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ARTICLE INFO ABSTRACT  

The present paper investigate the effects of magnetic field (MHD), Richardson and suction on 

an exponentially expanded infinite plate by studying the convective heat and mass transfer of 

a non-Newtonian incompressible viscous and electrically conducting fluid. Cross-diffusion 

impacts are also taken into consideration. The governing partial differential equations (PDEs) 

are transformed into ordinary differential equations through the application of well-posed 

similarity transformation variables (STVs). Thus, the transformed dimensionless equations are 

solved analytically by integrating factor approach and the resulting solutions are simulated with 

an efficient stability numerical algorithm known as Mathematica. The results are displayed in 

tabular and graphical forms while the effects of various parameters on the velocity, 

temperature, concentration, skin–friction coefficient, Nusselt and Sherwood numbers are 

discussed in details. It was found that velocity falls when magnetic field and suction parameters 

increase. Also, the temperature and nanoparticle concentration decreases as suction number 

rises but are enhanced as diffusion-thermo and thermal-diffusivity parameters rise. An increase 

in Richardson and Prandtl numbers leads to a decrease in skin-friction and upsurge in the rate 

of heat transportation. The results of this study can be used to advance the design, operation, 

and performance of various systems encountered in industrial and scientific applications. 
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MHD Richardson Akışının Emiş ve Çapraz Difüzyon Etkileri ile Üstel Olarak Gerilmiş 

Sonsuz Bir Plakadan Geçmesinin Analizi  
MAKALE BİLGİSİ  ÖZET  

Bu makale, Newtonyen olmayan sıkıştırılamaz viskoz ve elektriksel olarak iletken bir 

akışkanın konvektif ısı ve kütle transferini inceleyerek, manyetik alanın (MHD), Richardson 

ve emmenin üstel olarak genişleyen sonsuz bir plaka üzerindeki etkilerini araştırmaktadır. 

Çapraz difüzyon etkileri de dikkate alınır. Geçerli kısmi diferansiyel denklemler (PDE'ler), iyi 

konumlanmış benzerlik dönüşüm değişkenlerinin (STV'ler) uygulanması yoluyla sıradan 

diferansiyel denklemlere dönüştürülür. Böylece, dönüştürülen boyutsuz denklemler, entegre 

faktör yaklaşımıyla analitik olarak çözülmekte ve elde edilen çözümler, Mathematica olarak 

bilinen etkin kararlılık sayısal algoritmasıyla simüle edilmektedir. Sonuçlar tablo ve grafik 

formlarında gösterilirken, çeşitli parametrelerin hız, sıcaklık, konsantrasyon, yüzey sürtünme 

katsayısı, Nusselt ve Sherwood sayıları üzerindeki etkileri ayrıntılı olarak tartışılmaktadır. 

Manyetik alan ve emme parametreleri arttıkça hızın düştüğü bulunmuştur. Ayrıca emme sayısı 

arttıkça sıcaklık ve nanopartikül konsantrasyonu azalır, ancak difüzyon termo ve termal 

yayılma parametreleri yükseldikçe artar. Richardson ve Prandtl sayılarındaki artış, cilt 

sürtünmesinin azalmasına ve ısı aktarım hızının artmasına neden olur. Bu çalışmanın sonuçları, 

endüstriyel ve bilimsel uygulamalarda karşılaşılan çeşitli sistemlerin tasarımını, işletimini ve 

performansını geliştirmek için kullanılabilir. 

Alınış tarihi: 06/09/2023 

Kabul tarihi: 09/11/2023 

Anahtar Kelimeler: Enerji akısı, Kütle 

difüzyonu, Nanoakışkan, Wolfram 

Mathematica  

DOI: 10.55979/tjse.1356407 

1. Introduction 

Fluid flows exposed to magnetic fields and buoyancy 

impacts contribute a noteworthy performance in several 

industrial and engineering applications such as in the heat 

exchangers, chemical processes, and materials processing. 

The comprehension and control of such flows are vital for 

improving the proficiency and optimizing system 

performance. Efforts geared towards the exploration of the 

performance of magnetohydrodynamic (MHD) mixed 

convection flows, which involves the combined effects of 

forced and natural convections, as well as magnetic fields 

shows an increasing trajectory. In MHD mixed convection 

flows, two substantial physical phenomena namely, cross-

diffusion and suction effects perform fundamental roles. 

The phenomena were diverse species within a fluid display 
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variable diffusion coefficient, which leads to disparities in 

concentration profiles and transport properties is termed 

Cross-diffusion. Meanwhile, suction encompasses the 

local exclusion of fluid from specific areas in a system, 

ensuing in modifications to flow configurations and overall 

fluid behavior. Thus, the scientific significance of suction 

in fluid dynamics is noteworthy. Firstly, by controlling the 

suction, scientists and engineers can handle the flow 

velocity, temperature, and nanoparticle (specie) 

concentrations in various applications. For example, in 

cooling systems, the adjustment of suction can aid in 

regulating fluid velocities and temperatures thereby 

ensuring optimal cooling efficiency. Secondly, in 

nanoparticle dispersion processes, the controlling of 

suction allows for precise control over nanoparticle 

concentrations in any desired region in a given system. 

Hence, understanding the impacts of suction will facilitates 

the configuration and increase in efficiency of fluid flow 

systems in numerous fields, such as engineering, 

environmental sciences, and nanotechnology. 

The augmentation of heating or cooling is an important 

aspect in the industrial processes. This is because of its 

support and contribution in energy saving and optimal 

performance efficacy of industrial machineries such as, gas 

turbines. Similarly, some systems are also affected through 

thermal enrichment processes, thus, the designing, 

expansion and improvement of high performance thermal 

transferal systems become necessary. Thus, the 

introduction of new forms of heat transmission fluidics 

such as nanofluid becomes very vital. Meanwhile, 

nanofluidics occurs in form of single and multi-phase 

fluids. They’re composite of convectional fluids existing as 

𝐻2𝑂, engine oil, EGC etc., with finely divided and 

suspended particles of metals and their oxides 

(nanoparticles) with sizes less than 100 nanometer (nm). 

