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Introduction 

In quantum mechanics, two formulations are used: matrix mechanics and wave mechanics. In matrix 

mechanics, developed by Heisenberg in 1925, dynamical quantities such as position, energy, 

momentum, and angular momentum are expressed in terms of matrices defined using algebraic 

equations and commutation relations. Well-known applications of matrix mechanics in quantum 
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Abstract 

In this study, Gaunt coefficients, frequently encountered in quantum 

mechanical calculations of atomic and molecular structures, have been 

algebraically derived. Firstly, the Gaunt coefficient, equal to the integral 

over the solid angle of the product of three spherical harmonics, is written 

in terms of angular momentum ladder operators. Subsequently, raising or 

lowering operators are applied to spherical harmonics, and the obtained 

integrals are solved using the recurrence and orthogonality relations of 

spherical harmonics. As a result, algebraic expressions for Gaunt 

coefficients are obtained in terms of quantum numbers. 
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Öz 

Bu çalışmada, atomik ve moleküler yapıların kuantum mekaniksel 

hesaplamalarında sıklıkla karşılaşılan Gaunt katsayıları cebirsel olarak 

türetilmiştir. İlk olarak, üç küresel harmoniğin çarpımının katı açı 

üzerinden integraline eşit olan Gaunt katsayısı, açısal momentum 

merdiven işlemcileri cinsinden yazılır. Daha sonra, yükseltme veya 

alçaltma işlemcileri küresel harmoniklere uygulanır ve elde edilen 

integralleri çözmek için küresel harmoniklerin tekrarlama ve diklik 

bağıntıları kullanılır. Sonuç olarak, Gaunt katsayıları için cebirsel ifadeler, 

kuantum sayıları cinsinden elde edilir. 

Anahtar Kelimeler: Gaunt katsayıları, merdiven işlemcileri, küresel 

harmonikler 
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mechanics include the harmonic oscillator and angular momentum [1, 2]. Wave mechanics, which 

describes the dynamics of microscopic systems using the Schrödinger wave equation, was developed by 

Schrödinger in 1926. This method requires solving the Schrödinger wave equation, formulated as a 

second-order linear differential equation. For different potentials, power series, boundary conditions, 

and separation of variables methods are used for the analytical solution of the Schrödinger equation. 

Still, it cannot be solved exactly except for some simple systems, such as the hydrogen atom and the 

harmonic oscillator, and approximate methods are employed. The algebraic method, which depends on 

raising and lowering operators, is very useful for systems with a finite-dimensional matrix, such as 

angular momentum. This is because while the orbital angular momentum quantum number 𝑙 has a certain 

value, the magnetic quantum number 𝑚 takes a value of 2𝑙 + 1, and the angular momentum is 

represented by 2𝑙 + 1 dimensional matrices. In the case of a spherically symmetric potential, the 

Hamiltonian operator exhibits commutation with both the squared angular momentum operator and its 

z-component. As a consequence of this commutative behavior, these operators share identical 

eigenfunctions. These eigenfunctions are precisely the spherical harmonics derived as solutions to the 

angular part of the Laplace equation in spherical coordinates. The angular momentum operator algebra 

is one of the most commonly used methods for deriving spherical harmonics. In this method, raising and 

lowering operators of angular momentum, also known as ladder operators, are applied to a state of 

spherical harmonics to obtain spherical harmonics corresponding to different states. Many textbooks 

and articles in the literature use this method [3-7]. In atomic and molecular systems, particles have spin 

angular and orbital angular momentum. While the orbital and spin angular momentums are not 

conserved separately, the total angular momentum equal to their vector sum is conserved. In this case, 

the linear combination coefficients connecting the reducible and irreducible representations are called 

Clebsch-Gordan coefficients. According to this, Clebsch-Gordan coefficients are the most general 

coefficients related to angular momentum. Other coefficients related to angular momentum, such as 

Gaunt, Wigner 3j, and 6j, are written in terms of Clebsch-Gordan coefficients. Clebsch-Gordan 

coefficients can be calculated by different methods, either analytically or using recurrence relations [8-

19]. Based on the variational principle, the Hartree Fock Roothaan (HFR) method is a widely used 

approximate technique for calculating atoms or molecules' physical and chemical properties in multi-

electron systems. When employing this method to determine any physical property, we encounter Gaunt 

coefficients, which represent the integral of the product of three spherical harmonics over solid angles 

[20]. Due to the vast number of Gaunt coefficients that need to be computed (often in the hundreds of 

thousands), it is crucial to calculate these coefficients accurately and efficiently. In the literature, Gaunt 

coefficients are usually expressed as the product of two Clebsch-Gordan coefficients or 3j symbols. 

Calculations for Gaunt coefficients are performed using the explicit expressions of these coefficients in 

terms of different functions or recurrence relations [16, 21-25]. Other approaches used in calculating 

Gaunt coefficients can be found in Refs. [26-30]. First, this paper introduces the angular momentum 
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ladder operators in the spherical coordinates and recurrence relations of spherical harmonics. Then, 

using these operators, the Gaunt coefficients, defined by integrating the tri-product of spherical 

harmonics, are calculated algebraically. Gaunt coefficients are given as master formulae based only on 

quantum numbers. 

Angular Momentum Ladder Operators in the Spherical Coordinates 

Since angular momentum has rotational symmetry, it is convenient to express the angular momentum 

operator �̂�, which is defined by its three components �̂�𝑥, �̂�𝑦, and �̂�𝑧, in terms of spherical coordinates. 

In this case, the components of the angular momentum operator are expressed as [8-10]. 

�̂�𝑥 = 𝑖ℏ (𝑠𝑖𝑛𝜙
𝜕

𝜕𝜃
+ 𝑐𝑜𝑡𝜃𝑐𝑜𝑠𝜙

𝜕

𝜕𝜙
)                  (1) 

�̂�𝑦 = 𝑖ℏ (−𝑐𝑜𝑠𝜙
𝜕

𝜕𝜃
+ 𝑐𝑜𝑡𝜃𝑠𝑖𝑛𝜙

𝜕

𝜕𝜙
)              (2) 

�̂�𝑧 = −𝑖ℏ
𝜕

𝜕𝜙
                 (3) 

Using these equations, the operator �̂�2, which consists of the sum of the squares of its components, is 

obtained as follows. 

�̂�2 = − ℏ2 [
1

𝑠𝑖𝑛𝜃
 

𝜕

𝜕𝜃
 (𝑠𝑖𝑛𝜃 

𝜕

𝜕𝜃
) +

1

𝑠𝑖𝑛2𝜃
 

𝜕2

𝜕𝜙2]            (4) 

Since the differential form of angular momentum operators depends only on the 𝜃 and 𝜙 angles, their 

eigenfunctions are the spherical harmonics 𝑌𝑙
𝑚(𝜃, 𝜙). Accordingly, well-known eigenvalue equations 

of �̂�2 and �̂�𝑧 operators are given below. 

