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ABSTRACT 
 

This research utilizes two novel methods, specifically the conformable q-homotopy analysis transform method (Cq-HATM) 

and the conformable Elzaki Adomian decomposition method (CEADM), to examine the numerical solutions for the 

conformable time-fractional coupled Jaulent-Miodek system. One of the two unique methods proposed is the Cq-HATM, which 

is a hybrid approach that combines the q-homotopy analysis transform method with the Laplace transform, employing the 

concept of conformable derivative. The CEADM method, similar to the aforementioned approach, is a hybrid technique that 

combines the Adomian decomposition method with Elzaki transform using the concept of conformable derivative. The 

computer simulations were performed to offer validation for the effectiveness and dependability of the recommended 

approaches. After conducting a comparison between the exact solutions and the solutions acquired using the unique methods, 

it is apparent that both of these approaches demonstrate simplicity, effectiveness in tackling nonlinear conformable time-

fractional coupled systems. 

 

Keywords: Conformable time-fractional coupled Jaulent-Miodek system, Conformable Elzaki Adomian decomposition 

method, Conformable Elzaki transform 

 

 

1. INTRODUCTION 
 

The field of fractional calculus has been subject to substantial research and has been rigorously defined 

by a multitude of eminent scientists [1-3]. Scientists have established  the essential framework for the 

discipline of fractional analysis. Then, the innovative conceptualizations of fractional calculus have been 

developed. Fractional partial differential equations are commonly utilized to develop nonlinear models 

and to analyse of dynamical system [4-6]. The application of fractional calculus has been employed to 

examine and investigate various domains, including chaos theory, financial models, disordered 

environments, and optics. The identification and analysis of nonlinear phenomena in the natural world 

are strongly dependent on the utilization of solutions derived from fractional differential equations [7-

9]. A wide array of analytical and numerical approaches are utilized to get exact solutions for fractional 

differential equations that encompass nonlinear phenomena, owing to their intrinsic complexity [10-11]. 

 

In a recent scholarly paper, the innovative of fractional derivative and fractional integral have been 

presented. The authors have effectively shown that the recently introduced definition possesses the 

inherent attributes of the classical derivative as defined in classical analysis, while also incorporating a 

limit form that closely resembles the definition of the classical derivative. The author presents a new 

conceptualization of the fractional derivative in his scholarly contribution. The provided definition 

encompasses a range of mathematical ideas, such as the product rule, quotient rule, chain rule, fractional 

Rolle's theorem, and fractional mean value theorems. The application of the conformable fractional 

derivative is considered to be a fundamental and highly beneficial methodology. Moreover, it enhances 

our capacity to express the behavior demonstrated by concrete entities. The application of the conformable 
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fractional derivative represents a novel methodology for tackling complex problem domains. Fractional 

order models are frequently utilized in the domain of engineering and applied sciences owing to their 

capacity to provide a more accurate depiction of real-world occurrences. Conformable fractional 

derivatives have been utilized by numerous scholars from diverse academic disciplines. The application 

of the conformable fractional operator functions as a strategy to address certain constraints inherent in 

current fractional operators. The issue under consideration encompasses a collection of mathematical 

topics, including the mean value theorem, the chain rule, the product rule for differentiating two 

functions, the derivative of the quotient of two functions, and Rolle's theorem [12]. 

 

The Elzaki transform method (ETM), first proposed by Elzaki, has been employed for the resolution of 

linear ordinary differential equations featuring constant coefficients [13]. Elzaki utilized the differential 

transform method in combination with the Elzaki transform (ET) to tackle various nonlinear differential 

equations [14]. The Homotopy Perturbation Elzaki Transform Method (HPETM) was originally proposed 

by Elzaki and Hilal. In addition, HPETM has effectively resolved three nonlinear partial differential 

equations (PDEs) [15]. In their study, Elzaki and Kim utilized an innovative hybrid method that integrates 

the ET with the modified variational iteration method in order to address the radial diffusivity and shock 

wave equations [16-17]. In [13], Aggarwal et al. utilized ET in order to derive the solutions for linear 

Volterra integral equations of the first kind. However, HPETM was employed by Jena and Chakraverty 

in order to derive a solution for the system of time-fractional Navier-Stokes equations [18]. 

 

Nevertheless, it is crucial to acknowledge that the fractional order possesses the capacity to manifest 

both time and space [19-23]. The subject matter at hand concerns the progressive domain of fractional 

partial differential equations (FPDEs), which contain variable order fractional operators [30-31, 33]. A 

plethora of rigorous numerical approaches have been developed and recorded in academic literature, 

with significant contributions from respected scholars in the field. Numerous methods have been put up 

in scholarly works to address mathematical quandaries. The methods encompassed in this set of 

techniques consist of the Adomian Decomposition Method (ADM) [37], the Homotopy Analysis 

Method (HAM) [35], the Homotopy Perturbation Method (HPM) [27-29], the Collocation Method [38], 

the Sumudu Transform Method (STM) [36], the Differential Transformation Method (DTM) [24-25, 

32, 34], and the Variational Iteration Method (VIM) [26].  

 

The main aim of this study is to obtain novel numerical solutions for the conformable time-fractional 

coupled Jaulent-Miodek system using the conformable q-homotopy analysis transform method (Cq-

HATM). The secondary aim of the research is to obtain novel numerical solutions for the conformable 

time-fractional coupled Jaulent-Miodek system with using the conformable Elzaki Adomian 

decomposition method (CEADM). 

 

The following is a comprehensive list of the remaining components of the study. The fundamental 

principles that form the basis of conformable fractional calculus and the Elzaki transform is presented 

in Section 2. In Section 3, new conformable numerical methods are presented. In Section 4, an illustrated 

example of the conformable time-fractional coupled Jaulent-Miodek system is shown. The results are 

given in Section 5. 

 

2.  MATERIAL AND METHOD  

 

This section provides some fundamental definitions. 

 

Definition 2.1. [12, 39-41] Let a function 𝑔: [0,∞) → ℝ. Then, the conformable fractional derivative of 

𝑔 order 𝛼 is defined as  

 

𝑇𝛼(𝑔)(𝑥) = lim
𝜀→0

𝑔(𝑥 + 𝜀𝑥1−𝛼) − 𝑔(𝑥)

𝜀
, 𝛼 ∈ (0, 1]. (2) 
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for all 𝑥 > 0. 
 

Theorem 2.1. [12, 39-41] Let 𝛼 ∈ (0, 1] and 𝑔, ℎ be 𝛼 −differentiable at a point 𝑥 > 0. Then  
 

(𝑖) 𝑇𝛼(𝑎𝑔 + 𝑏ℎ) = 𝑎𝑇𝛼(𝑔) + 𝑏𝑇𝛼(ℎ), for all 𝑎, 𝑏 ∈  ℝ, (3) 

 

(𝑖𝑖)𝑇𝛼(𝑥
𝑝) = 𝑝𝑥𝑝−1, for all 𝑝 ∈ ℝ, (4) 

 
(𝑖𝑖𝑖)𝑇𝛼(𝜆) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠, 𝑓(𝑡) = 𝜆, (5) 

 
(𝑖𝑣)𝑇𝛼(𝑔ℎ) = 𝑔𝑇𝛼(ℎ) + ℎ𝑇𝛼(𝑔), (6) 

 

(𝑣)𝑇𝛼 (
𝑔

ℎ
) =

ℎ𝑇𝛼(𝑔) − 𝑔𝑇𝛼(ℎ)

ℎ2
. (7) 

 

Definition 2.2. [42] Let 0 <  𝛼 ≤ 1, 𝑔: [0,∞) → ℝ  be function. Then, the conformable fractional Elzaki 

transform (CFET) of order 𝛼 of 𝑔 is described as  
 

𝐸𝛼𝑐 [𝑔(𝑡)] = 𝑇𝛼(𝑣) = ∫ 𝑝𝐾𝛼(−𝑝, 𝑡)𝑔(𝑡)𝑑𝛼𝑡,

∞

0

 (8) 

 

where 𝐾𝛼(−𝑝, 𝑡) = 𝐸𝛼 (−
1

𝑝
, 𝑡) , 𝑝 > 0. 