However, nanoparticles exist in two forms, namely: soft 

and hard forms. It can also appear as nanotubes, nano-

chips, CNTs etc. Interestingly, Bhattacharyya (2012), 

examined the characteristics of steady flow and reacting 

mass transmission over an exponentially elastic plate in a 

moving fluid. He applied the fourth-order Runge-Kutta and 

shooting methods in his solution approach. His findings 

revealed that a rise in Schmidt and reaction rate parameters 

leads to an increase in mass transport. Liu et al. (2013), 

have explored three dimensional (3D) boundary wall layer 

flow and thermal transference of viscous stream over an 

exponentially expanding sheet. They employed the 

Ackroyd technique and Runge-Kutta integration scheme in 

solving their converted equations. Their result opined that 

thermal transferal characteristics are dependent on the 

temperature exponent, expanding and Prandtl factors. 

Several scholars (Nadem et al., 2014), Bhattacharyga & 

Layele (2014), Mukhopadhyay et al. (2014), Ene & 

Marinca (2015) have investigated various facet of 

nanofluidic flow past exponentially extending surface 

under different constraints. Meanwhile, Das (2012), 

studied the dual impact of mixed thermophoresis and 

chemical reaction on MHD micropolar stream for varying 

fluid properties. The analysis of micropolar fluidic flow 

and thermal transferal past a lessening plate was conducted 

by Turkyilmazoglu (2014).  His result showed that the 

existence of physical structures of micro-rotation and 

energy profiles appeared either in unique or many forms. 

The MHD influence on boundary flow with absorbent 

material over an exponentially contracting surface and slip 

was examined by Jain & Choudhary (2015). By utilizing 

the Runge-Kutta and shooting schemes, they noted that the 

shear stress augments while the velocity and temperature 

lessens as slip number improves. Similarly, Fauzi et al. 

(2012), analyzed the mixed convective flow of nanofluids 

with a leaky upright cone. They obtained twofold solutions 

for some values of mixed convective factor by adopting the 

shooting procedure. The examination of thermal 

transference in mixed convection stream of nanoliquids 

past a parallel circular cylinder was studied by Rabeti 

(2014). He maintained that the immersed nanoparticles in 

the convectional fluid increase the thermal distribution 

from the cylinder when the non-free convection heat 

circulation is the leading regime of such thermal transport. 

Several scientists such as Ali & Al-Yousef (2004), 

Dandapat et al. (2004), Abo-Eldahas & Abd El-Aziz 

(2005), Abd El-Aziz & Salem (2007), have explored on 

heat and mass transportation of a steady stream with a half-

infinite fluid layer being controlled by an unceasing 

expanding plate.  

The effect of cross-diffusion and suction on MHD mixed 

convection flows has fascinated substantial interest owing 

to their prospect, to meaningfully modify flow 

characteristics, thermal transmission rates and general 

system optimal efficiency. Even with their practical 

significance, an in-depth comprehension of their combined 

impacts on MHD fluid flow remains incomplete. Lately, 

Abd El-Aziz (2009, 2010), stretched the work of 

Elbashbeshy & Bazid (2004), by considering heat 

radiation, Hall currents and chemical reactivity under 

bounded time-dependent conditions. They opined that the 

heat transfer proportion was enhanced as radiation and 

Prandtl numbers rises. Similarly, Bachok et al. (2011), 

investigated the similarity resolution of unsteady wall flow 

and heat conveyance due to a stretching plate. The scrutiny 

of Soret dissipation effect on heat and mass transfer 

involving non-newtonian radiative nanofluid flow due to 

Lorentz drag and Rosseland radiation was reported by 

Awucha & Okechukwu (2022). They applied the series 

approximation method in obtaining the analytical result 

and utilized the Mathematica software in realizing the 

numerical solutions. According to their finding, increasing 

the Casson number begets a reduction in velocity and an 

increase in temperature.  

The originality of this study lies in its holistic approach to 

investigating a complex fluid flow problem. While there 

are existing studies on MHD flows past various types of 

plates and surfaces, few combined the Dufour, exponential 

stretching, suction, and Richardson effects into a single 

analysis. Thus, by taking all the aforementioned 

phenomena into consideration in this present study, this 

research bridges the gaps in the knowledge and provides a 

more accurate representation of real-world scenarios, 

making it highly relevant to practical applications in 

engineering, physics, and environmental science. The 

insights gained from this study can lead to the development 
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of more efficient systems and processes in industries where 

MHD flows and diffusion effects play a critical and 

advance role. The current status of the study in the 

literature provides a brief review of related literature, 

highlighting previous research on MHD flows past 

different types of surfaces and plates. Some of the 

referenced studies explored factors such as temperature 

gradients, chemical reactions, and nanoparticle dispersion 

in various flow configurations. The present study identifies 

a gap in the literature concerning the combined effects of 

Dufour, cross-diffusion (Richardson), and suction on 

MHD convective flows. Despite the practical relevance of 

these phenomena, a comprehensive understanding of their 

combined impacts remains incomplete. Hence, the primary 

goal of this study is to develop a mathematical model that 

analyzes the interplay of physical parameters between 

Dufour, Richardson, and suction effects on MHD 

convection flows. The governing models include 

continuity, conservation, energy transport, and 

concentration equations. These models will be explored 

using numerical and computational techniques to gain 

insights into the flow behavior and heat transportation. The 

study aims to contribute to the advancement of 

fundamental knowledge in the field of MHD mixed 

convection control and provide insights for the designing 

and optimization of systems involving fluid flows 

subjected to magnetic fields, buoyancy effects, and 

controlled mechanisms, thereby enhancing energy 

efficiency and heat transfer rates. The findings of this study 

could also have implications in various fields, such as 

engineering, environmental science, nanotechnology, and 

biology. The breakdown of the current developments in the 

literature is as follows: 

Significance of MHD and Buoyancy Effects: The text 

highlights the significance of fluid flows exposed to 

magnetic fields and buoyancy impacts in various industrial 

applications, such as heat exchangers, chemical processes, 

and materials processing. This emphasizes the importance 

of understanding and controlling these flows for 

optimizing system performance. 

