have success probabilities of 1, and similarly for the terminal node and the final 

nodes of the attack graph. We start with a base case that assigns initial success probabilities to the arcs in each 
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attack graph. Initial success probabilities are assigned using the Common Vulnerability Scoring System (CVSS), 

which is an industry standard for assessing the severity of computer security vulnerabilities [44]. The National 

Institute of Standards and Technology tracks all emerging cyber-attacks and their corresponding CVSS scores in 

a National Vulnerability Database (NVD) [45]. In our case, the MulVal software automatically assigns success 

probabilities using the NVD database. 

 

 

Figure 3. Case 2: Heavily connected network, and corresponding attack graphs with one vulnerability per host (top left), and two vulnerabilities 

per host (bottom) 
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To explore the impact of success probability changes on the optimal defense strategy, we also vary the success 

probabilities of arcs on the attack graphs. We could explore the effects of increasing the success probabilities of 

arcs, but making arcs more vulnerable does not seem realistic in the context of computer security. Thus, we 

decreased the success probabilities of arcs on all attack graphs by 50% in our sensitivity analysis. In addition to 

changes in the success probabilities of arcs, we also explore the effect of the defense level. We begin by solving 

each attacker problem with no defenses, and then increase the number of arcs that the defender can interdict, until 

enough arcs have been interdicted so that the attacker can no longer reach the target value. 

We consider both myopic and non-myopic attackers and vary the number of attack stages. We consider a one-

stage model (for which there is no difference between myopic and non-myopic attackers), as well as two-stage and 

three-stage models for both myopic and non-myopic attackers. However, we did not apply the three-stage model 

to cases 1 and 2 (given in Figures 2 and 3, respectively) with two vulnerabilities per host, because the attack graphs 

for those cases were relatively large and computationally demanding. 

 

3.2 Application of the Integer L-Shaped Method 

To solve the defender’s optimization problem, we used the integer L-shaped method. As discussed in Section 2.1, 

the integer L-shaped method finds the optimal solution of the defender problem by adding optimality cuts to the 

master problem at each iteration. The number of iterations needed to solve the defender problem is an important 

measure for assessing the performance of this solution approach, because of the need to solve the attacker problem 

at each iteration.  

For a one-stage attack, we first solve the attacker problem to find the optimal attack path for a given initial defender 

solution, find a candidate solution of the defender problem using the optimal result of the attacker problem, and 

then repeat these steps at each iteration until we find the optimal defender solution. For the two-stage myopic 

model, we first solve the attacker problem to find the optimal one-stage attack path for a given initial defender 

solution, then run the second-stage recourse model to assess the performance of that strategy, solve the master 

problem using the results of the recourse problem to find a candidate defender solution, and again repeat these 

steps at each iteration until we find the optimal defender solution.  

For the two-stage non-myopic model, we first solve the two-stage attacker problem to find the optimal first-stage 

attack path, then run the second-stage recourse model to assess the performance of that strategy, solve the defender 

problem using the results of the recourse problem to find a candidate defender solution, and then repeat these steps 

at each iteration until we find the optimal defender solution. The three-stage myopic and non-myopic attacker 

problems are solved in a similar manner. 

Based on the results of Case 1 shown in Table 1, the number of iterations needed to solve the defender problem 

seems to depend on the defender’s budget level, and the selected initial defender solution (even though the table 

does not show the selected initial defender solution). The results are similar for the other cases. For smaller 

defender budgets, the integer L-shaped method performed no better than explicit enumeration, since it tried all 

possible defender solutions. For larger budget levels, the method performed significantly better than explicit 

enumeration. However, the sensitivity runs for the defender problem were still computationally demanding, 

especially for the larger attack graphs. 
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Figure 4. Case 3: Small star network, and corresponding attack graphs with one vulnerability per host (bottom left) and two vulnerabilities per 

host (bottom right) 

 

 

5.3 Sensitivity Analysis Results 

We use three realistic attack graphs with two vulnerability levels each to assess the sensitivity of the defender 

solution to attack graph type and size, attacker type (myopic or not), number of attack stages, and defense level. 

The case study results are illustrated in Figures 5 through 7. Based on the results, we see that the attacker’s success 

probability is generally increasing in the number of attack stages, especially when few arcs are interdicted. As 

expected, smaller arc success probabilities yield lower overall attack success probabilities, as does an increase in 

the defender budget level, in general. 
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Table 1. Number of iterations needed to solve the defender problem using the integer L-shaped method versus using explicit enumeration 
 Case 1: 1 vulnerability/host (12 arcs)  Case 1: 2 vulnerability/host (52 arcs) 

Budget L-Shaped Method Explicit Enumeration L-Shaped Method Explicit Enumeration 

B=1 12 12 52 52 
B=2 144 144 2704 2704 
B=3 220 220 2704 22100 
B=4 N/A N/A 2704 270725 
B=5 N/A N/A 22100 2598960 
B=6 N/A N/A 22100 20358520 
B=7 N/A N/A 2704 133784560 
B=8 N/A N/A 2704 752538150 
B=9 N/A N/A 2704 3679075400 
B=10 N/A N/A 2704 15820024220 
B=11 N/A N/A 2704 60403728840 
B=12 N/A N/A 52 206379406870 
B=13 N/A N/A N/A N/A 

 

 

Figure 5. Sensitivity analysis results of the defender problem for Case 1 with one vulnerability per host for both with the base and 50% 

decreased arc success probabilities (top), with two vulnerabilities per host and base arc success probabilities (middle), with two vulnerabilities 

per host and arc success probabilities decreased by 50% (bottom chart) 
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However, when multiple paths in an attack graph have the same success probability, interdiction of an arc on one 

of those paths will not reduce the overall probability of success, because the attacker could select an equally good 

path. 