 

Definition 2.3. [42] Let 0 <  𝛼 ≤ 1, 𝑔: [0,∞) → ℝ  be real function. The CFET for the conformable 

fractional derivative of the function 𝑔(𝑡) is defined as  
 

𝐸𝛼𝑐 [𝑇𝛼𝑔(𝑡)](𝑝) =
1

𝑝
𝐸𝛼𝑐 [𝑔(𝑡)](𝑝) − 𝑝𝑔(0). (9) 

 

Definition 2.4. [45] Assume that 0 <  𝛼 ≤ 1, 𝑔: [0,∞) → ℝ  be real function. The conformable 

fractional Laplace transform of order 𝛼 of 𝑔 is defined by  
 

ℒ𝛼[𝑔(𝑡)](𝑠) = 𝐹𝛼(𝑠) = ∫ 𝐸𝛼(−𝑠, 𝑡)𝑔(𝑡)𝑑𝛼𝑡,

∞

0

  

 

where  𝐸𝛼 is Mittag-Leffler function.  

 

2.1. The Novel Numerical Techniques  
 

The part provides an introduction to Cq-HATM and CEADM. 

 

2.1.1. Conformable q-homotopy analysis transform method  

 

Now, we will present a new method. Consider the conformable time-fractional order nonlinear partial 

differential equation (CTFNPDE) to give the main idea of Cq-HATM: 

 

𝑇𝛼𝑢(𝑥, 𝑡) +𝑡 𝐴𝑢(𝑥, 𝑡) + 𝐻𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡), 𝑡 > 0, 𝑛 − 1 < 𝛼 ≤ 𝑛, (10) 
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where 𝐴 is a linear operator, 𝐻 is a nonlinear operator, ℎ(𝑥, 𝑡) is a source term, and 𝑇𝛼𝑡  is a conformable 

fractional derivative of order 𝛼. 
 

Now, by performing conformable Laplace transform (CLT) on Eq. (10) and using initial condition, then 

we get  
 

𝑠ℒ𝛼[𝑢(𝑥, 𝑡)] − 𝑢(𝑥, 0) + ℒ𝛼[𝐴𝑢(𝑥, 𝑡)] + ℒ𝛼[𝐻𝑢(𝑥, 𝑡)] = ℒ𝛼[ℎ(𝑥, 𝑡)].  (11) 
 

If we simplify the Eq. (11), then we have 
  

ℒ𝛼[𝑢(𝑥, 𝑡)] −
1

𝑠
𝑢(𝑥, 0) +

1

𝑠
ℒ𝛼[𝐴𝑢(𝑥, 𝑡)] +

1

𝑠
ℒ𝛼[𝐻𝑢(𝑥, 𝑡)] −

1

𝑠
ℒ𝛼[ℎ(𝑥, 𝑡)] = 0. (12) 

 

We define the nonlinear operator by the assist of HAM for real function 𝜑(𝑥, 𝑡; 𝑞) as follows  

 

𝑁[𝜑(𝑥, 𝑡; 𝑞) ] = ℒ𝛼[𝜑(𝑥, 𝑡; 𝑞) ] −
1

𝑠
𝜑(𝑥, 𝑡; 𝑞) (0+) +

1

𝑠
(ℒ𝛼[𝐴𝜑(𝑥, 𝑡; 𝑞)] 

+ℒ𝛼[𝐻𝜑(𝑥, 𝑡; 𝑞)] − ℒ𝛼[ℎ(𝑥, 𝑡)]), 
(13) 

 

where 𝑞𝜖 [0,
1

𝑛
]. 

 

We establish a homotopy in the following: 

(1 − 𝑛𝑞)ℒ𝛼[𝜑(𝑥, 𝑡; 𝑞) − 𝑢0(𝑥, 𝑡)] = ℎ𝑞𝐻
+(𝑥, 𝑡)𝐻[𝜑(𝑥, 𝑡; 𝑞)], (14) 

 

where, ℎ ≠ 0 is an auxiliary parameter and ℒ𝛼 represents conformable Laplace transform. For 𝑞 = 0 

and 𝑞 =
1

𝑛
, the results in Eq. (14) are respectively provided: 

 

𝜑(𝑥, 𝑡; 0) = 𝑢0(𝑥, 𝑡), 𝜑 (𝑥, 𝑡;
1

𝑛
) = 𝑢(𝑥, 𝑡). (15) 

                                                                                

Therefore, by amplifying 𝑞 from 0 to 
1

𝑛
, then the solution 𝜑(𝑥, 𝑡; 𝑞) converges from 𝑢0(𝑥, 𝑡) to the 

solution 𝑢(𝑥, 𝑡). Employing the Taylor theorem around 𝑞 and expanding 𝜑(𝑥, 𝑡; 𝑞) and then, we obtain 
 

𝜑(𝑥, 𝑡; 𝑞) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑚(𝑥, 𝑡)𝑞
𝑚

∞

𝑚=1

, (16) 

 

where  
 

𝑢𝑚(𝑥, 𝑡) =
1

𝑚!

𝜕𝑚𝜑(𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚
|𝑞=0. (17) 

 

Eq. (16) converges at 𝑞 =
1

𝑛
  for the appropriate 𝑤0(𝑥, 𝑡), 𝑛 and ℎ. Then, we have 

 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

. (18) 

 

If we differentiate the zeroth order deformation of Eq. (14) 𝑚 −times with respect to 𝑞 and we divide 

by 𝑚!, respectively,  then for 𝑞 = 0, we obtain 
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ℒ𝛼[𝑢𝑚(𝑥, 𝑡) − 𝑘𝑚𝑢𝑚−1(𝑥, 𝑡)] = ℎ𝐻
+(𝑥, 𝑡)ℛ𝑚(�⃗� 𝑚−1), (19) 

 

where the vectors are defined by 
 

�⃗� 𝑚 = {𝑢0(𝑥, 𝑡), 𝑢1(𝑥, 𝑡), … , 𝑢𝑚(𝑥, 𝑡)}. (20) 
 

When we apply to the inverse CLT to Eq. (19), then we obtain 
 

𝑢𝑚(𝑥, 𝑡) = 𝑘𝑚𝑢𝑚−1(𝑥, 𝑡) + ℎℒ𝛼
−1[𝐻+(𝑥, 𝑡)ℛ𝑚(�⃗� 𝑚−1)], (21) 

 

where 

 

ℛ𝑚(�⃗� 𝑚−1) = ℒ𝛼[𝑢𝑚−1(𝑥, 𝑡)] − (1 −
𝑘𝑚
𝑛
)
1

𝑠
𝑢0(𝑥, 𝑡) +

1

𝑠
ℒ𝛼(𝐴𝑢𝑚−1(𝑥, 𝑡) + 𝐻𝑚−1(𝑥, 𝑡)  

 

−ℎ(𝑥, 𝑡)), (22) 

 

and  
 

𝑘𝑚 = {
0, 𝑚 ≤ 1,
𝑛, 𝑚 > 1.

             (23) 

 

where, 𝐻𝑚
+  is homotopy polynomial and presented as 

𝐻𝑚
+ =

1

𝑚!