�̂�2 𝑌𝑙
𝑚(𝜃, 𝜙) =  𝑙 (𝑙 + 1) ℏ2𝑌𝑙

𝑚(𝜃, 𝜙)        

�̂�𝑧𝑌𝑙
𝑚(𝜃, 𝜙)  = 𝑚ℏ 𝑌𝑙

𝑚(𝜃, 𝜙)              (5) 

When performing analytical operations on angular momentum, it is necessary to solve the differential 

equation of the associated Legendre functions 𝑃𝑙
𝑚(𝑐𝑜𝑠𝜃) given below. 

1

𝑠𝑖𝑛𝜃

𝑑

𝑑𝜃
 (𝑠𝑖𝑛𝜃 

𝑑𝑃𝑙
𝑚(𝑐𝑜𝑠𝜃)

𝑑𝜃
) + {𝑙(𝑙 + 1) −

𝑚2

𝑠𝑖𝑛2𝜃
 } 𝑃𝑙

𝑚(𝑐𝑜𝑠𝜃) =  0          (6) 

For algebraic operations involving angular momentum, ladder operators need to be used. The angular 

momentum ladder operators, �̂�+ and �̂�−, are introduced as follows. 

�̂�± = �̂�𝑥 ± 𝑖�̂�𝑦 = ±ℏ𝑒±𝑖𝜙 [
𝜕

𝜕𝜃
± 𝑖𝑐𝑜𝑡𝜃

𝜕

𝜕𝜙
]            (7) 

Here �̂�+ and �̂�− are called raising (or creation) and lowering (or annihilation) operator, respectively. 

The following equation gives the action of angular momentum ladder operators on spherical harmonics: 

�̂�±𝑌𝑙
𝑚(𝜃, 𝜙) = ℏ[𝑙(𝑙 + 1) − 𝑚(𝑚 ± 1)]1/2𝑌𝑙

𝑚±1(𝜃, 𝜙)           (8) 
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According to this equation, while the angular momentum quantum number 𝑙 remains unchanged, the 

magnetic quantum number 𝑚 increases or decreases by one. 

Recurrence Relations for Spherical Harmonics 

In quantum mechanics, the spherical harmonics, 𝑌𝑙
𝑚(𝜃, 𝜙), that constitute the angular part of the wave 

function are also eigenfunctions of the orbital angular momentum operators �̂�2, �̂�𝑧 and �̂�±. 𝑌𝑙
𝑚(𝜃, 𝜙) is 

defined as below for non-negative values of m magnetic quantum number [31]. 

𝑌𝑙
𝑚(𝜃, 𝜙) = (−1)𝑚 √

2 𝑙+1

4𝜋
 
(𝑙−𝑚) !

(𝑙+𝑚) !
 𝑃𝑙

𝑚(𝑐𝑜𝑠𝜃) 𝑒𝑖 𝑚 𝜙           (9) 

Where 𝑃𝑙
𝑚(𝑐𝑜𝑠𝜃) is represented as the associated Legendre polynomial. Also, for negative values of m 

we have 

𝑌𝑙
−𝑚(𝜃, 𝜙) = (−1)𝑚𝑌𝑙

𝑚∗(𝜃, 𝜙)             (10) 

Spherical harmonics are orthogonal functions and orthogonality relation is given by 

∫ ∫ 𝑌𝑙1

𝑚1 ∗
(𝜃, 𝜙)

𝜋

𝜃=0

2𝜋

𝜙=0
𝑌𝑙2

𝑚2(𝜃, 𝜙)𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙 = 𝛿𝑙1,𝑙2
𝛿𝑚1,𝑚2

          (11) 

Using the recurrence relations of the associated Legendre polynomials, recurrence relations can be 

written for spherical harmonics. Some of these relations, which are very useful in solving integrals 

consisting of the product of trigonometric functions and spherical harmonics, are given below [11, 31]. 

𝑐𝑜𝑠𝜃 𝑌𝑙
𝑚(𝜃, 𝜙) = √

(𝑙 − 𝑚 + 1)(𝑙 + 𝑚 + 1)

(2𝑙 + 1)(2𝑙 + 3)
 𝑌𝑙+1

𝑚 (𝜃, 𝜙) + √
(𝑙 − 𝑚)(𝑙 + 𝑚)

(2𝑙 − 1)(2𝑙 + 1)
 𝑌𝑙−1

𝑚 (𝜃, 𝜙) (12) 

𝑒𝑖𝜙𝑠𝑖𝑛𝜃 𝑌𝑙
𝑚(𝜃, 𝜙) =  

−√
(𝑙 + 𝑚 + 1)(𝑙 + 𝑚 + 2)

(2𝑙 + 1)(2𝑙 + 3)
 𝑌𝑙+1

𝑚+1(𝜃, 𝜙) + √
(𝑙 − 𝑚 − 1)(𝑙 − 𝑚)

(2𝑙 − 1)(2𝑙 + 1)
 𝑌𝑙−1

𝑚+1(𝜃, 𝜙) (13) 

𝑒−𝑖𝜙𝑠𝑖𝑛𝜃 𝑌𝑙
𝑚(𝜃, 𝜙) =  

√
(𝑙 − 𝑚 + 1)(𝑙 − 𝑚 + 2)

(2𝑙 + 1)(2𝑙 + 3)
 𝑌𝑙+1

𝑚−1(𝜃, 𝜙) − √
(𝑙 + 𝑚 − 1)(𝑙 + 𝑚)

(2𝑙 − 1)(2𝑙 + 1)
 𝑌𝑙−1

𝑚−1(𝜃, 𝜙) (14) 

 (2𝑙 − 1)(2𝑙 + 3) cos2 𝜃 𝑌𝑙
𝑚(𝜃, 𝜙) = 

(2𝑙 − 1)√
((𝑙 + 1)2 − 𝑚2)((𝑙 + 2)2 − 𝑚2)

(2𝑙 + 1)(2𝑙 + 5)
 𝑌𝑙+2

𝑚 (𝜃, 𝜙) 
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+(2𝑙(𝑙 + 1) − 2𝑚2 − 1) 𝑌𝑙
𝑚(𝜃, 𝜙)  

+(2𝑙 + 3)√
(𝑙2 − 𝑚2)((𝑙 − 1)2 − 𝑚2)

(2𝑙 + 1)(2𝑙 − 3)
 𝑌𝑙−2

𝑚 (𝜃, 𝜙) (15) 