In cases 1 and 2 with one vulnerability per host (Figures 5 and 6, respectively), and case 3 (Figure 7), the myopic 

attacker performs just as well as the non-myopic attacker. This is because in the corresponding attack graphs, the 

paths do not involve any common arcs, so there is no benefit to the attacker from thinking ahead. In cases 1 and 2 

with two vulnerabilities per host (Figures 4 and 5, respectively), the non-myopic attacker does slightly better than 

the myopic attacker at some budget levels, because in these attack graphs at least some paths involve common 

arcs. However, even when the non-myopic attacker performs better than the myopic attacker, the defender’s 

optimal interdiction strategy is the same for both attacker types. Thus, the added computational difficulty of solving 

the non-myopic attacker problem does not benefit the defender. Based on these results, we observe that anticipating 

the attacker’s future actions is especially important when the available attack paths share more common arcs. 

 

 
Figure 6. Sensitivity analysis results of the defender problem for Case 2 with one vulnerability per host for both with the base and 50% 

decreased arc success probabilities (top), with two vulnerabilities per host and base arc success probabilities (middle), with two vulnerabilities 

per host and arc success probabilities decreased by 50% (bottom chart) 
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Finally, we observed that the optimal defense is usually to protect arcs near the source node or end node of the 

attack graph. In our defender sensitivity analysis, we solved 91 defender problems on 7 different attack graphs. In 

all these runs, the interdicted arcs were next to either the source node or the end node, never at intermediate levels 

of the attack graph. For example, Figures 8 and 9 illustrate the interdicted arcs for cases 1 and 2 with two 

vulnerabilities for a defender budget of 10 arcs, respectively. 

 

IV. CONCLUSIONS 

In this study, we developed a general game-theoretic defender-attacker model for security of computer networks, 

using attack graphs to represent the possible attacker strategies and defender options. To represent the ability of 

the attacker to launch multiple attempts, we consider the attacker’s success or failure on any arc of the attack graph 

to be probabilistic and describe the resulting security problem as a multi-stage stochastic network-interdiction 

problem. In our problem, the defender interdicts a set of arcs, anticipating the attacker’s likely actions, and then 

the attacker can make multiple attempts to traverse the network. We formulated the resulting problem as a 

stochastic bilevel mixed-integer program with a “min-max” objective. Here, the defender attempts to minimize the 

attacker’s success probability, and the attacker maximizes the probability of traversing the network successfully 

in multiple attempts. 

 

 

Figure 7. Sensitivity analysis results of the defender problem for Case 3 with one vulnerability per host for both with the base and 50% 

decreased arc success probabilities (top), with two vulnerabilities per host for both with the base and 50% decreased arc success probabilities 

(bottom chart) 



 
Cyber attacks                                                                   J. Innovative Eng. Nat. Sci. vol. 4, no.1, pp. 245-262, 2024. 
 

259 
 

 

Figure 8. Illustration of the optimal defense strategy for case 1 with 2 vulnerabilities for a defender budget of 10 arcs 

 

For the defender problem, we found, as expected, that the attacker’s overall success probability decreases with the 

increase in the level of defense. More significantly, we found that for the relatively small attack graphs studied in 

our sensitivity analysis, the optimal defense against a myopic attacker is often the same as against a non-myopic 

attacker, and in any case rarely does too much worse. However, preliminary results suggest that this might not be 

the case when the available attack paths share numerous common arcs. 

 

 

Figure 9. Illustration of the optimal defense strategy for case 2 with 2 vulnerabilities for a defender budget of 10 arcs 
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Overall, we were able to determine the optimal defense against a non-myopic attacker. Our method may not be 

directly applicable in practice, because the optimal defense is computationally intensive to find, and in many cases, 

is not significantly better than the defense against a myopic attacker. While this assertion holds a degree of validity, 

such findings undoubtedly offer valuable insights for the formulation of forthcoming defense strategies and 

policies. Cases where the benefit of defense against a non-myopic attacker is large may tend to involve large 

networks and may therefore be even more difficult to solve. Thus, while the goal of defending against a non-

myopic attacker is significant, the methods we have used so far limit the applicability of our model. Thus, in future 

work, we plan to look for modeling and solution approaches that would help to solve our problem more efficiently 

even for large networks, such as dynamic programming.  

Another important extension of this study involves transitioning from the idealized premise of a perfect 

information game to one that acknowledges imperfections in information. One prevalent avenue for addressing 

imperfect information games often involves adopting a worst-case scenario approach. Yet, employing such a 

method could prove exorbitantly expensive, notably within the domain of cyber defense. Consequently, the 

defender ought to explore more resource-efficient methodologies. Under this circumstance, enhancing the 

defender's defense strategies necessitates a broader spectrum of tactics, anticipating diverse attacker types and 

actions, thereby facilitating the development of a comprehensive defense strategy. 

Despite these limitations, our results nonetheless yielded some recommendations of practical significance for the 

defense of cyber networks. First, for networks that are not well defended (i.e. highly vulnerable), defending against 

a myopic attacker may be adequate; the advantage of assuming a non-myopic attacker is greatest for well-defended 

networks. Similarly, defending against a myopic attacker may be adequate when the available attack paths share 

few common arcs, and when the success probabilities of attacks on different arcs vary widely. Thus, while the 

problem of defending against non-myopic attackers is difficult, it is encouraging to know that defense against a 

myopic attacker will frequently give results that are equally or almost equally good. Finally, our results suggest 

that the optimal defense will usually be to protect arcs near the source node or end node of the attack graph, rather 

than at intermediate layers of the attack graph. 
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