𝜕𝑚𝜑(𝑥,𝑡;𝑞)

𝜕𝑞𝑚
|𝑞=0   and 𝜑(𝑥, 𝑡; 𝑞) = 𝜑0 + 𝑞𝜑1 + 𝑞

2𝜑2 +⋯. (24) 

 

By utilizing Eqs. (21)-(22), then we obtain  
 

𝑢𝑚(𝑥, 𝑡) = (𝑘𝑚 + ℎ)𝑢𝑚−1(𝑥, 𝑡) − (1 −
𝑘𝑚
𝑛
)
1

𝑠
𝑢0(𝑥, 𝑡) + hℒ𝛼

−1 [(
1

𝑠
ℒ𝛼[𝐴𝑢𝑚−1(𝑥, 𝑡) 

 

 

 

+𝐻𝑚−1(𝑥, 𝑡) − 𝑓(𝑥, 𝑡)])]. (25) 

 

By using q-HATM, the series solution is  
 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑚(𝑥, 𝑡)

∞

𝑚=0

(
1

𝑛
)
𝑚

. (26) 

 

2.1.2. Conformable Elzaki Adomian decomposition method 
 

The examination of CTFNPDE in Eq. (10) is conducted: 

Now, by performing CFET on Eq. (10) and using initial condition, then we have  
 
1

𝑣
𝐸𝛼𝑐 [𝑢(𝑥, 𝑡)] − 𝑣𝑢(𝑥, 0) + 𝐸𝛼𝑐 [𝐴𝑢(𝑥, 𝑡) + 𝐻𝑢(𝑥, 𝑡)] = 𝐸𝛼𝑐 [ℎ(𝑥, 𝑡)].  (27) 

 

If we simplify the Eq. (27), then we get 
 

𝐸𝛼𝑐 [𝑢(𝑥, 𝑡)] = 𝑣2𝑢(𝑥, 0) + 𝑣 𝐸𝛼𝑐 [ℎ(𝑥, 𝑡)] − 𝑣 𝐸𝛼𝑐 [𝐴𝑢(𝑥, 𝑡) + 𝐻𝑢(𝑥, 𝑡)]. (28) 

         

On applying inverse CFET to Eq. (28), then we have 
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𝑢(𝑥, 𝑡) = 𝐶(𝑥, 𝑡) − ( 𝐸𝛼𝑐 )
−1
{𝑣 𝐸𝛼𝑐 [𝐴𝑢(𝑥, 𝑡) + 𝐻𝑢(𝑥, 𝑡)]}, (29) 

 

where 𝐶(𝑥, 𝑡) is obtained from initial condition and non-homogeneous term. Now, assume that, the 

infinite series solution is of the form: 
 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑚(𝑥, 𝑡).

∞

𝑚=0

 (30) 

 

By employing Eqs. (29) and (30), then we have 
 

∑ 𝑢𝑚(𝑥, 𝑡)

∞

𝑚=0

= 𝐶(𝑥, 𝑡) − ( 𝐸𝛼𝑐 )
−1
{𝑣 𝐸𝛼𝑐 [𝐴 ∑ 𝑢𝑚

∞

𝑚=0

(𝑥, 𝑡) + ∑ 𝐵𝑚(𝑢𝑚(𝑥, 𝑡))

∞

𝑚=0

]}, (31) 

 

where 𝐵𝑚(𝑢𝑚) is Adomian polynomial and that denotes the nonlinear term 𝐻𝑢(𝑥, 𝑡). By comparing 

both of sides of Eq. (31), we have  
 

𝑢0(𝑥, 𝑡) = 𝐶(𝑥, 𝑡), (32) 

 

𝑢1(𝑥, 𝑡) = −( 𝐸𝛼𝑐 )
−1
{𝑣 𝐸𝛼𝑐 [𝑢0(𝑥, 𝑡) + 𝐵0]}, (33) 

 

𝑢2(𝑥, 𝑡) = −( 𝐸𝛼𝑐 )
−1
{𝑣 𝐸𝛼𝑐 [𝑢1(𝑥, 𝑡) + 𝐵1]}, (34) 

 

⋮ 
 

In a similar manner, the general recursive relation is derived by 
 

𝑢𝑚+1(𝑥, 𝑡) = −( 𝐸𝛼𝑐 )
−1
{𝑣 𝐸𝛼𝑐 [𝑢𝑚(𝑥, 𝑡) + 𝐵𝑚]},𝑚 ≥ 1, (35) 

 

Ultimately, the solution 𝑢(𝑥, 𝑡) is approximated as follows. 

 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑚(𝑥, 𝑡)

∞

𝑚=0

 (36) 

 

3. RESULTS  

  

The part aims to present visual representations of the conformable time-fractional coupled Jaulent-

Miodek  system..  

 

Example 3.1. [43-44] Consider the conformable time-fractional coupled Jaulent-Miodek system 

(CTFCJMS)  

 

{
 
 

 
 

 

𝑢𝑡
𝛼 + 𝑢𝑥𝑥𝑥 +

3

2
𝑤𝑤𝑥𝑥𝑥 +

9

2
𝑤𝑥𝑤𝑥𝑥 − 6𝑢𝑢𝑥 − 6𝑢𝑤𝑤𝑥 −

3

2
𝑢𝑥𝑤

2 = 0,

𝑤𝑡
𝛼 +𝑤𝑥𝑥𝑥 − 6𝑤𝑢𝑥 − 6𝑢𝑤𝑥 −

15

2
𝑤𝑥𝑤

2 = 0,

0 < α ≤ 1, 0 < t ≤ 1,−10 ≤ x ≤ 10,

 (37) 

 

with the initial conditions  
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𝑢(𝑥, 0) =
1

8
𝜆2 (1 − 4𝑠𝑒𝑐ℎ2 (

𝜆𝑥

2
)) ,

𝑤(𝑥, 0) = 𝜆𝑠𝑒𝑐ℎ (
𝜆𝑥

2
) .

 (38) 

 

Case (i) Cq-HATM solution 
 

CLT is employed to Eq. (37), and by applying Eq. (38), the resulting expression is produced as 

 

ℒ𝛼[𝑢(𝑥, 𝑡)] −
𝑢(𝑥, 0)

𝑠
+
1

𝑠
ℒ𝛼(𝑢𝑥𝑥𝑥 +

3

2
𝑤𝑤𝑥𝑥𝑥 +

9

2
𝑤𝑥 . 𝑤𝑥𝑥 − 6𝑢𝑢𝑥 − 6𝑢𝑤𝑤𝑥 −

3

2
𝑢𝑥𝑤

2) = 0,

      ℒ𝛼[𝑤] −
1

𝑠
𝑤(𝑥, 0) +

1

𝑠
ℒ𝛼 [𝑤𝑥𝑥𝑥 − 6𝑤𝑢𝑥 − 6𝑢𝑤𝑥 −

15

2
𝑤𝑥𝑤

2] = 0.

 
(39

) 

 

The nonlinear operators are defined by employing Eq. (39): 

 

𝑁1[𝜑(𝑥, 𝑡; 𝑞),ψ(𝑥, 𝑡; 𝑞)] = ℒ𝛼[𝜑(𝑥, 𝑡; 𝑞)] −
1

𝑠
(
1

8
𝜆2 (1 − 4𝑠𝑒𝑐ℎ2 (

𝜆𝑥

2
))) 

+
1

𝑠
ℒ𝛼 [

𝜕3𝜑

𝜕𝑥3
+
3

2
𝜓
𝜕3𝜓

𝜕𝑥3
+
9

2

𝜕𝜓

𝜕𝑥
.
𝜕2𝜓

𝜕𝑥2
− 6𝜑

𝜕𝜑

𝜕𝑥
− 6𝜑𝜓

𝜕𝜓

𝜕𝑥
−
3

2

𝜕𝜑

𝜕𝑥
𝜓2] 

(40) 

 

𝑁2[𝜑(𝑥, 𝑡; 𝑞),ψ(𝑥, 𝑡; 𝑞)] = ℒ𝛼[𝜓(𝑥, 𝑡; 𝑞)] −
1

𝑠
(𝜆𝑠𝑒𝑐ℎ (

𝜆𝑥

2
)) 

+  
1

𝑠
ℒ𝛼 [

𝜕3𝜓

𝜕𝑥3
− 6𝜓

𝜕𝜑

𝜕𝑥
− 6𝜑

𝜕𝜓

𝜕𝑥
−
15

2
𝜓2
𝜕𝜓

𝜕𝑥
]. 