MHD Mixed Convection Flows: The literature has seen an 

increasing interest in the exploration of 

magnetohydrodynamic (MHD) mixed convection flows. 

These flows involve the combined effects of forced and 

natural convections, as well as magnetic fields. 

Researchers are recognizing the practical relevance of 

these flows and their potential to enhance system 

efficiency. 

Role of Cross-Diffusion and Suction: In MHD mixed 

convection flows, two fundamental physical phenomena, 

namely cross-diffusion and suction effects, play significant 

roles. Cross-diffusion involves diverse species within a 

fluid with variable diffusion coefficients, leading to 

variations in concentration profiles and transport 

properties. Suction, on the other hand, involves the local 

exclusion of fluid from specific areas in a system, leading 

to modifications in flow configurations. 

Applications of Suction: Suction is highlighted as a 

valuable tool for controlling flow velocity, temperature, 

and nanoparticle concentrations in various applications. 

For instance, it can optimize cooling efficiency in cooling 

systems and enable precise control over nanoparticle 

concentrations in processes like nanofluid dispersion. This 

study provides an in-depth comprehension of the principles 

of suction due to its importance in the designing and 

optimization of proficient systems such as pumps, turbines, 

and ventilation systems. In biological systems, the 

principle of suction remains vital for processes such as 

respiration, feeding, and circulation. Furthermore, it is 

engaged in medical applications like wound healing, drug 

delivery, and blood collection. In addition, the mixed 

convection plays an integral role in different applications 

such as in the designing of heat exchangers, cooling 

systems for electronic devices, and thermal management 

for industrial processes. It also has implications in 

environmental phenomena, such as the dispersion of 

pollutants in the atmosphere and the movement of heat and 

mass in natural water bodies. However, the current 

deficiencies in the literature include:  

Limited Understanding of Combined Effects: Despite the 

growing interest in MHD mixed convection flows, the text 

highlights that there is still an incomplete understanding of 

the combined impacts of cross-diffusion and suction on 

these flows. This is a gap in the literature that needs to be 

addressed. 

Scope of Previous Research: Previous studies have 

primarily focused on individual aspects of fluid flow and 

heat transfer, such as radiation, chemical reactivity, or 

nanoparticle dispersion. However, there is a lack of 

comprehensive research that considers the combined 

effects of cross-diffusion, suction, and other factors in 

MHD flows. 

Unexplored Interactions: The text emphasizes that the 

interactions between Richardson flow, cross-diffusion, and 

suction effects in MHD mixed convection flows have not 

been thoroughly explored. These interactions have the 

potential to significantly modify flow characteristics and 

thermal transmission rates. 

Proposed Study's Contributions: The proposed study aims 

to bridge the existing gaps in the literature by developing a 

mathematical model that accounts for the interplay of 

physical parameters related to Richardson flow, cross-

diffusion, and suction effects in MHD mixed convection 

flows. By conducting a detailed analysis using numerical 

and computational techniques, the study intends to provide 

insights into flow behavior and heat transfer under the 

influence of Dufour, Soret, and suction parameters. 
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2. Materials and Method  

2.1. Mathematical formulation 

A steady, laminar and incompressible mixed convection 

flow of an electrically conducting nanofluidic due to heat 

and mass transmission past a partially infinite plate 

imbedded in a fluid is considered. It is assumed that the 

flow is in vertical direction along the plate in 𝑥 − 𝑎𝑥𝑖𝑠 and 

normal in the 𝑦 −axis. The plate is kept at temperature 

𝑇𝑠(𝑥) and concentration 𝐶𝑠(𝑥) with baseline temperature 

and concentration expressed as 𝑇∞(𝑥) and 𝐶∞(𝑥) 

respectively. However, the physical geometry of the model 

is depicted in Figure 1.  

 

 

 

 

 

 

 

 

Figure 1. Schematic flow representation 

In view of the aforementioned conditions and under the 

Boussinesq’s approximations (1877), the governing 

boundary layer models are presented below: 

2.1.1. Continuity equation  

𝜕𝑣′

𝜕𝑦′ = 0 (1) 

2.2.1. Momentum conservation equation 

𝜕𝑝′

𝜕𝑥′ + 𝑢
𝜕𝑢′

𝜕𝑥′ + 𝑣
𝜕𝑢′

𝜕𝑦′ = 𝜐
𝜕2𝑢′

𝜕𝑦2′ +
𝑔𝜆∗(𝑇−𝑇∞)

𝑅𝑒𝑥
2 −

𝜎𝐵𝑂
2 𝑢′

𝜌
 (2) 

2.3.1. Energy conservation equation 

𝜕𝑇′

𝜕𝑥′ + 𝑣
𝜕𝑇′

𝜕𝑦′ =
1

𝜌𝐶𝑝

𝜕

𝜕𝑦′ (𝑘
𝜕𝑇′

𝜕𝑦′) +… 

𝐷𝐾𝑇

𝐶𝑠𝐶𝑝
[(𝐶𝑠 − 𝐶∞)𝜃(𝜂)] −

𝑘

𝜌𝐶𝑝

𝜕𝑞𝑟

𝜕𝑦′  (3) 

2.3.1. Mass concentration equation 

𝑢
𝜕𝐶′

𝜕𝑥′ + 𝑣
𝜕𝐶′

𝜕𝑦′ = 𝐷
𝜕2𝐶′

𝜕𝑦2′ +
𝐷𝐾𝑐

𝑇𝜇
(𝑇 − 𝑇∞)𝜃(𝜂) (4) 

Under the following boundary constraints 

at 𝑦 = 0; 𝑢(𝑥) = 𝑈, 𝑣 = −𝑉(𝑥), 𝑇 = 𝑇𝑠,     𝐶 = 𝐶𝑠 (5) 

as  𝑦 → ∞,  𝑢 → 0,  𝑇 → 𝑇∞,  𝐶 → 𝐶∞ (6) 