(2𝑙 − 1)(2𝑙 + 3)𝑠𝑖𝑛𝜃 cos 𝜃 𝑒𝑖𝜙𝑌𝑙
𝑚(𝜃, 𝜙) =  

−(2𝑙 − 1)√
((𝑙 + 1)2 − 𝑚2)(𝑙 + 𝑚 + 2)(𝑙 + 𝑚 + 3)

(2𝑙 + 1)(2𝑙 + 5)
 𝑌𝑙+2

𝑚+1(𝜃, 𝜙)  

−(2𝑚 + 1)√(𝑙 − 𝑚)(𝑙 + 𝑚 + 1) 𝑌𝑙
𝑚+1(𝜃, 𝜙)  

+(2𝑙 + 3)√
(𝑙2 − 𝑚2)(𝑙 − 𝑚 − 1)(𝑙 − 𝑚 − 2)

(2𝑙 + 1)(2𝑙 − 3)
 𝑌𝑙−2

𝑚+1(𝜃, 𝜙) 

(16) 

 

 

(2𝑙 − 1)(2𝑙 + 3)𝑠𝑖𝑛𝜃 cos 𝜃 𝑒−𝑖𝜙𝑌𝑙
𝑚(𝜃, 𝜙) = 

 

(2𝑙 − 1)√
((𝑙 + 1)2 − 𝑚2)(𝑙 − 𝑚 + 2)(𝑙 − 𝑚 + 3)

(2𝑙 + 1)(2𝑙 + 5)
 𝑌𝑙+2

𝑚−1(𝜃, 𝜙)  

−(2𝑚 − 1)√(𝑙 + 𝑚)(𝑙 − 𝑚 + 1) 𝑌𝑙
𝑚−1(𝜃, 𝜙)  

−(2𝑙 + 3)√
(𝑙2 − 𝑚2)(𝑙 + 𝑚 − 1)(𝑙 + 𝑚 − 2)

(2𝑙 + 1)(2𝑙 − 3)
 𝑌𝑙−2

𝑚−1(𝜃, 𝜙) (17) 

(2𝑙 − 1)(2𝑙 + 3) sin2 𝜃  𝑒2𝑖𝜙 𝑌𝑙
𝑚(𝜃, 𝜙)  =

(2𝑙 − 1)

√(2𝑙 + 1)(2𝑙 + 5)
√

(𝑙 + 𝑚 + 4)!

(𝑙 + 𝑚)!
 𝑌𝑙+2

𝑚+2(𝜃, 𝜙)  

−2√
(𝑙 + 𝑚 + 2)! (𝑙 − 𝑚)!

(𝑙 − 𝑚 − 2)! (𝑙 + 𝑚)!
 𝑌𝑙

𝑚+2(𝜃, 𝜙)  

+
(2𝑙 + 3)

√(2𝑙 + 1)(2𝑙 − 3)
√

(𝑙 − 𝑚)!

(𝑙 − 𝑚 − 4)!
 𝑌𝑙−2

𝑚+2(𝜃, 𝜙) (18) 
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(2𝑙 − 1)(2𝑙 + 3) sin2 𝜃  𝑒−2𝑖𝜙 𝑌𝑙
𝑚(𝜃, 𝜙) =

(2𝑙 − 1)

√(2𝑙 + 1)(2𝑙 + 5)
√

(𝑙 − 𝑚 + 4)!

(𝑙 − 𝑚)!
 𝑌𝑙+2

𝑚−2(𝜃, 𝜙)  

−2√
(𝑙 − 𝑚 + 2)! (𝑙 + 𝑚)!

(𝑙 + 𝑚 − 2)! (𝑙 − 𝑚)!
 𝑌𝑙

𝑚−2(𝜃, 𝜙)  

+
(2𝑙 + 3)

√(2𝑙 + 1)(2𝑙 − 3)
√

(𝑙 + 𝑚)!

(𝑙 + 𝑚 − 4)!
 𝑌𝑙−2

𝑚−2(𝜃, 𝜙) (19) 

Algebraic Derivation of Gaunt Coefficients 

The Gaunt coefficients are defined by the integral of the product of three spherical harmonics, 𝑌𝑙
𝑚(𝜃, 𝜙), 

or associated Legendre functions over solid angles by Gaunt [20]. 

 𝑌𝑙1𝑚1,𝑙2𝑚2

𝑙 𝑚 = ∫ ∫ 𝑌𝑙1

𝑚1 ∗
(𝜃, 𝜙) 𝑌𝑙2

𝑚2(𝜃, 𝜙) 𝑌𝑙
𝑚(𝜃, 𝜙)𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙

𝜋

0

2 𝜋

0
       (20) 

Where selection rules are 𝑚 = 𝑚1 − 𝑚2 and |𝑙1 − 𝑙2| ≤ 𝑙 ≤ 𝑙1 + 𝑙2. 

The Gaunt coefficients can be expressed using the lowering and raising operators given in Eq. (8). 

 𝑌𝑙1𝑚1,𝑙2𝑚2

𝑙 𝑚 =
1

ℏ√𝑙2(𝑙2 + 1) − 𝑚2(𝑚2 − 1)
  

∫ ∫ 𝑌𝑙1

𝑚1 ∗
(𝜃, 𝜙) (�̂�+𝑌𝑙2

𝑚2−1(𝜃, 𝜙)) 𝑌𝑙
𝑚(𝜃, 𝜙)𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙

𝜋

0

2 𝜋

0

 (21) 

=
1

ℏ√𝑙2(𝑙2 + 1) − 𝑚2(𝑚2 + 1)
  

∫ ∫ 𝑌𝑙1

𝑚1 ∗
(𝜃, 𝜙) (�̂�−𝑌𝑙2

𝑚2+1(𝜃, 𝜙)) 𝑌𝑙
𝑚(𝜃, 𝜙)𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙

𝜋

0

2 𝜋

0

 (22) 

In Eq. (20), if we use 𝑌𝑙2

𝑚2(𝜃, 𝜙) = 𝑌0
0(𝜃, 𝜙) = 1/√4𝜋 and the orthogonality relation of spherical 

harmonics for 𝑙2 = 0 and 𝑚2 = 0 the Gaunt coefficient is obtained easily as: 

 𝑌𝑙1𝑚1,00
𝑙 𝑚 =

1

√4𝜋
𝛿𝑙1,𝑙𝛿𝑚1,𝑚            (23) 

For 𝑙2 = 1, 𝑚2 takes the values −1, 0 and 1. To find the algebraic expressions of  𝑌𝑙1𝑚1,1𝑚2