(41) 

 

The 𝑚− 𝑡ℎ order deformation equations are defined by the application of the proposed algorithm: 

 

ℒ𝛼[𝑢𝑚(𝑥, 𝑡) − 𝑘𝑚𝑢𝑚−1(𝑥, 𝑡)] = ℎℛ1,𝑚[�⃗� 𝑚−1, �⃗⃗� 𝑚−1], (42) 

 

ℒ𝛼[𝑤𝑚(𝑥, 𝑡) − 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡)] = ℎℛ2,𝑚[�⃗� 𝑚−1, �⃗⃗� 𝑚−1], (43) 

 

where 

 

ℛ1,𝑚[�⃗� 𝑚−1, �⃗⃗� 𝑚−1]  =   ℒ𝛼[𝑢𝑚−1] −
1

𝑠
(1 −

𝑘𝑚

𝑛
)(
1

8
𝜆2 (1 − 4𝑠𝑒𝑐ℎ2 (

𝜆𝑥

2
))  

 

 

+
1

𝑠
ℒ𝛼 [

𝜕3𝑢𝑚−1
𝜕𝑥3

+
3

2
∑ 𝑤𝑟

𝑚−1

𝑟=0

𝜕3𝑤𝑚−1−𝑟
𝜕𝑥3

+
9

2
∑

𝜕𝑤𝑟
𝜕𝑥

𝑚−1

𝑟=0

𝜕2𝑤𝑚−1−𝑟
𝜕𝑥2

− 6 ∑ 𝑢𝑟

𝑚−1

𝑟=0

𝜕𝑢𝑚−1−𝑟
𝜕𝑥

 

−6 ∑ (∑𝑢𝑗𝑤𝑟−𝑗

𝑟

𝑗=0

)
𝜕𝑤𝑚−1−𝑟

𝜕𝑥

𝑚−1

𝑟=0

−
3

2
∑ (∑𝑤𝑗𝑤𝑟−𝑗 

𝑟

𝑗=0

)
𝜕𝑤𝑚−1−𝑟

𝜕𝑥

𝑚−1

𝑟=0

], 

 

(44) 
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ℛ2,𝑚[�⃗� 𝑚−1, �⃗⃗� 𝑚−1] = ℒ𝛼[𝑤𝑚−1] −
1

𝑠
(1 −

𝑘𝑚

𝑛
)(𝜆𝑠𝑒𝑐ℎ (

𝜆𝑥

2
))  

+
1

𝑠
ℒ𝛼 [

𝜕3𝑢𝑚−𝑟
𝜕𝑥3

− 6 ∑ 𝑤𝑟

𝑚−1

𝑟=0

𝜕𝑢𝑚−1−𝑟
𝜕𝑥

− 6 ∑ 𝑢𝑟
𝜕𝑤𝑚−1−𝑟

𝜕𝑥

𝑚−1

𝑟=0

−
15

2
∑ (∑𝑤𝑗𝑤𝑟−𝑗 

𝑟

𝑗=0

)
𝜕𝑤𝑚−1−𝑟

𝜕𝑥

𝑚−1

𝑟=0

]. 

(45) 

 

By utilizing the inverse CLT to Eqs. (42)-(43), we obtain 
 

𝑢𝑚(𝑥, 𝑡) = 𝑘𝑚𝑢𝑚−1(𝑥, 𝑡) + ℎℒ𝛼
−1{ℛ1,𝑚[�⃗� 𝑚−1, �⃗⃗� 𝑚−1]}, (46) 

 

𝑤𝑚(𝑥, 𝑡) = 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡) + ℎℒ𝛼
−1{ℛ2,𝑚[�⃗� 𝑚−1, �⃗⃗� 𝑚−1]}. (47) 

 

By employing initial conditions, we are able to drive 
 

𝑢0(𝑥, 𝑡) =
1

8
𝜆2 (1 − 4𝑠𝑒𝑐ℎ2 (

𝜆𝑥

2
)), (48) 

 

𝑤0(𝑥, 𝑡) = 𝜆𝑠𝑒𝑐ℎ (
𝜆𝑥

2
). (49) 

 

To get the values of 𝑢1(𝑥, 𝑡) and 𝑤1(𝑥, 𝑡), we substitute 𝑚 = 1 into Eqs. (46)-(47), resulting in the 

following expressions:  
 

          𝑢1(𝑥, 𝑡) = −ℎ
sinh (

𝜆𝑥
2
)𝜆5𝑡𝛼

4𝛼𝑐𝑜𝑠ℎ3(
𝜆𝑥
2 )

, (50) 

 

 𝑤1(𝑥, 𝑡) = ℎ
𝑡𝛼𝜆4 sinh (

𝜆𝑥
2
)

4𝛼 cosh2 (
𝜆𝑥
2 )

. (51) 

 

In a similar vein, by substituting 𝑚 = 2 into Eqs. (46)-(47), the resulting values for 𝑢2(𝑥, 𝑡) and 𝑤2(𝑥, 𝑡) 
can be obtained: 

 

          𝑢2(𝑥, 𝑡) = −(𝑛 + ℎ)ℎ
𝑡𝛼𝜆5 sinh (

𝜆𝑥
2 )

4𝛼 cosh3 (
𝜆𝑥
2 )

− ℎ2(
𝑡2𝛼𝜆8 (cosh2 (

𝜆𝑥
2 ) −

3
2)

16𝛼2 cosh4 (
𝜆𝑥
2 )

), (52) 

 

          𝑤2(𝑥, 𝑡) = (𝑛 + ℎ)ℎ
𝑡𝛼𝜆4 sinh (

𝜆𝑥
2 )

4𝛼 cosh2 (
𝜆𝑥
2 )

+ ℎ2(
𝑡2𝛼𝜆7 (cosh2 (

𝜆𝑥
2 ) − 2)

32𝛼2 cosh3 (
𝜆𝑥
2 )

). (53) 

 

By employing this approach, it is possible to identify the remaining terms. The solutions of the 

CTFCJMS are determined through the Cq-HATM: 
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  𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

, (54) 

 

 𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) + ∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

. (55) 

 

By substituting 𝛼 = 1, 𝑛 = 1, ℎ = −1 into Eqs. (54)-(55), we have that the resulting outcomes, denoted 

as ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

𝑀
𝑚=1 and ∑ 𝑤𝑚(𝑥, 𝑡) (

1

𝑛
)
𝑚

𝑀
𝑚=1 , respectively, converge to the exact solutions 

𝑢(𝑥, 𝑡) = 𝜉 − 𝜅coth[𝜅(𝑥 + 𝜃 − 𝜉𝑡)] and  𝑤(𝑥, 𝑡) = −𝜅2cosech2[𝜅(𝑥 + 𝜃 − 𝜉𝑡)] of the CTFCJMS 

when 𝑀 → ∞.  
 

Case (ii) CEADM solution 
 

By employing the CFET to Eq. (37) and utilizing Eq. (38), the resulting expression is obtained. 
 