The suction velocity normal to the sheet is given as 

𝑣 = −𝑉(𝑥) (7) 

where the components of velocities in both 𝑥 and 𝑦 

directions are represented by 𝑢 and 𝑣, 𝜐 is the kinematic 

viscosity, 𝑝 =fluid pressure, 

𝑘 = thermal conductance of fluid, 𝑞𝑟 = heat flux radiation, 

𝐶𝑝 =specific heat at constant pressure, 𝐷 = mass 

diffusivity coefficient, 𝑔 = acceleration due to gravity, 

𝑅𝑒𝑥 = local Reynolds number dependent on the sheet 

velocity, 𝜆∗ = characteristic length, 𝜌 = fluid density, 

𝜎 =electrical conductance,  

𝑘𝑇 = proportion of thermal diffusivity,  

𝐾𝑐 = mass diffusivity proportion, the negative sign 

specifies that the suction velocity is in the direction of the 

plate. According the Rosseland estimation (1936) in terms 

of 𝑞𝑟, we have 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇′4

𝜕𝑦′  (8) 

where 𝜎∗ representing the Stefan-Boltzman term 

expressing the relationship between the thermal radiation 

emitted by the sheet,  

𝑇 = absolute temperature and 𝑘∗ = mean absorption 

estimation. Under the condition that the temperature 

gradient surrounded by the flow exist in such a way that 

𝑇′4 can be stated as a linear grouping and with the aid of 

Taylor series by expanding 𝑇′4 at 𝑇∞ , we got 

𝑇′4 = 𝑇∞
′4 + 4𝑇∞

′3( 𝑇′ − 𝑇∞
′ ) + 6𝑇∞

′2(𝑇′ − 𝑇∞
′ )2 + ⋯ (9) 

By excluding terms of greater orders that are higher than 

the first degree in ( 𝑇′ − 𝑇∞
′ ), we have 

𝑇′4 = −3𝑇∞
′4 + 4𝑇∞

′3𝑇′ (10) 

Taking the derivative of Eq. (8) with respect to 𝑦′ and using 

Eq. (10) produces 

𝜕𝑞𝑟

𝜕𝑦′ = −
16𝑇∞

3 𝜎∗

3𝑘∗

𝜕2𝑇′

𝜕𝑦′2 (11) 

Putting Eq. (11) into Eq. (3) leads to 

𝑢
𝜕𝑇′

𝜕𝑥′
+ 𝑣

𝜕𝑇′

𝜕𝑦′
=

1

𝜌𝐶𝑝

𝜕

𝜕𝑦′
(𝑘

𝜕𝑇′

𝜕𝑦′
) +

𝐷𝐾𝑇

𝐶𝑠𝐶𝑝
[(𝐶𝑠 − 𝐶∞)𝜃(𝜂)] −

16𝑇∞
3 𝜎∗

3𝑘∗

𝜕2𝑇′

𝜕𝑦′2
 (12) 

Introducing the stream functions, 𝑢 =
𝜕𝜓

𝜕𝑦
 and 

𝑣 = −
𝜕𝜓

𝜕𝑥
 into Eq. (1) shows that it is satisfied. Since the 

pressure is a constant, we have  

𝜕𝑝′

𝜕𝑥′ = 0 (13) 

In order to transform Eq. (2), (4) and (16) into a coupled 

ordinary differential equations, the following relevant 

transformation variables are defined accordingly as 

𝜂 = 𝑦√
𝑈0

2𝑣𝐿
 𝑒

𝑥

2𝐿  

𝑢 = 𝑈0𝑒
𝑥

2𝐿
𝑑𝑓

𝑑𝜂
  (14) 

𝑥 

𝑦 

𝑥 

𝑦 

𝑔 

𝐶𝑤(𝑥) 

𝑇𝑤(𝑥) 

𝐵0 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

𝑙𝑎𝑦𝑒𝑟 

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

𝑙𝑎𝑦𝑒𝑟 

𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 
𝑙𝑎𝑦𝑒𝑟 



Uka et al. / Türk Bilim ve Mühendislik Dergisi, 5(2): 74-88, 2023 

78 

𝑣 = −√
𝑣𝑈0

2𝐿
 𝑒

𝑥

2𝐿 [(𝑓(𝜂) + 𝜂
𝑑𝑓

𝑑𝜂
)]  

𝑇 = 𝑇∞ + 𝑇0𝑒
𝑥

2𝐿𝜃(𝜂)  

Putting Eq. (14) into Eq. (2), (4), (16) and simplifying 

produces 

𝑑3𝑓

𝑑𝜂3 + 𝑓(𝜂)
𝑑2𝑓

𝑑𝜂2 + 𝛾𝜃(𝜂) − 𝑀
𝑑𝑓

𝑑𝜂
= 0 (15) 

(1 + 𝑆)
𝑑2𝜃

𝑑𝜂2 + 𝑃𝑟𝑓(𝜂)
𝑑𝜃

𝑑𝜂
+ 𝐷𝑓𝜃(𝜂) = 0 (16) 

𝑑2∅

𝑑𝜂2 + 𝑆𝑐𝑓(𝜂)
𝑑∅

𝑑𝜂
+ 𝑆𝑡𝜃(𝜂) = 0 (17) 

Subject to the following boundary expressions. 

at 𝜂 = 0: 𝑓 = 𝑚0, 𝑓′ = 1, 𝜃 = 1, ∅ = 1 (18) 

as 𝜂 → ∞: 𝑓′ → 0, 𝜃 → 0, ∅ → 0 (19) 

where, 𝑀 =
2𝜎𝐵0

2𝑙

𝜌𝑈𝑤
, 𝛾 =

𝐺𝑡

𝑅𝑒𝑥
2, 𝐺𝑡 =

𝑔𝜆(𝑇𝑠−𝑇∞)𝑙

𝑣2 , 𝑅𝑒𝑥 =
𝑈𝑤𝑙

𝑣
, 

𝑃𝑟 =
𝑣

𝛼
, 𝐷𝑓 =

𝐷𝑘𝑡

𝐶𝑠𝐶𝑝
(

(𝐶𝑠−𝐶∞)

(𝑇𝑠−𝑇∞)
), 𝑆 =

16𝜎∗𝑇∞
3

3𝑘∗𝑘
, 𝑆𝑐 =

𝑣

𝐷
 and 

 𝑆𝑡 =
𝐷𝑘𝑐

𝑇𝜇
(

(𝑇𝑠−𝑇)

(𝐶𝑠−𝐶∞)
) 

refers to magnetic strength, mixed (Richardson) 

convective, local Reynolds, Prandtl, Dufour, radiation, 

Schmidt and Soret parameters respectively. However,  

𝑚0 =
𝑣0

√
𝑣𝑈0
2𝐿

> 0 and 𝑚0 =
𝑣0

√
𝑣𝑈0
2𝐿

< 0 is indicative of the 

suction and blowing numbers. 