𝑙 𝑚  Gaunt 

coefficients we start 𝑚2 = 0 value. For these values inserting 𝑌𝑙2

𝑚2(𝜃, 𝜙) = 𝑌1
0(𝜃, 𝜙) = √3/4𝜋𝑐𝑜𝑠𝜃 

relation into Eq. (20) the Gaunt coefficient can be written as below 



Akdemir                                                                     Sinop Uni J Nat Sci 8(2): 229-244 (2023) 

  ISSN: 2536-4383 

235 

𝑌𝑙1𝑚1,10
𝑙 𝑚 = √

3

4𝜋
 ∫ ∫ 𝑌𝑙1

𝑚1 ∗
(𝜃, 𝜙) (𝑐𝑜𝑠𝜃 𝑌𝑙

𝑚(𝜃, 𝜙))𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙
𝜋

0

2 𝜋

0
       (24) 

For the product of trigonometric function and spherical harmonic, we insert the recurrence relation of 

spherical harmonics given by Eq. (12) into Eq. (24). Then, using the orthogonality relation of spherical 

harmonics, for the values of 𝑙2 = 1 and 𝑚2 = 0 we obtain the Gaunt coefficient algebraically. 

 𝑌𝑙1𝑚1,10
𝑙 𝑚 = √

3

4𝜋
{{

(𝑙−𝑚+1)(𝑙+𝑚+1)

(2𝑙+1)(2𝑙+3)
}

1/2
𝛿𝑙1,𝑙+1𝛿𝑚1,𝑚 + {

(𝑙−𝑚)(𝑙+𝑚)

(2𝑙−1)(2𝑙+1)
}

1/2
𝛿𝑙1,𝑙−1𝛿𝑚1,𝑚}     (25) 

To obtain the expression of  𝑌𝑙1𝑚1,11
𝑙 𝑚  Gaunt coefficient from the  𝑌𝑙1𝑚1,10

𝑙 𝑚 , we use the definition of Gaunt 

coefficients given by the Eq. (21). Therefore, we apply the raising operator of angular momentum �̂�+ to 

𝑌1
0(𝜃, 𝜙) substituted in Eq. (21). 

 𝑌𝑙1𝑚1,11
𝑙 𝑚 =

1

√2
 ∫ ∫ 𝑌𝑙1

𝑚1 ∗
(𝜃, 𝜙) (�̂�+(√3/4𝜋𝑐𝑜𝑠𝜃)) 𝑌𝑙

𝑚(𝜃, 𝜙)𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙
𝜋

0

2 𝜋

0
      (26) 

Using the differential form of �̂�+ operator given by Eq. (7) we have 

𝑌𝑙1𝑚1,11
𝑙 𝑚 = −√

3

8𝜋
 ∫ ∫ 𝑌𝑙1

𝑚1 ∗
(𝜃, 𝜙) (𝑒𝑖𝜙𝑠𝑖𝑛𝜃 𝑌𝑙

𝑚(𝜃, 𝜙))𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙
𝜋

0

2 𝜋

0
       (27) 

Finally, when the recurrence relation given by Eq. (13) and orthogonality relation of spherical harmonics 

are used respectively in Eq. (27), for 𝑙2 = 1 and 𝑚2 = 1, the Gaunt coefficient  𝑌𝑙1𝑚1,11
𝑙 𝑚  is algebraically 

obtained as follows. 

 𝑌𝑙1𝑚1,11
𝐿𝑀 = √

3

8𝜋
{{

(𝑙 + 𝑚 + 1)(𝑙 + 𝑚 + 2)

(2𝑙 + 1)(2𝑙 + 3)
}

1/2

𝛿𝑙1,𝑙+1 𝛿𝑚1,𝑚+1  

− {
(𝑙 − 𝑚)(𝑙 − 𝑚 − 1)

(2𝑙 − 1)(2𝑙 + 1)
}

1/2

𝛿𝑙1,𝑙−1 𝛿𝑚1,𝑚+1} (28) 

Since atomic units are used in these calculations, the Planck’s constant ℏ is taken as 1. 

For the values 𝑙2 = 1 and 𝑚2 = −1, when obtaining the expression of  𝑌𝑙1𝑚1,1−1
𝑙 𝑚  Gaunt coefficient from 

 𝑌𝑙1𝑚1,10
𝑙 𝑚 , we use the definition of Gaunt coefficients given by the Eq. (22). To do this, we must apply 

the lowering operator of angular momentum �̂�− to 𝑌1
0(𝜃, 𝜙) substituted in Eq. (22) 

 𝑌𝑙1𝑚1,1−1
𝑙 𝑚 =

1

√2
 ∫ ∫ 𝑌𝑙1

𝑚1 ∗
(𝜃, 𝜙) (�̂�−(√3/4𝜋𝑐𝑜𝑠𝜃)) 𝑌𝑙

𝑚(𝜃, 𝜙)𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙
𝜋

0

2 𝜋

0
      (29) 

and then we use the differential form of �̂�− operator given by Eq. (7) in Eq. (29): 

𝑌𝑙1𝑚1,1−1
𝑙 𝑚 = −√

3

8𝜋
 ∫ ∫ 𝑌𝑙1

𝑚1 ∗
(𝜃, 𝜙)(𝑒−𝑖𝜙𝑠𝑖𝑛𝜃𝑌𝑙

𝑚(𝜃, 𝜙))𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙
𝜋

0

2 𝜋

0
       (30) 
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Substitution of Eq. (14) into Eq. (30) and using orthogonality relation of spherical harmonics gives the 

algebraical expression of Gaunt coefficient for 𝑙2 = 1 and 𝑚2 = −1 as follows. 

 𝑌𝑙1𝑚1,1−1
𝑙 𝑚 = √

3

8𝜋
{{

(𝑙 − 𝑚 + 1)(𝑙 − 𝑚 + 2)

(2𝑙 + 1)(2𝑙 + 3)
}

1/2

𝛿𝑙1,𝑙+1 𝛿𝑚1,𝑚−1  

− {
(𝑙 + 𝑚)(𝑙 + 𝑚 − 1)

(2𝑙 − 1)(2𝑙 + 1)
}

1/2

𝛿𝑙1,𝑙−1 𝛿𝑚1,𝑚−1}   (31) 

In order to get algebraically the Gaunt coefficients with the value 𝑙2 = 2 we start the value of 𝑚2 = 0. 

To do this, 𝑌𝑙2

𝑚2(𝜃, 𝜙) = 𝑌2
0(𝜃, 𝜙) = √(5/16π)(3𝑐𝑜𝑠2𝜃 − 1) is written in definition of the Gaunt 

coefficient 𝑌𝑙1𝑚1,2 0
𝐿𝑀  in Eq. (20). 