 
1

𝑣
𝐸𝛼
𝑐{𝑢(𝑥, 𝑡)} − 𝑣𝑢(𝑥, 0)

+ 𝐸𝛼
𝑐 [
𝜕3𝑢

𝜕𝑥3
+
3

2
𝑤
𝜕3𝑤

𝜕𝑥3
+
9

2

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2
−6𝑢

𝜕𝑢

𝜕𝑥
− 6𝑢𝑤

𝜕𝑤

𝜕𝑥
− 
3

2

𝜕𝑢

𝜕𝑥
𝑤2] = 0, 

(56) 

 

1

𝑣
𝐸𝛼
𝑐{𝑤(𝑥, 𝑡)} − 𝑣𝑤(𝑥, 0) + 𝐸𝛼

𝑐 [
𝜕3𝑤

𝜕𝑥3
− 6𝑤

𝜕𝑢

𝜕𝑥
− 6𝑢

𝜕𝑤

𝜕𝑥
−
15

2

𝜕𝑤

𝜕𝑥
𝑤2] = 0. (57) 

 

Rearranging Eqs. (56)-(57), then we obtain 
 

 𝐸𝛼
𝑐{𝑢(𝑥, 𝑡)} = 𝑣2 𝑢(𝑥, 0)

− 𝑣𝐸𝛼
𝑐 [
𝜕3𝑢

𝜕𝑥3
+
3

2
𝑤
𝜕3𝑤

𝜕𝑥3
+
9

2

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2
−6𝑢

𝜕𝑢

𝜕𝑥
− 6𝑢𝑤

𝜕𝑤

𝜕𝑥
− 
3

2

𝜕𝑢

𝜕𝑥
𝑤2], 

(58) 

 

𝐸𝛼
𝑐{𝑤(𝑥, 𝑡)} = 𝑣2 𝑤(𝑥, 0) − 𝑣𝐸𝛼

𝑐 [
𝜕3𝑤

𝜕𝑥3
− 6𝑤

𝜕𝑢

𝜕𝑥
− 6𝑢

𝜕𝑤

𝜕𝑥
−
15

2

𝜕𝑤

𝜕𝑥
𝑤2]. (59) 

 

By utilizing the inverse CFET on Eqs. (58)-(59), we are able to derive the following result: 
 

𝑢(𝑥, 𝑡) =
1

8
𝜆2 (1 − 4sech2 [

𝜆𝑥

2
]) − (𝐸𝛼

𝑐)−1{𝑣𝐸𝛼
𝑐 [
𝜕3𝑢

𝜕𝑥3
+
3

2
𝑤
𝜕3𝑤

𝜕𝑥3
+
9

2

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2
− 6𝑢

𝜕𝑢

𝜕𝑥
 

−6𝑢𝑤
𝜕𝑤

𝜕𝑥
−
3

2

𝜕𝑢

𝜕𝑥
𝑤2]}, 

 

(60) 

 

𝑤(𝑥, 𝑡) = 𝜆sech [
𝜆𝑥

2
] − (𝐸𝛼

𝑐)−1 {𝑣𝐸𝛼
𝑐 [
𝜕3𝑤

𝜕𝑥3
− 6𝑤

𝜕𝑢

𝜕𝑥
− 6𝑢

𝜕𝑤

𝜕𝑥
−
15

2

𝜕𝑤

𝜕𝑥
𝑤2] . (61) 

            

Let us consider the assumption that the answer to the infinite series can be expressed in the following 

form: 
 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑚(𝑥, 𝑡)

∞

𝑚=0

, (62) 
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𝑤(𝑥, 𝑡) = ∑ 𝑤𝑚(𝑥, 𝑡)

∞

𝑚=0

. (63) 

 

Utilizing Adomian decomposition method,  if we rewrite Eqs. (62)-(63), then it is obtained as 
 

∑ 𝑢𝑚(𝑥, 𝑡)

∞

𝑚=0

=
1

8
𝜆2 (1 − 4sech2 [

𝜆𝑥

2
]) − (𝐸𝛼

𝑐)−1 {𝑣𝐸𝛼
𝑐 [
𝜕3𝑢𝑚−1(𝑥, 𝑡)

𝜕𝑥3
   

  +
3

2
∑ 𝐴𝑚

∞

𝑚=0

+
9

2
∑ 𝐵𝑚

∞

𝑚=0

− 6 ∑ 𝐶𝑚

∞

𝑚=0

−6 ∑ 𝐸𝑚

∞

𝑚=0

−
3

2
∑ 𝐹𝑚

∞

𝑚=0

]}, (64) 

 

∑ 𝑤𝑚(𝑥, 𝑡)

∞

𝑚=0

= 𝜆sech [
𝜆𝑥

2
]

− (𝐸𝛼
𝑐)−1 {𝑣𝐸𝛼

𝑐 [
𝜕3𝑤𝑚−1(𝑥, 𝑡)

𝜕𝑥3
− 6 ∑ 𝐺𝑚

∞

𝑚=0

−6 ∑ 𝐻𝑚

∞

𝑚=0

−
15

2
∑ 𝐾𝑚

∞

𝑚=0

}, 

(65) 

 

where 𝐴𝑚, 𝐵𝑚, 𝐶𝑚, 𝐸𝑚, 𝐹𝑚, 𝐺𝑚, 𝐻𝑚, 𝐾𝑚 are Adomian polynomials of the form 𝑤
𝜕3𝑤

𝜕𝑥3
= ∑ 𝐴𝑚

∞
𝑚=0 ,

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2
= ∑ 𝐵𝑚

∞
𝑚=0 , 𝑢

𝜕𝑢

𝜕𝑥
= ∑ 𝐶𝑚

∞
𝑚=0 , 𝑢𝑤

𝜕𝑤

𝜕𝑥
= ∑ 𝐸𝑚

∞
𝑚=0 , 𝑤2 𝜕𝑢

𝜕𝑥
= ∑ 𝐹𝑚

∞
𝑚=0 , 𝑤

𝜕𝑤

𝜕𝑥
=

∑ 𝐺𝑚
∞
𝑚=0 , 𝑢

𝜕𝑤

𝜕𝑥
= ∑ 𝐻𝑚

∞
𝑚=0 , 𝑤2 𝜕𝑤

𝜕𝑥
= ∑ 𝐾𝑚 

∞
𝑚=0 .  

 

By taking both sides of Eqs. (64)-(65) and making use of the initial condition (38) and Eqs. (64)-(65), 

we simply obtain the following iterations: 
 

          𝑢0(𝑥, 𝑡) =
1

8
𝜆2 (1 − 4sech2 [

𝜆𝑥

2
]), (66) 

 

          𝑤0(𝑥, 𝑡) = 𝜆sech [
𝜆𝑥

2
], (67) 

 

          𝑢1(𝑥, 𝑡) =
𝑡𝛼𝜆5 sinh (

𝜆𝑥
2 )

4𝛼 cosh3 (
𝜆𝑥
2
)
, (68) 

 

          𝑤1(𝑥, 𝑡) = −
𝑡𝛼𝜆4 sinh (

𝜆𝑥
2 )

4𝛼 cosh2 (
𝜆𝑥
2 )

, (69) 

 

          𝑢2(𝑥, 𝑡) = −(
𝑡2𝛼𝜆8 (2 cosh2 (

𝜆𝑥
2 ) − 3)

32𝛼2 cosh4 (
𝜆𝑥
2 )

), (68) 

 

          𝑤2(𝑥, 𝑡) = (
𝑡2𝛼𝜆7 (cosh2 (

𝜆𝑥
2 ) − 2)

32𝛼2 cosh3 (
𝜆𝑥
2 )

). (69) 
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By continuing in a similar manner, the outcomes for CTFCJMS can be derived. 
 