However, the current research was solved analytically by 

deploying the improved series approximation technique in 

order to realize the solutions. The steps involve:  

It refers to a mathematical method used in finding the 

approximate solutions for differential equations with a 

small parameter, denoted by 𝛿. This technique is mainly 

useful when a given ODE is coupled, complex in nature 

and cannot be solved directly. 

1. The ODE involving a small parameter 𝛿, is written. 

2. The solution is assumed in such a way that it can be 

stated as a sum of an infinite power series such as: 𝑦(𝜂) =
𝑓0(𝜂) + 𝛿𝑓1(𝜂) + 𝛿2𝑓2(𝜂) + ⋯ were  𝑓0(𝜂), 𝑓1(𝜂), 𝑓2(𝜂), 

etc., are to be found. 

3. The assumed solution are used in the original ODE and 

coefficients of various powers of 𝛿 equated. 

4. The resulting equations are solved in order to find the 

expressions for the unknown functions. 

5. The obtained values of 𝑓0(𝜂), 𝑓1(𝜂), 𝑓2(𝜂),  etc., are 

substituted into the assumed solution given in the second 

step above so as to determine the approximate solution, 

𝑓(𝜂). 

6. The constants of integration that are present in the 

solutions already obtained are found by applying the initial 

or boundary conditions. Thus, the obtained solutions are 

iterated through simulation with a suitable numerical 

software. 

In accordance with Bestman (1990), the following 

definitions are utilized to solve Eq. (2), (4) and (16) 

meaningfully. 

𝜂 = 𝜉𝑚0, 𝑓(𝜂) = 𝑚0𝐹(𝜂), 𝜃(𝜂) = 𝑤(𝜂), 

∅(𝜂) = 𝑍(𝜂), 𝜔 =
1

𝑚0
2 (20) 

Utilizing Eq. (22) and its differentials into Eq. (15)-(21) 

and simplifying gives 

𝑑3𝑓

𝑑𝜂3
(𝑚0)4 + 𝑓(𝜂)

𝑑2𝑓

𝑑𝜂2
(𝑚0)4 + 𝛾𝜃(𝜂) − 𝑀

𝑑𝑓

𝑑𝜂
(𝑚0)20 (21) 

(1 + 𝑆)
𝑑2𝑍

𝑑𝜂2
(𝑚0)2 + 𝑃𝑟𝑓(𝜂)

𝑑𝑍

𝑑𝜂
(𝑚0)2 + 𝐷𝑓𝑍(𝜂) = 0 (22) 

𝑑2𝑊

𝑑𝜂2
(𝑚0)2 + 𝑆𝑐𝑓(𝜂)

𝑑𝑊

𝑑𝜂
(𝑚0)2 + 𝑆𝑡𝑍(𝜂) = 0 (23) 

𝜂 = 0: 𝑓 = 1, 𝑓′ = 𝜔, 𝑍 = 1, 𝑊 = 1 (24) 

𝜂 → ∞: 𝑓′ → 0, 𝑍 → 0, 𝑊 → 0 (25) 

By multiplying equations (21) by 
1

(𝑚0)4,  (22) and (23) by 

1

(𝑚0)2 , we have the following equations. 

𝑑3𝑓

𝑑𝜂3 + 𝑓(𝜂)
𝑑2𝑓

𝑑𝜂2 + 𝛾𝑍(𝜂)𝜔2 − 𝑀
𝑑𝑓

𝑑𝜂
𝜔 = 0 (26) 

(1 + 𝑆)
𝑑2𝑍

𝑑𝜂2 + 𝑃𝑟𝑓(𝜂)
𝑑𝑍

𝑑𝜂
+ 𝐷𝑓𝑍(𝜂)𝜔 = 0 (27) 

𝑑2𝑊

𝑑𝜂2 + 𝑆𝑐𝑓(𝜂)
𝑑𝑊

𝑑𝜂
+ 𝑆𝑡𝑍(𝜂)𝜔 = 0 (28) 

𝜂 = 0: 𝑓 = 1, 𝑓′ = 𝜔, 𝑍 = 1, 𝑊 = 1 (29) 

𝜂 → ∞: 𝑓′ → 0, 𝑍 → 0, 𝑊 → 0 (30) 

As a result of the case of suction, 𝜔 ≪ 1, the solution of 

Eq. (26) - (28) is assumed as follows:   

𝑓(𝜂) = 1 + ∑ 𝜔𝑗𝑓𝑘(𝜂)∞
𝑗=𝑘=1 + 𝑂(𝜔)3 +

⋯ (31a)

  

𝑤(𝜂) = ∑ 𝜔𝑗𝑍𝑘(𝜂) + 𝑂(𝜔)2 + ⋯∞
𝑗=𝑘=1  (31b) 

𝑧(𝜂) = ∑ 𝜔𝑗𝑊𝑘(𝜂) + 𝑂(𝜔)2 +∞
𝑗=𝑘=1

⋯ (31c)

  

Differentiating  𝑓(𝜂) thrice while 𝑤(𝜂) and 𝑠(𝜂) are 

differentiated twice with respect to 𝜂, yields the following 

equations. 