𝑌𝑙1𝑚1,20
𝑙 𝑚 = √

5

16𝜋
 ∫ ∫ 𝑌𝑙1

𝑚1 ∗
(𝜃, 𝜙)((3𝑐𝑜𝑠2𝜃 − 1) 𝑌𝑙

𝑚(𝜃, 𝜙))𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙
𝜋

0

2 𝜋

0
      (32) 

If we use Eq. (15) and the orthogonality relation of spherical harmonics, the algebraical expression of 

the  𝑌𝑙1𝑚1,20
𝐿𝑀  Gaunt coefficients is obtained easily in terms of Kronecker delta functions as follows. 

 𝑌𝑙1𝑚1,20
𝑙 𝑚 = √

5

16𝜋
{

3

(2𝑙 + 3)
{

((𝑙 + 1)2 − 𝑚2)((𝑙 + 2)2 − 𝑚2)

(2𝑙 + 1)(2𝑙 + 5)
}

1/2

𝛿𝑙1,𝑙+2𝛿𝑚1,𝑚  

+
(2𝑙(𝑙 + 1) − 6𝑚2)

(2𝑙 − 1)(2𝑙 + 3)
𝛿𝑙1,𝑙  𝛿𝑚1,𝑚  

+
3

(2𝑙 − 1)
{

(𝑙2 − 𝑚2)((𝑙 − 1)2 − 𝑚2)

(2𝑙 + 1)(2𝑙 − 3)
}

1/2

𝛿𝑙1,𝑙−2𝛿𝑚1,𝑚}   (33) 

According to the Eq. (21), if the raising operator of angular momentum �̂�+ is applied one time on 

 𝑌𝑙1𝑚1,20
𝑙𝑚 , we obtain  𝑌𝑙1𝑚1,21

𝑙𝑚 , if it is applied two times we obtain  𝑌𝑙1𝑚1,22
𝑙𝑚 . 

 𝑌𝑙1𝑚1,21
𝑙 𝑚 =

3

2
√

5

6𝜋
{

1

(2𝑙 + 3)
{

((𝑙 + 1)2 − 𝑚2)(𝑙 + 𝑚 + 2)(𝑙 + 𝑚 + 3)

(2𝑙 + 1)(2𝑙 + 5)
}

1/2

𝛿𝑙1,𝑙+2𝛿𝑚1,𝑚+1  

+
(2𝑚 + 1)√(𝑙 − 𝑚)(𝑙 + 𝑚 + 1)

(2𝑙 − 1)(2𝑙 + 3)
𝛿𝑙1,𝑙𝛿𝑚1,𝑚+1  
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−
1

(2𝑙 − 1)
{

(𝑙2 − 𝑚2)(𝑙 − 𝑚 − 1)(𝑙 − 𝑚 − 2)

(2𝑙 + 1)(2𝑙 − 3)
}

1/2

𝛿𝑙1,𝑙−2𝛿𝑚1,𝑚+1}   (34) 

 𝑌𝑙1𝑚1,22
𝑙 𝑚 =

3

4
√

5

6𝜋
{

1

(2𝑙 + 3)√(2𝑙 + 1)(2𝑙 + 5)
√

(𝑙 + 𝑚 + 4)!

(𝑙 + 𝑚)!
𝛿𝑙1,𝑙+2𝛿𝑚1,𝑚+2  

+
1

(2𝑙 − 1)√(2𝑙 + 1)(2𝑙 − 3)
√

(𝑙 − 𝑚)!

(𝑙 − 𝑚 − 4)!
𝛿𝑙1,𝑙−2𝛿𝑚1,𝑚+2  

−
2

(2𝑙 − 1)(2𝑙 + 3)
√

(𝑙 + 𝑚 + 2)! (𝑙 − 𝑚)!

(𝑙 − 𝑚 − 2)! (𝑙 + 𝑚)!
𝛿𝑙1,𝑙𝛿𝑚1,𝑚+2}   (35) 

Similarly, to calculate  𝑌𝑙1𝑚1,2−1
𝑙𝑚  we must apply one time the lowering operator of angular momentum 

�̂�− on  𝑌𝑙1𝑚1,20
𝑙𝑚 . 

 𝑌𝑙1𝑚1,2−1
𝑙 𝑚 =

3

2
√

5

6𝜋
{

1

(2𝑙 + 3)
{

((𝑙 + 1)2 − 𝑚2)(𝑙 − 𝑚 + 2)(𝑙 − 𝑚 + 3)

(2𝑙 + 1)(2𝑙 + 5)
}

1/2

𝛿𝑙1,𝑙+2𝛿𝑚1,𝑚−1  

−
(2𝑚 − 1)√(𝑙 + 𝑚)(𝑙 − 𝑚 + 1)

(2𝑙 − 1)(2𝑙 + 3)
𝛿𝑙1,𝑙𝛿𝑚1,𝑚−1  

−
1

(2𝑙 − 1)
{

(𝑙2 − 𝑚2)(𝑙 + 𝑚 − 1)(𝑙 + 𝑚 − 2)

(2𝑙 + 1)(2𝑙 − 3)
}

1/2

𝛿𝑙1,𝑙−2𝛿𝑚1,𝑚−1} (36) 

If we apply two time the lowering operator of angular momentum �̂�− on  𝑌𝑙1𝑚1,20
𝑙𝑚 , we find that 

 𝑌𝑙1𝑚1,2−2
𝑙 𝑚 =

3

4
√

5

6𝜋
{

1

(2𝑙 + 3)√(2𝑙 + 1)(2𝑙 + 5)
√

(𝑙 − 𝑚 + 4)!

(𝑙 − 𝑚)!
𝛿𝑙1,𝑙+2𝛿𝑚1,𝑚−2  

+
1

(2𝑙 − 1)√(2𝑙 + 1)(2𝑙 − 3)
√

(𝑙 + 𝑚)!

(𝑙 + 𝑚 − 4)!
𝛿𝑙1,𝑙−2𝛿𝑚1,𝑚−2  

−
2

(2𝑙 − 1)(2𝑙 + 3)
√

(𝑙 − 𝑚 + 2)! (𝑙 + 𝑚)!

(𝑙 + 𝑚 − 2)! (𝑙 − 𝑚)!
𝛿𝑙1,𝑙𝛿𝑚1,𝑚−2}   (37) 
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Results 

Spherical harmonics are orthogonal functions that depend on polar (𝜃) and azimuth (𝜙) angles. Using 

ladder operators when numerically calculating the Gaunt coefficients obtained from the integral of the 

product of three spherical harmonics as given Eq. (20), since the integral over azimuth angles have the 

following value.  