 𝑢(𝑥, 𝑡) = ∑ 𝑢𝑚(𝑥, 𝑡)

∞

𝑚=0

= 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + ⋯  

  =
1

8
𝜆2 (1 − 4sech2 [

𝜆𝑥

2
]) +

𝑡𝛼𝜆5 sinh (
𝜆𝑥
2 )

4𝛼 cosh3 (
𝜆𝑥
2 )

 − (
𝑡2𝛼𝜆8 (2 cosh2 (

𝜆𝑥
2 ) − 3)

32𝛼2 cosh4 (
𝜆𝑥
2 )

), (70) 

 

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑚(𝑥, 𝑡)

∞

𝑚=0

= 𝑤0(𝑥, 𝑡) + 𝑤1(𝑥, 𝑡) + 𝑤2(𝑥, 𝑡) + ⋯    

 = 𝜆sech [
𝜆𝑥

2
] −

𝑡𝛼𝜆4 sinh (
𝜆𝑥
2
)

4𝛼 cosh2 (
𝜆𝑥
2
)
+ (

𝑡2𝛼𝜆7 (cosh2 (
𝜆𝑥
2
) − 2)

32𝛼2 cosh3 (
𝜆𝑥
2
)

). (71) 

 

Figure 1 displays the 3D graphical representations of Cq-HATM, the exact solution, and the absolute 

error for 𝑢(𝑥, 𝑡) and 𝑤(𝑥, 𝑡). 
 

 
 
Figure 1. (a) Nature of Cq-HATM solution 𝑢(𝑥, 𝑡) (b) Nature of exact solution 𝑢(𝑥, 𝑡) (c) Nature of Cq-HATM solution 

𝑤(𝑥, 𝑡)  (d) Nature of exact solution 𝑤(𝑥, 𝑡) (e) Nature of absolute error=|𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝐶𝑞−𝐻𝐴𝑇𝑀| (f) Nature of absolute 

error=|𝑤𝑒𝑥𝑎𝑐𝑡 − 𝑤𝐶𝑞−𝑀𝐻𝐴𝑇𝑀| at  𝜆 = 0.5, ℎ = −1, 𝑛 = 1, 𝛼 = 1 for Ex. 3.1. 

 

Figure 2 presents the three-dimensional graphical depictions of CEADM, the exact solution, and the 

absolute error for 𝑢(𝑥, 𝑡) and 𝑤(𝑥, 𝑡). 
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Figure 2. (a) Nature of CEADM solution 𝑢(𝑥, 𝑡) (b) Nature of exact solution 𝑢(𝑥, 𝑡) (c) Nature of CEADM solution 𝑤(𝑥, 𝑡)  
(d) Nature of exact solution 𝑤(𝑥, 𝑡) (e) Nature of absolute error=|𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢CEADM| (f) Nature of absolute 

error=|𝑤𝑒𝑥𝑎𝑐𝑡 − 𝑤CEADM| at 𝜆 = 0.5, 𝛼 = 1 for Ex. 3.1. 

 

Figure 3 shows the two-dimensional graphical representations of Cq-HATM for 𝑢(𝑥, 𝑡), 𝑤(𝑥, 𝑡) 
solutions and the exact solution for different 𝛼 values. 

 

  
 

 

Figure 3. The comparison of the Cq-HATM solutions for 𝑢(𝑥, 𝑡) and exact solution (b) The comparison of the Cq-HATM 

solutions for 𝑤(𝑥, 𝑡) and exact solution at 𝜆 = 0.5, ℎ = −1, 𝑛 = 1, 𝑥 = 0.5 with different 𝛼. 
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Figure 4 displays the graphical depictions of CEADM for the solutions 𝑢(𝑥, 𝑡) and 𝑤(𝑥, 𝑡), as well as the 

exact solution, in a two-dimensional format. These representations vary based on the different 𝛼 values. 
 

 
 

  
Figure 4. The comparison of the CEADM solutions for 𝑢(𝑥, 𝑡) and exact solution (b) The comparison of the CEADM solutions 

s for 𝑤(𝑥, 𝑡) and exact solution at 𝜆 = 0.5, 𝑥 = 0.5 with different 𝛼. 
 

Table 1 shows the numerical solution of 𝑢(𝑥, 𝑡) obtained from the solution of CTFCJMS with Cq-

HATM for different 𝑥, 𝑡 and 𝛼 values. 
 

Table 1. Numerical solution of 𝑢(𝑥, 𝑡) by Cq-HATM for CTFCJMS with different 𝑥, 𝑡 and 𝛼 at 𝜆 = 0.5, 𝑛 = 1, ℎ = −1.  
 

𝒙 𝒕 𝜶 = 𝟎. 𝟕𝟓 𝜶 = 𝟎. 𝟖𝟎 𝜶 = 𝟎. 𝟖𝟓 𝜶 = 𝟎. 𝟗𝟎 𝜶 = 𝟏 

0.1 0.001 1.2 × 10−6 7.7 × 10−7 4.5 × 10−7 2.3 × 10−7 2.5 × 10−16 

 0.002 2.0 × 10−6 1.3 × 10−6 7.7 × 10−7 4.1 × 10−7 2.0 × 10−15 

 0.003 2.7 × 10−6 1.7 × 10−6 1.0 × 10−6 5.8 × 10−7 6.8 × 10−15 

 0.004 3.4 × 10−6 2.1 × 10−6 1.3 × 10−6 7.3 × 10−7 1.6 × 10−14 

 0.005 3.9 × 10−6 2.5 × 10−6 1.5 × 10−6 8.7 × 10−7 3.1 × 10−14 

0.2 0.001 2.5 × 10−6 1.5 × 10−6 9.0 × 10−7 4.7 × 10−7 5.0 × 10−16 

 0.002 4.1 × 10−6 2.6 × 10−6 1.5 × 10−6 8.3 × 10−7 4.0 × 10−15 

 0.003 5.5 × 10−6 3.5 × 10−6 2.1 × 10−6 1.1 × 10−6 1.3 × 10−14 

 0.004 6.7 × 10−6 4.3 × 10−6 2.6 × 10−6 1.4 × 10−6 3.2 × 10−14 

 0.005 7.8 × 10−6 5.1 × 10−6 3.1 × 10−6 1.7 × 10−6 6.3 × 10−14 

0.3 0.001 3.7 × 10−6 2.3 × 10−6 1.3 × 10−6 7.0 × 10−7 7.5 × 10−16 

 0.002 6.1 × 10−6 3.8 × 10−6 2.3 × 10−6 1.2 × 10−6 6.0 × 10−15 

 0.003 8.2 × 10−6 5.2 × 10−6 3.1 × 10−6 1.7 × 10−6 2.0 × 10−14 

 0.004 1.0 × 10−5 6.4 × 10−6 3.9 × 10−6 2.1 × 10−6 4.8 × 10−14 

 0.005 1.1 × 10−5 7.6 × 10−6 4.6 × 10−6 2.5 × 10−6 9.3 × 10−14 

0.4 0.001 5.0 × 10−6 3.0 × 10−6 1.7 × 10−6 9.3 × 10−7 9.8 × 10−16 

 0.002 8.1 × 10−6 5.1 × 10−6 3.0 × 10−6 1.6 × 10−6 7.9 × 10−15 

 0.003 1.0 × 10−5 6.9 × 10−6 4.1 × 10−6 2.2 × 10−6 2.6 × 10−14 

 0.004 1.3 × 10−5 8.5 × 10−6 5.2 × 10−6 2.8 × 10−6 6.3 × 10−14 

 0.005 1.5 × 10−5 1.0 × 10−5 6.2 × 10−6 3.4 × 10−6 1.2 × 10−13 

0.5 0.001 6.2 × 10−6 3.8 × 10−6 2.2 × 10−6 1.1 × 10−6 1.2 × 10−15 

 0.002 1.0 × 10−5 6.3 × 10−6 3.8 × 10−6 2.0 × 10−6 9.7 × 10−15 

 0.003 1.3 × 10−5 8.6 × 10−6 5.2 × 10−6 2.8 × 10−6 3.2 × 10−14 

 0.004 1.6 × 10−5 1.0 × 10−5 6.4 × 10−6 3.5 × 10−6 7.7 × 10−14 

 0.005 1.9 × 10−5 1.2 × 10−5 7.6 × 10−6 4.2 × 10−6 1.5 × 10−13 

 