𝑓′(𝜂) = 𝜔𝑓1
′ + 𝜔2𝑓2

′ + ⋯  

𝑓′′(𝜂) = 𝜔𝑓1
′′ + 𝜔2𝑓2

′′ + ⋯  

𝑓′′′(𝜂) = 𝜔𝑓1
′′′ + 𝜔2𝑓2

′′′ + ⋯  

𝑍′ = 𝑍0
′ + 𝜔𝑍1

′ + ⋯ (32) 
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𝑍′′ = 𝑍0
′′ + 𝜔𝑍1

′′ + ⋯  

𝑊′ = 𝑊0
′ + 𝜔𝑊1

′ + ⋯  

𝑊′′ = 𝑊0
′′ + 𝜔𝑊 + ⋯  

Putting Eq. (31a, 31b and 31c) and (32) into Eq. (26)-(28) 

and equating the coefficients of same degrees in zeroth, 

unity and binary orders in 𝜔𝑗 and further simplification of 

Eq. (29)-(30) produces the following equations. 

Zeroth Order 

(1 + 𝑆)
𝑑2𝑍0

𝑑𝜂2 + 𝑃𝑟
𝑑𝑍0

𝑑𝜂
= 0; 𝑍0(0) = 1,  (33) 

 𝑍0(∞) = 0 

𝑑2𝑊0

𝑑𝜂2 + 𝑆𝑐
𝑑𝑊0

𝑑𝜂
= 0; 𝑊0(0) = 1, 𝑊0(∞) = 0 (34) 

Order of Unity 

𝑑3𝑓1

𝑑𝜂3 +
𝑑2𝑓1

𝑑𝜂2 = 0; 𝑓1(0) = 0,  𝑓1
′(0) = 1,   𝑓1

′(∞) = 0  (35) 

(1 + 𝑆)
𝑑2𝑍1

𝑑𝜂2 + 𝑃𝑟
𝑑𝑍1

𝑑𝜂
+ 𝑃𝑟𝑓1(𝜂)

𝑑𝑍0

𝑑𝜂
+ 𝐷𝑓𝑍0(𝜂) = 0;  

𝑍1(0) = 0,   𝑍1(∞) = 0 (36) 

𝑑2𝑊1

𝑑𝜂2
+ 𝑆𝑐

𝑑𝑊1

𝑑𝜂
+ 𝑆𝑐𝑓1(𝜂)

𝑑𝑊0

𝑑𝜂
+ 𝑆𝑡𝑍0(𝜂) = 0;  

𝑊1(0) = 0,     𝑊1(∞) = 0 (37) 

Binary Order 

𝑑3𝑓2

𝑑𝜂3 +
𝑑2𝑓2

𝑑𝜂2 + 𝑓1(𝜂)
𝑑2𝑓1

𝑑𝜂2 + 𝛾𝑍0(𝜂) − 𝑀
𝑑𝑓1

𝑑𝜂
= 0;  

 𝑓2(0) = 0,  𝑓2
′(0) = 0, 𝑓2

′(∞) = 0 (38) 

Solving the coupled systems of Eq. (33)-(38) with the 

application of their respective boundary conditions yields 

the following analytical solutions. 

𝑓1(𝜂) = 1 − 𝑒𝑥𝑝 − 𝜂 (39) 

𝑓2(𝜂) = 𝑒𝑥𝑝 − 𝜂 +
1

4
𝑒𝑥𝑝 − 2𝜂 + ⋯ 

𝛾

(𝐴)2(𝐴−1)
𝑒𝑥𝑝 − 𝐴𝜂 + 𝑀𝜂𝑒𝑥𝑝 − 𝜂 − ⋯  

𝛾

(𝐴)2(𝐴−1)
−

3

4
+

𝛾

𝐴(𝐴−1)
− 𝑀 +

1

2
𝑒𝑥𝑝 − 𝜂 − ⋯  

𝛾

𝐴(𝐴−1)
𝑒𝑥𝑝 − 𝜂 + 𝑀𝑒𝑥𝑝 − 𝜂 (40) 

𝑍0(𝜂) = 𝑒𝑥𝑝 − 𝐴𝜂 (41) 

 

𝑍1(𝜂) = −𝐴𝜂𝑒𝑥𝑝 − 𝐴𝜂 −
(𝐴)2

1+𝐴
𝑒𝑥𝑝 − ⋯  

(1 + 𝐴)𝜂 +
𝐷𝑓

𝑆𝑐(1+𝑆)
𝜂𝑒𝑥𝑝 − 𝐴𝜂 +

(𝐴)2

1+𝐴
𝑒𝑥𝑝 − 𝐴𝜂  (42) 

𝑊0(𝜂) = 𝑒𝑥𝑝 − 𝑆𝑐𝜂 (43) 

𝑊1(𝜂) = −𝑆𝑐𝜂𝑒𝑥𝑝 − 𝑆𝑐𝜂 −
(𝑆𝑐)2

1+𝑆𝑐
𝑒𝑥𝑝 − ⋯  

(1 + 𝑆𝑐)𝜂 +
(𝑆𝑐)2

1 + 𝑆𝑐
𝑒𝑥𝑝 − 𝑆𝑐𝜂 − ⋯ 

𝑆𝑡

𝐴(𝐴−𝑆𝑐)
𝑒𝑥𝑝 − 𝐴𝜂 +

𝑆𝑡

𝐴(𝐴−𝑆𝑐)
𝑒𝑥𝑝 − 𝑆𝑐𝜂  (44) 

Therefore, substituting Eq. (39)-(40) into Eq. (31a) gives 

𝑓(𝜂) = 1 + 𝜔(1 − 𝑒𝑥𝑝 − 𝜂) + ⋯  

𝜔2{𝜂𝑒𝑥𝑝 − 𝜂 +
1

4
𝑒𝑥𝑝 − 2𝜂 +

𝛾

(𝐴)2(𝐴 − 1)
𝑒𝑥𝑝 − 𝐴𝜂 + ⋯ 

𝑀𝜂𝑒𝑥𝑝 − 𝜂 −
𝛾

(𝐴)2(𝐴 − 1)
−

3

4
+

𝛾

𝐴(𝐴 − 1)
− ⋯ 

𝑀 +
1

2
𝑒𝑥𝑝 − 𝜂 −

𝛾

𝐴(𝐴−1)
𝑒𝑥𝑝 − 𝜂 + 𝑀𝑒𝑥𝑝 − 𝜂} (45) 