∫ 𝑒𝑖(−𝑚1+𝑚2+𝑚)𝜙𝑑𝜙 = 2𝜋𝛿−𝑚1+𝑚2+𝑚,0
2𝜋

0
          (38) 

According to this result, the selection rule based on magnetic quantum numbers must satisfy the −𝑚1 +

𝑚2 + 𝑚 = 0 condition for the Gaunt coefficients to be different from zero. The remaining integral over 

polar angles consists of the product of three associated Legendre polynomials. In some special cases, 

this integral takes the following form. 

∫ 𝑃𝑙1

𝑚1(𝑐𝑜𝑠𝜃)(𝑓(𝜃)𝑃𝑙
𝑚(𝑐𝑜𝑠𝜃))

𝜋

0
𝑠𝑖𝑛𝜃𝑑𝜃          (39) 

Here, 𝑓(𝜃) is a function depending on trigonometric functions. Using the recurrence relation of 

associated Legendre polynomials, the product 𝑓(𝜃)𝑃𝑙
𝑚(𝑐𝑜𝑠𝜃) is written as the sum of associated 

Legendre polynomials of different degrees. After this process is performed, the integral over polar angles 

becomes the integral of the product of two associated Legendre polynomials. This gives the 

orthogonality relation for associated Legendre polynomials given below. 

∫ 𝑃𝑙1

𝑚(𝑐𝑜𝑠𝜃)𝑃𝑙
𝑚(𝑐𝑜𝑠𝜃)

𝜋

0
𝑠𝑖𝑛𝜃𝑑𝜃 =

2

2𝑙+1

(𝑙+𝑚)!

(𝑙−𝑚)!
𝛿𝑙1,𝑙         (40) 

This result demonstrates that the selection rules depending on the orbital angular momentum quantum 

number are 𝑙1 + 𝑙2 + 𝑙 = 2𝑛. Here 𝑛 is an integer. In solutions using algebraic methods, the encountered 

integrals can be easily solved using the functions’ orthogonality relations and recurrence relations 

without the need to solve integral and differential equations. Whichever method is used, analytic or 

algebraic, the physical results are the same, even if the obtained mathematical expressions differ. In this 

paper, the Gaunt coefficients are derived algebraically using the definition given in Eq. (20). To do this, 

angular momentum ladder operators, which are frequently used in the derivation of spherical harmonics 

in quantum mechanics, are applied to 𝑌𝑙2

𝑚2(𝜃, 𝜙) in Eq. (20). We start with the case 𝑚2 = 0, which 

corresponds a given value of 𝑙2. As given in Eq. (21) and Eq. (22), applying the raising operator �̂�+ we 

get the cases 𝑚2 > 0 and applying the lowering operator �̂�− we get the cases 𝑚2 < 0. This algebraic 

operation is performed for all physical values of the 𝑚2 magnetic quantum number, corresponding to 

the constant values 𝑙2  =  0, 1, 2. As can be seen from the derived algebraic expressions in Eqs. (23, 25, 

28, 31, 33, 34, 35, 36, 37), the values of the 𝑙1 and 𝑚1 are determined by the values of 𝑙 and 𝑚 quantum 

numbers. Accordingly, the algebraic formulae given for Gaunt coefficients in the 5th column of Table 
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1 are expressed solely in the 𝑙 and 𝑚 quantum numbers. Gaunt coefficients can be easily computed by 

substituting the desired physical values into the 𝑙 and 𝑚 quantum numbers, as indicated in Table 1. 

Table 1. Algebraic expressions of Gaunt coefficients for 𝑙2  =  0, 1, 2 values 

𝑙1 𝑚1 𝑙2 𝑚2  𝑌𝑙1𝑚1,𝑙2𝑚2

𝑙 𝑚  

𝑙 𝑚 0 0 1 √4𝜋⁄  

𝑙 + 1 𝑚 1 0 √
3

4𝜋

(𝑙 − 𝑚 + 1)(𝑙 + 𝑚 + 1)

(2𝑙 + 1)(2𝑙 + 3)
 

𝑙 − 1 𝑚 1 0 √
3

4𝜋

(𝑙 − 𝑚)(𝑙 + 𝑚)

(2𝑙 − 1)(2𝑙 + 1)
 

𝑙 + 1 𝑚 + 1 1 1 √
3

8𝜋

(𝑙 + 𝑚 + 1)(𝑙 + 𝑚 + 2)

(2𝑙 + 1)(2𝑙 + 3)
 

𝑙 − 1 𝑚 + 1 1 1 −√
3

8𝜋

(𝑙 − 𝑚)(𝑙 − 𝑚 − 1)

(2𝑙 − 1)(2𝑙 + 1)
 

𝑙 + 1 𝑚 − 1 1 −1 √
3

8𝜋

(𝑙 − 𝑚 + 1)(𝑙 − 𝑚 + 2)

(2𝑙 + 1)(2𝑙 + 3)
 

𝑙 − 1 𝑚 − 1 1 −1 −√
3

8𝜋

(𝑙 + 𝑚)(𝑙 + 𝑚 − 1)

(2𝑙 − 1)(2𝑙 + 1)
 

𝑙 + 2 𝑚 2 0 
3

(2𝑙 + 3)
√

5

16𝜋

((𝑙 + 1)2 − 𝑚2)((𝑙 + 2)2 − 𝑚2)

(2𝑙 + 1)(2𝑙 + 5)
 

𝑙 𝑚 2 0 √
5

16𝜋

(2𝑙(𝑙 + 1) − 6𝑚2)

(2𝑙 − 1)(2𝑙 + 3)
 

𝑙 − 2 𝑚 2 0 
3

(2𝑙 − 1)
√

5

16𝜋

(𝑙2 − 𝑚2)((𝑙 − 1)2 − 𝑚2)

(2𝑙 + 1)(2𝑙 − 3)
 

𝑙 + 2 𝑚 + 1 2 1 
3

(2𝑙 + 3)
√

5

24𝜋

((𝑙 + 1)2 − 𝑚2)(𝑙 + 𝑚 + 2)(𝑙 + 𝑚 + 3)

(2𝑙 + 1)(2𝑙 + 5)
 

𝑙 𝑚 + 1 2 1 
3(2𝑚 + 1)

(2𝑙 − 1)(2𝑙 + 3)
√

5(𝑙 − 𝑚)(𝑙 + 𝑚 + 1)

24𝜋
 

𝑙 − 2 𝑚 + 1 2 1 −
3

(2𝑙 − 1)
√

5

24𝜋

(𝑙2 − 𝑚2)(𝑙 − 𝑚 − 1)(𝑙 − 𝑚 − 2)

(2𝑙 + 1)(2𝑙 − 3)
 

𝑙 + 2 𝑚 + 2 2 2 
3

(2𝑙 + 3)√(2𝑙 + 1)(2𝑙 + 5)
√

5

96𝜋

(𝑙 + 𝑚 + 4)!