Table 2 presents the numerical solution of the function 𝑤(𝑥, 𝑡), which was derived from the solution of 

the CTFCJMS using the Cq-HATM. The table displays the results for various values of 𝑥, 𝑡, and 𝛼. 
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Table 2. Numerical solution of 𝑤(𝑥, 𝑡) by Cq-HATM for CTFCJMS with different 𝑥, 𝑡 and 𝛼 at 𝜆 = 0.5, 𝑛 = 1, ℎ = −1. 
 

𝒙 𝒕 𝜶 = 𝟎. 𝟕𝟓 𝜶 = 𝟎. 𝟖𝟎 𝜶 = 𝟎. 𝟖𝟓 𝜶 = 𝟎. 𝟗𝟎 𝜶 = 𝟏 

0.1 0.001 2.5 × 10−6 1.5 × 10−6 9.0 × 10−7 4.7 × 10−7 3.1 × 10−16 

 0.002 4.1 × 10−6 2.6 × 10−6 1.5 × 10−6 8.3 × 10−7 2.5 × 10−15 

 0.003 5.5 × 10−6 3.5 × 10−6 2.1 × 10−6 1.1 × 10−6 8.5 × 10−15 

 0.004 6.8 × 10−6 4.3 × 10−6 2.6 × 10−6 1.4 × 10−6 2.0 × 10−14 

 0.005 7.9 × 10−6 5.1 × 10−6 3.1 × 10−6 1.7 × 10−6 3.9 × 10−14 

0.2 0.001 5.0 × 10−6 3.1 × 10−6 1.8 × 10−6 9.4 × 10−7 6.3 × 10−16 

 0.002 8.3 × 10−6 5.2 × 10−6 3.1 × 10−6 1.6 × 10−6 5.0 × 10−15 

 0.003 1.1 × 10−5 7.0 × 10−6 4.2 × 10−6 2.3 × 10−6 1.7 × 10−14 

 0.004 1.3 × 10−5 8.6 × 10−6 5.3 × 10−6 2.9 × 10−6 4.0 × 10−14 

 0.005 1.5 × 10−5 1.0 × 10−5 6.2 × 10−6 3.4 × 10−6 7.9 × 10−14 

0.3 0.001 7.5 × 10−6 4.6 × 10−6 2.7 × 10−6 1.4 × 10−6 9.4 × 10−16 

 0.002 1.2 × 10−5 7.7 × 10−6 4.6 × 10−6 2.4 × 10−6 7.5 × 10−15 

 0.003 1.6 × 10−5 1.0 × 10−5 6.3 × 10−6 3.4 × 10−6 2.5 × 10−14 

 0.004 2.0 × 10−5 1.2 × 10−5 7.9 × 10−6 4.3 × 10−6 6.0 × 10−14 

 0.005 2.3 × 10−5 1.5 × 10−5 9.3 × 10−6 5.1 × 10−6 1.1 × 10−13 

0.4 0.001 1.0 × 10−5 6.1 × 10−6 3.5 × 10−6 1.8 × 10−6 1.2 × 10−15 

 0.002 1.6 × 10−5 1.0 × 10−5 6.1 × 10−6 3.3 × 10−6 9.9 × 10−15 

 0.003 2.1 × 10−5 1.3 × 10−5 8.4 × 10−6 4.5 × 10−6 3.3 × 10−14 

 0.004 2.6 × 10−5 1.7 × 10−5 1.0 × 10−5 5.7 × 10−6 7.9 × 10−14 

 0.005 3.1 × 10−5 2.0 × 10−5 1.2 × 10−5 6.8 × 10−6 1.5 × 10−13 

0.5 0.001 1.2 × 10−5 7.6 × 10−6 4.4 × 10−6 2.3 × 10−6 1.5 × 10−15 

 0.002 2.0 × 10−5 1.2 × 10−5 7.6 × 10−5 4.1 × 10−6 1.2 × 10−14 

 0.003 2.7 × 10−5 1.7 × 10−5 1.0 × 10−5 5.7 × 10−6 4.1 × 10−14 

 0.004 3.3 × 10−5 2.1 × 10−5 1.3 × 10−5 7.1 × 10−6 9.8 × 10−14 

 0.005 3.8 × 10−5 2.5 × 10−5 1.5 × 10−5 8.5 × 10−6 1.9 × 10−13 
 

Table 3 demonstrates the numerical solution of 𝑢(𝑥, 𝑡) obtained from the solution of CTFCJMS with 
CEADM for distinct 𝑥, 𝑡 and 𝛼 values. 
 

Table 3. Numerical solution of 𝑢(𝑥, 𝑡) by CEADM for CTFCJMS with different 𝑥, 𝑡 and 𝛼 at 𝜆 = 0.5. 
 