However, the fluid velocity is expressed as 

𝐹′(𝜂) = (𝑚0)2𝑓′(𝜂) (46) 

Thus, we have the analytical solution of the fluid velocity 

as 

𝐹′(𝜂) = 𝑒𝑥𝑝 − 𝜂 +
1

(𝑚0)2
∗ … 

{𝑒𝑥𝑝 − 𝜂 − 𝜂𝑒𝑥𝑝 − 𝜂 −
1

2
𝑒𝑥𝑝 − 2𝜂 − ⋯ 

𝛾

𝐴(𝐴−1)
𝑒𝑥𝑝−. . 𝐴𝜂 − 𝑀𝜂𝑒𝑥𝑝 − 𝜂 −

1

2
𝑒𝑥𝑝 − ⋯  

𝜂 +
𝛾

𝐴(𝐴−1)
𝑒𝑥𝑝 − 𝜂}  (47) 

Again, substituting Eq. (41) - (42) into Eq. (31b) produces 

the analytical solution of the nanofluid energy transport as 

𝑍(𝜂) = 𝑒𝑥𝑝 − 𝐴𝜂 +
1

(𝑚0)2 {−𝐴𝜂𝑒𝑥𝑝 − 𝐴𝜂 − ⋯  

(𝐴)2

1+𝐴
𝑒𝑥𝑝 − (1 + 𝐴)𝜂 +

𝐷𝑓

𝑆𝑐(1+𝑆)
𝜂𝑒𝑥𝑝 − ⋯  

𝐴𝜂 +
(𝐴)2

1+𝐴
𝑒𝑥𝑝 − 𝐴𝜂}  (48) 

Similarly, putting Eq. (43)-(44) into Eq. (31c), gives the 

analytical solution of the nanoparticle (specie) 

concentration as presented below. 

𝑊(𝜂) = 𝑒𝑥𝑝 − 𝑆𝑐𝜂 +
1

(𝑚0)2 {−𝑆𝑐𝜂𝑒𝑥𝑝 − 𝑆𝑐𝜂 − ⋯  

(𝑆𝑐)2

1+𝑆𝑐
𝑒𝑥𝑝 − (1 + 𝑆𝑐)𝜂 +

(𝑆𝑐)2

1+𝑆𝑐
𝑒𝑥𝑝 − 𝑆𝑐𝜂 − ⋯  

𝑆𝑡

𝐴(𝐴−𝑆𝑐)
𝑒𝑥𝑝 − 𝐴𝜂 +

𝑆𝑡

𝐴(𝐴−𝑆𝑐)
𝑒𝑥𝑝 − 𝑆𝑐𝜂}  (49) 

where,  

 𝐴 =
𝑃𝑟

1+𝑆
  is constant.  

The physical quantities of paramount importance for the 

optimization and designing processes in the engineering, 

material science and scientific analysis are defined as 

follows. 



Uka et al. / Türk Bilim ve Mühendislik Dergisi, 5(2): 74-88, 2023 

80 

𝐶𝑓 =
𝜏𝑠

∗

𝜌𝑈0𝑉0
 ,  𝑁𝑢𝑥

= 𝑥
(

𝜕𝑇

𝜕𝑦∗)
𝑦∗=0

(𝑇𝑠
∗−𝑇𝑠

∗)
  (50) 

𝑆ℎ𝑥
= −𝑥

(
𝜕𝐶

𝜕𝑦∗)
𝑦∗=0

(𝐶𝑠
∗−𝐶𝑠

∗)
    

Simplifying Eq. (50) produces the skin-friction, rate of beat 

transmission (Nusselt number) and Sherwood number (rate 

of mass transportation) as follows: 

𝐶𝑓 = − (
𝜕𝑢

𝜕𝑦
)

𝑦=0
 (51) 

𝑓′′(𝜂) = (𝑚0)3𝐹′′ (52) 

𝑓′′(0) = −𝑚0 +
1

𝑚0
(−

1

2
+

𝛾

𝐴−1
− 𝑀 −

𝛾

𝐴(𝐴−1)
) (53) 

Again, the Nusselt number is resolved as 

𝑁𝑢

𝑅𝑒𝑥

= − (
𝜕𝑧

𝜕𝑦
)

𝑦=0
 (54) 

𝑧′(𝜂) = − (
𝜕𝑧

𝜕𝑦
)

𝑦=0
 (55) 

𝑧′(0) = 𝐴 −
1

(𝑚0)2 (−𝐴 + (𝐴)2 +
𝐷𝑓

𝑆𝑐(1+𝑆𝑐)
−

(𝐴)2

1+𝐴
) (56) 

Similarly, the Sherwood number follows: 

𝑆ℎ

𝑅𝑒𝑥

= − (
𝜕𝑤

𝜕𝑦
)

𝑦=0
 (57) 

𝑤′(𝜂) = − (
𝜕𝑤

𝜕𝑦
)

𝑦=0
 (58) 

𝑤′(𝜂) = −𝑆𝑐 +
1

(𝑚0)2 {−𝑆𝑐 + (𝑆𝑐)2 −
(𝑆𝑐)3

1+𝑆𝑐
+ ⋯  

𝑆𝑡

𝐴−𝑆𝑐
−

𝑆𝑐(𝑆𝑡)

𝐴(𝐴−𝑆𝑐)
}  (59) 

Where, the local Reynolds factor due to the sheet’s suction 

velocity is described as 𝑅𝑒𝑥 =
𝑈𝑤𝑙

𝑣
. 

3. Findings and Discussion 

Having solved the problem analytically, we have deployed 

the Wolfram Mathematica software for realizing the 

numerical results which have been displayed graphically 

from Figures 2-13 and in Tables 1-3, respectively. 

In the study of fluid dynamics, the fluid velocity has the 

tendency to decline as the magnetic field strength 

parameter rises owing to a phenomenon termed 

magnetohydrodynamic (MHD) drag. Meanwhile, in a 

conductive fluid flow along the direction of a magnetic 

field, the interaction between them spawns electric currents 

in the fluid, thus creating its own magnetic fields. These 

self-generated magnetic fields resist the applied magnetic 

field, thereby leading to a resistance to the fluid motion. 