(𝑙 + 𝑚)!
 

𝑙 𝑚 + 2 2 2 −
6

(2𝑙 − 1)(2𝑙 + 3)
√

5

96𝜋

(𝑙 + 𝑚 + 2)! (𝑙 − 𝑚)!

(𝑙 − 𝑚 − 2)! (𝑙 + 𝑚)!
 

𝑙 − 2 𝑚 + 2 2 2 
3

(2𝑙 − 1)√(2𝑙 + 1)(2𝑙 − 3)
√

5

96𝜋

(𝑙 − 𝑚)!

(𝑙 − 𝑚 − 4)!
 

𝑙 + 2 𝑚 − 1 2 −1 
3

(2𝑙 + 3)
√

5

24𝜋

((𝑙 + 1)2 − 𝑚2)(𝑙 − 𝑚 + 2)(𝑙 − 𝑚 + 3)

(2𝑙 + 1)(2𝑙 + 5)
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Table 1. …contiuned 

𝑙 𝑚 − 1 2 −1 −
3(2𝑚 − 1)

(2𝑙 − 1)(2𝑙 + 3)
√

5(𝑙 + 𝑚)(𝑙 − 𝑚 + 1)

24𝜋
 

𝑙 − 2 𝑚 − 1 2 −1 −
3

(2𝑙 − 1)
√

5

24𝜋

(𝑙2 − 𝑚2)(𝑙 + 𝑚 − 1)(𝑙 + 𝑚 − 2)

(2𝑙 + 1)(2𝑙 − 3)
 

𝑙 + 2 𝑚 − 2 2 −2 
3

(2𝑙 + 3)√(2𝑙 + 1)(2𝑙 + 5)
√

5

96𝜋

(𝑙 − 𝑚 + 4)!

(𝑙 − 𝑚)!
 

𝑙 𝑚 − 2 2 −2 −
6

(2𝑙 − 1)(2𝑙 + 3)
√

5

96𝜋

(𝑙 − 𝑚 + 2)! (𝑙 + 𝑚)!

(𝑙 + 𝑚 − 2)! (𝑙 − 𝑚)!
 

𝑙 − 2 𝑚 − 2 2 −2 
3

(2𝑙 − 1)√(2𝑙 + 1)(2𝑙 − 3)
√

5

96𝜋

(𝑙 + 𝑚)!

(𝑙 + 𝑚 − 4)!
 

In the Mathematica programming language, the Gaunt coefficients, defined by integral representation 

in Eq. (20), are calculated numerically using the integral command below. 

Integrate [Conjugate [spherical [l1,m1,θ,ϕ]]*spherical[l2,m2,θ,ϕ] 

*spherical [l,m,θ,ϕ]*Sin[θ],{ϕ,0,2*Pi},{θ,0,Pi}] (41) 

The spherical harmonics employed in Eq. (41) are derived using angular momentum lowering and 

raising operators, and the program utilized for this purpose is detailed in the appendix. The Gaunt 

coefficients are calculated numerically for the chosen quantum sets using the Mathematica program 

provided in the appendix for Eq. (41) and the algebraic expressions presented in Table 1. The numerical 

results obtained are in complete agreement and are shown in the 6th column of Table 2.  

Table 2. Numerical values and CPU times of Gaunt coefficients for some quantum sets 

𝑙1 𝑚1 𝑙2 𝑚2 𝑙  𝑌𝑙1𝑚1,𝑙2𝑚2

𝑙 𝑚  

CPU times (seconds) 

Algebraic expressions in 

Table 1 
Eq. (41) 

1 0 1 0 2 0.252313252202016 0. 0.125000 

3 0 1 1 4 -0.194663900273006 0. 0.421875 

5 -2 1 -1 6 -0.129207486045503 0. 0.828125 

8 3 2 1 8 0.110108998314263 0. 1.046875 

10 4 2 -1 12 -0.247740673270131 0. 5.734375 

12 -5 2 -2 14 0.047285232345527 0. 129.812500 

20 5 2 2 18 0.140116470887863 0. 221.296875 
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Additionally, CPU times are computed and presented in the 7th and 8th columns of Table 2. When the 

obtained CPU times are compared, it is seen that the use of algebraic expressions in calculating the 

Gaunt coefficients is more efficient. The programs are executed on an Intel(R) Core (TM) i7-6500U 

CPU @ 2.50 GHz computer. 

Appendix. Mathematica code 

The Mathematica program presented in this section calculates the Gaunt coefficients and CPU times 

using the integral definition consisting of the product of three spherical harmonics shown in Eq. (41). 

The spherical harmonics employed within the program are derived using lowering and raising angular 

momentum operators. 

Program: 

In[1]:= ClearAll["Global`*"]; 

carpp[pl_,pm_]:= Sqrt[pl*(pl+1)-pm*(pm+1)]; 

carpm[ml_,mm_]:= Sqrt[ml*(ml+1)-mm*(mm-1)]; 

plusop[pt_,pf_,khf_]:= Exp[I*pf]*(D[khf,pt]+I*Cot[pt]*D[khf,pf]); 

minop[mt_,mf_,khf_]:= -Exp[-I*mf]*(D[khf,mt]-I*Cot[mt]*D[khf,mf]); 

spherical[sl_,sm_,θ_,ϕ_]:= Block[{sphr=0}, 

    mek=0; 

    fonkpl= SphericalHarmonicY[sl,mek,θ,ϕ]; 

    If[sm > 0, 

 For[i=1,i<=sm,i++, 

       kat= carpp[sl,mek]; 

       fonkp= plusop[θ,ϕ,fonkpl]; 

       fonkpl= fonkp/kat; 

       mek= mek+1], 

           If[sm < 0, 

            For[i=-1,i>=sm,i=i-1, 

              kat= carpm[sl,mek]; 

              fonkm= minop[θ,ϕ,fonkpl]; 

              fonkpl= fonkm/kat; 
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              mek= mek-1]]]; 

 sphr= fonkpl]; 

l1=3; m1=0; 

l2=1; m2=1; 

l=4; m= m1-m2; 

f1=spherical[l1,m1,θ,ϕ]; 

f2=spherical[l2,m2,θ,ϕ]; 

f3=spherical[l,m,θ,ϕ]; 

Timing[N[Integrate[Conjugate[f1]*f2*f3*Sin[θ],{ϕ,0,2*Pi},{θ,0,Pi}],15]] 

Out[1]= {0.421875,-0.194663900273006} 

Acknowledgments - 

Funding/Financial Disclosure The author have no received any financial support for the research, 

authorship, or publication of this study. 

Ethics Committee Approval and Permissions The study does not require ethics committee permission 

or any special permission. 