𝒙 𝒕 𝜶 = 𝟎. 𝟕𝟓 𝜶 = 𝟎. 𝟖𝟎 𝜶 = 𝟎. 𝟖𝟓 𝜶 = 𝟎. 𝟗𝟎 𝜶 = 𝟏 

0.1 0.001 1.2 × 10−6 7.7 × 10−7 4.5 × 10−7 2.3 × 10−7 2.5 × 10−16 

 0.002 2.0 × 10−6 1.3 × 10−6 7.7 × 10−7 4.1 × 10−7 2.0 × 10−15 

 0.003 2.7 × 10−6 1.7 × 10−6 1.0 × 10−6 5.8 × 10−7 6.8 × 10−15 

 0.004 3.4 × 10−6 2.1 × 10−6 1.3 × 10−6 7.3 × 10−7 1.6 × 10−14 

 0.005 3.9 × 10−6 2.5 × 10−6 1.5 × 10−6 8.7 × 10−7 3.1 × 10−14 

0.2 0.001 2.5 × 10−6 1.5 × 10−6 9.0 × 10−7 4.7 × 10−7 5.0 × 10−16 

 0.002 4.1 × 10−6 2.6 × 10−6 1.5 × 10−6 8.3 × 10−7 4.0 × 10−15 

 0.003 5.5 × 10−6 3.5 × 10−6 2.1 × 10−6 1.1 × 10−6 1.3 × 10−14 

 0.004 6.7 × 10−6 4.3 × 10−6 2.6 × 10−6 1.4 × 10−6 3.2 × 10−14 

 0.005 7.8 × 10−6 5.1 × 10−6 3.1 × 10−6 1.7 × 10−6 6.3 × 10−14 

0.3 0.001 3.7 × 10−6 2.3 × 10−6 1.3 × 10−6 7.0 × 10−7 7.5 × 10−16 

 0.002 6.1 × 10−6 3.8 × 10−6 2.3 × 10−6 1.2 × 10−6 6.0 × 10−15 

 0.003 8.2 × 10−6 5.2 × 10−6 3.1 × 10−6 1.7 × 10−6 2.0 × 10−14 

 0.004 1.0 × 10−5 6.4 × 10−6 3.9 × 10−6 2.1 × 10−6 4.8 × 10−14 

 0.005 1.1 × 10−5 7.6 × 10−6 4.6 × 10−6 2.5 × 10−6 9.3 × 10−14 

0.4 0.001 5.0 × 10−6 3.0 × 10−6 1.7 × 10−6 9.3 × 10−7 9.8 × 10−16 

 0.002 8.1 × 10−6 5.1 × 10−6 3.0 × 10−6 1.6 × 10−6 7.9 × 10−15 

 0.003 1.0 × 10−5 6.9 × 10−6 4.1 × 10−6 2.2 × 10−6 2.6 × 10−14 

 0.004 1.3 × 10−5 8.5 × 10−6 5.2 × 10−6 2.8 × 10−6 6.3 × 10−14 

 0.005 1.5 × 10−5 1.0 × 10−5 6.2 × 10−6 3.4 × 10−6 1.2 × 10−13 

0.5 0.001 6.2 × 10−6 3.8 × 10−6 2.2 × 10−6 1.1 × 10−6 1.2 × 10−15 

 0.002 1.0 × 10−5 6.3 × 10−6 3.8 × 10−6 2.0 × 10−6 9.7 × 10−15 

 0.003 1.3 × 10−5 8.6 × 10−6 5.2 × 10−6 2.8 × 10−6 3.2 × 10−14 

 0.004 1.6 × 10−5 1.0 × 10−5 6.4 × 10−6 3.5 × 10−6 7.7 × 10−14 

 0.005 1.9 × 10−5 1.2 × 10−5 7.6 × 10−6 4.2 × 10−6 1.5 × 10−13 
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Table 4 shows the numerical solution of the function 𝑤(𝑥, 𝑡), which was derived from the solution of 

the CTFCJMS using the CEADM. The table displays the results for various values of 𝑥, 𝑡, and 𝛼. 

 
Table 4. Numerical solution of 𝑤(𝑥, 𝑡) by CEADM for CTFCJMS with different 𝑥, 𝑡 and 𝛼 at  𝜆 = 0.5. 

 

𝒙 𝒕 𝜶 = 𝟎. 𝟕𝟓 𝜶 = 𝟎. 𝟖𝟎 𝜶 = 𝟎. 𝟖𝟓 𝜶 = 𝟎. 𝟗𝟎 𝜶 = 𝟏 

0.1 0.001 2.5 × 10−6 1.5 × 10−6 9.0 × 10−7 4.7 × 10−7 3.1 × 10−16 

 0.002 4.1 × 10−6 2.6 × 10−6 1.5 × 10−6 8.3 × 10−7 2.5 × 10−15 

 0.003 5.5 × 10−6 3.5 × 10−6 2.1 × 10−6 1.1 × 10−6 8.5 × 10−15 

 0.004 6.8 × 10−6 4.3 × 10−6 2.6 × 10−6 1.4 × 10−6 2.0 × 10−14 

 0.005 7.9 × 10−6 5.1 × 10−6 3.1 × 10−6 1.7 × 10−6 3.9 × 10−14 

0.2 0.001 5.0 × 10−6 3.1 × 10−6 1.8 × 10−6 9.4 × 10−7 6.3 × 10−16 

 0.002 8.3 × 10−6 5.2 × 10−6 3.1 × 10−6 1.6 × 10−6 5.0 × 10−15 

 0.003 1.1 × 10−5 7.0 × 10−6 4.2 × 10−6 2.3 × 10−6 1.7 × 10−14 

 0.004 1.3 × 10−5 8.6 × 10−6 5.3 × 10−6 2.9 × 10−6 4.0 × 10−14 

 0.005 1.5 × 10−5 1.0 × 10−5 6.2 × 10−6 3.4 × 10−6 7.9 × 10−14 

0.3 0.001 7.5 × 10−6 4.6 × 10−6 2.7 × 10−6 1.4 × 10−6 9.4 × 10−16 

 0.002 1.2 × 10−5 7.7 × 10−6 4.6 × 10−6 2.4 × 10−6 7.5 × 10−15 

 0.003 1.6 × 10−5 1.0 × 10−5 6.3 × 10−6 3.4 × 10−6 2.5 × 10−14 

 0.004 2.0 × 10−5 1.2 × 10−5 7.9 × 10−6 4.3 × 10−6 6.0 × 10−14 

 0.005 2.3 × 10−5 1.5 × 10−5 9.3 × 10−6 5.1 × 10−6 1.1 × 10−13 

0.4 0.001 1.0 × 10−5 6.1 × 10−6 3.5 × 10−6 1.8 × 10−6 1.2 × 10−15 

 0.002 1.6 × 10−5 1.0 × 10−5 6.1 × 10−6 3.3 × 10−6 9.9 × 10−15 

 0.003 2.1 × 10−5 1.3 × 10−5 8.4 × 10−6 4.5 × 10−6 3.3 × 10−14 

 0.004 2.6 × 10−5 1.7 × 10−5 1.0 × 10−5 5.7 × 10−6 7.9 × 10−14 

 0.005 3.1 × 10−5 2.0 × 10−5 1.2 × 10−5 6.8 × 10−6 1.5 × 10−13 

0.5 0.001 1.2 × 10−5 7.6 × 10−6 4.4 × 10−6 2.3 × 10−6 1.5 × 10−15 

 0.002 2.0 × 10−5 1.2 × 10−5 7.6 × 10−5 4.1 × 10−6 1.2 × 10−14 

 0.003 2.7 × 10−5 1.7 × 10−5 1.0 × 10−5 5.7 × 10−6 4.1 × 10−14 

 0.004 3.3 × 10−5 2.1 × 10−5 1.3 × 10−5 7.1 × 10−6 9.8 × 10−14 

 0.005 3.8 × 10−5 2.5 × 10−5 1.5 × 10−5 8.5 × 10−6 1.9 × 10−13 

 

4. DISCUSSION AND CONCLUSION  

 

Figure 1 displays the three-dimensional graphs of the numerical solutions obtained by the Cq-HATM, 

as well as the exact solutions and the absolute errors between the Cq-HATM solutions and the 

exact solutions for the CTFCJMS. The three-dimensional graphs depicting the numerical solutions 

obtained by the CEADM for the CTFCJMS are shown in Figure 2. Additionally, the exact solutions and 

the absolute errors between the CEADM solutions and the exact solutions are also illustrated in the same 

figure. Figure 3 depicts the two-dimensional graphs of the solutions 𝑢(𝑥, 𝑡) and 𝑤(𝑥, 𝑡) of the 

CTFCJMS, obtained using the Cq-HATM, for various alpha values. The two-dimensional graphical 

representations of the solutions 𝑢(𝑥, 𝑡) and 𝑤(𝑥, 𝑡) of the CTFCJMS are shown in Figure 4, which have 

been derived by the utilization of the CEADM, while considering different values of 𝛼. The numerical 

solutions of 𝑢(𝑥, 𝑡) and 𝑤(𝑥, 𝑡)  found using Cq-HATM for the values of 𝛼 = 0.75, 𝛼 = 0.8, 𝛼 =
0.85, 𝛼 = 0.9, and 𝛼 = 1 for CTFCJMS are presented in Tables 1-2. Also, the numerical solutions of 

𝑢(𝑥, 𝑡) and 𝑤(𝑥, 𝑡)  found using CEADM for various values of 𝛼 = 0.75, 𝛼 = 0.8, 𝛼 = 0.85, 𝛼 = 0.9, 
and 𝛼 = 1 for CTFCJMS are presented in Tables 3-4.   

 

In this study, CTFCJMS has been examined by the new numerical methods, namely, Cq-HATM and 

CEADM. The reliability of these new methods has been confirmed by numerical results. The new 

methods presented  to solve such coupled fractional systems have been determined to possess notable 

advantages and demonstrate effectiveness. 
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