Conflict of Interests The author stated that there are no conflicts of interest in this article. 

Authors Contribution Article is single authored. The author read and approved the final manuscript.

References 

[1] Griffiths, D. J. (2017). Introduction to Quantum Mechanics (2nd ed.). Cambridge University Press, 

Cambridge. 

[2] McQuarrie, D. A. (2008). Quantum Chemistry (2nd ed.). University Science Books, California. 

[3] Condon, E. U., & Shortley, G. H. (1935). Theory of Atomic Spectra. Cambridge University Press, 

Cambridge. 

[4] Cohen-Tannoudji, C., Diu, B., & Laloe, F. (1977). Quantum Mechanics. John Wiley & Sons, New 

York. 

[5] Townsend, J. S. (2000). A Modern Approach to Quantum Mechanics. University Science Books, 

USA. 

[6] Zettili, N. (2009). Quantum Mechanics: Concepts and Applications. John Wiley & Sons, USA. 

[7] Weitzman, M., & Freericks, J. K. (2018). Calculating spherical harmonics without derivatives. 

Condensed Matter Physics, 21 (3), 1-12. https://doi.org/10.5488/CMP.21.33002 

[8] Edmonds, A. R. (1960). Angular Momentum in Quantum Mechanics (2nd ed.). Princeton University 

Press, New Jersey. 



Akdemir                                                                     Sinop Uni J Nat Sci 8(2): 229-244 (2023) 

  ISSN: 2536-4383 

243 

[9] Rose, M. E. (1957). Elementary Theory of Angular Momentum. John Wiley & Sons, New York. 

[10] Zare, R. N. (1988). Angular Momentum, Understanding Spatial Aspects in Chemistry and Physics. 

John Wiley & Sons, New York. 

[11] Varshalovich, D. A., Moskalev, A. N., & Khersonskii, V. K. (1988). Quantum Theory of Angular 

Momentum, Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols. 

World Scientific Publishing Co. Pte. Ltd, Singapore. 

[12] Shimpuku, T. (1960). General theory and numerical tables of clebsch-gordan coefficients. 

Supplement of the Progress of Theoretical Physics, 13, 1-135. https://doi.org/10.1143/PTPS.13.1 

[13] Tarter, C. B. (1970). Coefficients connecting the stark and field-free wavefunctions for hydrogen. 

Journal of Mathematical Physics, 11, 3192-3195. http://dx.doi.org/10.1063/1.1665113 

[14] Schulten, K., & Gordon, R. G. (1976). Recursive evaluation of 3j and 6j coefficients. Computer 

Physics Communications, 11, 269-278. https://doi.org/10.1016/0010-4655(76)90058-8 

[15] Lai, S. T., & Chiu, Y. N. (1990). Exact computation of the 3-j and 6-j symbols. Computer Physics 

Communications, 61, 350-360. https://doi.org/10.1016/0010-4655(90)90049-7 

[16] Guseinov, I. I., Özmen, A., Atav, Ü., & Yüksel, H. (1995). Computation of clebsch-gordan and 

gaunt coefficients using binomial coefficients. Journal of Computational Physics, 122, 343-347. 

https://doi.org/10.1006/jcph.1995.1220 

[17] Wei, L. (1999). Unified approach for exact calculation of angular momentum coupling and 

recoupling coefficients. Computer Physics Communications, 120, 222-230. 

https://doi.org/10.1016/S0010-4655(99)00232-5 

[18] Pain, J. -C. (2020). Some properties of Wigner 3 j coefficients: non-trivial zeros and connections 

to hypergeometric functions. The Europan Physics Journal A, 56:296, 1-13. 

https://doi.org/10.1140/epja/s10050-020-00303-9 

[19] Akdemir, S., Özay, S., & Öztekin E. (2023). Asymptotic behavior of clebsch-gordan coefficients. 

Journal of Mathematical Chemistry, https://doi.org//10.1007/s10910-023-01544-x 

[20] Gaunt, J. A. (1929). The triplets of Helium. Philosophical Transactions of the Royal Society of 

London Series A 228, 151-196. https://royalsocietypublishing.org/doi/10.1098/rsta.1929.0004 

[21] Weniger, E. J., & Steinborn, E. O. (1982). Programs for the coupling of spherical harmonics. 

Computer Physics Communications, 25, 149-157. https://doi.org/10.1016/0010-4655(82)90031-5 

[22] Xu, Y. L. (1998). Efficient evaluation of vector translation coefficients in multiparticle light-

scattering theories. Journal of Computational Physics, 139, 137-165. 

https://doi.org/10.1006/jcph.1997.586 

[23] Yükçü, S. A., Yükçü, N., & Öztekin, E. (2019). New representations for Gaunt coefficients. 

Chemical Physics Letters, 735, 136769. https://doi.org/10.1016/j.cplett.2019.136769 

[24] Rasch, J., & Yu, A. C. H. (2004). Efficient storage scheme for precalculated wigner 3j, 6j and Gaunt 

coefficients. SIAM Journal on Scientific Computing, 25, 1416-1428. 

https://doi.org/10.1137/S1064827503422932 

[25] Özay, S., Akdemir, S., & Öztekin, E. (2023). New orthogonality relationships for the Gaunt 

coefficients. http://dx.doi.org/10.2139/ssrn.4529971 



Akdemir                                                                     Sinop Uni J Nat Sci 8(2): 229-244 (2023) 

  ISSN: 2536-4383 

244 

[26] Homeier, H. H. H., & Steinborn, E. O. (1996). Some properties of the coupling coefficients of real 

spherical harmonics and their relation to Gaunt coefficients. Journal of Molecular Structure: 

THEOCHEM, 368, 31-37. https://doi.org/10.1016/S0166-1280(96)90531-X 

[27] Sebilleau, D. (1998). On the computation of the integrated products of three spherical harmonics. 

Journal of Physics A: Mathematical and General, 31, 7157-7168. https://doi.org/10.1088/0305-

4470/31/34/017 

[28] Pinchon, D., & Hoggan, P. E. (2007). New index functions for storing Gaunt coefficients. 

International Journal of Quantum Chemistry, 107, 2186-2196. https://doi.org/10.1002/qua.21337 

[29] Dunlap, B. I. (2002). Generalized Gaunt coefficients. Physical Review A, 66, 032502. 

https://doi.org/10.1103/PhysRevA.66.032502 

[30] Akın, E. (2016). Gaunt katsayılarının binom katsayıları kullanılarak hesaplanması. Selçuk 

Üniversitesi Fen Fakültesi Fen Dergisi, 42 (2), 129-135.  

[31] Arfken, G. B., & Weber, H. J. (2005). Mathematical Methods for Physicists. Academic Press, 

London. 