This resistance manifests as an increase in drag, which 

impedes the fluid's passage and results to a decrease in 

velocity as the magnetic field strength increases. This 

phenomenon is displayed in Figure 2. In Figure 3, the 

influence of mixed convection parameter on the fluids’ rate 

of flow is shown. As this parameter increases, the 

comparative impact of forced convection becomes more 

pronounced in relation to natural convection. Thus, this 

breeds a general increase in velocity within the fluid 

regime. As a result of this, the improved forced convection 

component, determined by the external force, transmits 

enormous momentum to the fluid, resulting in higher 

velocities and increased fluid motion. The effect of suction 

parameter, 𝑚𝑜 on velocity, temperature, and nanoparticle 

concentrations are illustrated in Figures 4, 5 and 6 

respectively. The removal of fluid from the system forms a 

negative pressure gradient which resists the flow direction 

thereby countering the natural motion of the fluid and 

resulting in a decrease in velocity. Hence, the higher the 

suction parameter, the more significant the deceleration of 

fluid flow becomes. This phenomenon leads to lessening 

of the velocity. However, the extraction of fluid begets the 

loss of heat energy and causes a drop in temperature. The 

extraction of fluid by suction lessens the overall thermal 

energy content of a given system and creates a cooling 

effect. Thus, a rise in suction contributes to a decrease in 

temperature (energy) in the fluid flow. Similarly, the 

dispersal of nanoparticles in the fluid is affected by the 

suction mechanism. As fluid is extracted, the concentration 

of nanoparticles decreases uniformly. This is because the 

suction selectively eliminates fluid along with the 

immersed nanoparticles. Therefore, increasing suction 

results in a decrease in nanoparticle concentrations within 

the fluid flow as shown in Figure 6. 
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Figure 2. Impact of magnetic field strength, 𝑀 on the rate of flow (velocity) 

 

 

 
Figure 3. Impact of Richardson (mixed convective) parameter, 𝛾 on the rate of flow (velocity) 

 

Figure 4. Impact of suction number, 𝑚𝑜 on the rate of flow (velocity) 
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Figure 5. Impact of suction number, 𝑚𝑜 on energy (temperature) 

 

 
Figure 6. Impact of suction number, 𝑚𝑜 on nanoparticle (specie) concentration 

 

The radiation (𝑆) parameter shows a noteworthy role in 

fluid flow, mainly when considering radiative heat 

transfer. Thus, its impact on velocity and temperature 

in the fluid is depicted in Figures 7 and 8. In radiative 

heat transfer, exchange of energy takes place between 

the fluid and its surroundings through electromagnetic 

radiation. Thus, the presence of radiation in the fluid 

proves the relative significance of radiative heat 

transferal compared to conduction or convection. When 

radiation rises, the impact of radiative heat transmission 

becomes more noticeable and leads to an increased 

energy transferal from the fluid to its surroundings. 

Consequent upon this, the fluid exhibits an alteration in 

momentum, resulting to an increase in velocity. 

Similarly, radiative heat circulation can deposit or 

remove extra energy in or out of the fluid, depending 

on the temperature differences between the fluid and its 

walls. Therefore, when the 𝑆 increases, the radiative 

heat motion becomes more prevailing and the energy 

interchange through radiation signifies a greater impact 

on the fluid temperature. Hence, this leads to a surge in 

the fluid's temperature. 
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Figure 7. Impact of radiation parameter, 𝑆 on the rate of flow (velocity) 

 
Figure 8. Impact of radiation parameter, 𝑆 on energy (temperature) 

 

The effects of Dufour (𝐷𝑓) and Soret (𝑆𝑡) parameters 

on temperature and nanoparticle concentration are 

demonstrated in Figures 9 and 10. Meanwhile, both of 

them play critical roles in heat and mass transmission. 

Generally, 𝐷𝑓 enumerates the relative significance of 

thermal diffusivity associated with convective heat 

transmission. As it grows, the importance of thermal 

diffusion becomes evident as it leads to an augmented 

connection between the temperature and mass 

concentration. Thus, this breeds a surge in the 

temperature of the system. This process possesses 

numerous applications to combustion processes, 

chemical reactivity and thermal exchangers. 

Correspondingly, the 𝑆𝑡 parameter quantifies the 

significance relation of thermal transfer which is 

likened to the solute diffusion. As it rises, the impact of 

thermal distribution appears more momentous and 

leads to a distinct Soret influence. This effect begets 

superior dispersal of a given component over another 

because of energy differences. Accordingly, an 

increase in nanoparticle concentration gradients of the 

fluid occasioning a higher concentration of the solute in 

certain areas remains obvious. Thus, the significance of 

this parameter in this study is vital in the areas of 

chemical engineering, geophysics and environmental 

science where exact prediction and control of mass 

concentration distributions are essential. 

In figures 11 and 12, the impact of the non-dimensional 

numbers i.e., Prandtl (𝑃𝑟) and Schmidt (𝑆𝑐) are 

demonstrated. The Prandtl number relays the ratio of 

momentum diffusion (viscosity) to heat dispersal. 

Thus, heat energy disperses gradually when equated to 

dissipation of momentum thereby leading to a reduction 

in the temperature gradient. The implication of this 

effect in different areas includes thermal transmission 

processes which involve the control of energy 

variations and it is critical for boosting system 

efficiency and thermal stresses prevention. Thus, an 

enhanced 𝑃𝑟 shows that the fluid possesses a 

moderately little thermal diffusion in relation to its 

viscosity. Similarly, the Schmidt number involves the 

ratio of momentum diffusion (viscosity) to mass 

diffusion. However, an improved 𝑆𝑐 indicates that a 
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fluid has a reasonably small mass diffusion in 

comparison to its viscosity. Owing to this fact, the 

dispersion of nanoparticles or its concentration 

differences happens at a gradual pace in relation to 

momentum circulation. Hence, this ushers decline in 

nanoparticle concentration distribution in the flow. The 

worth of Schmidt number is crucial in mass 

transportation as it applies to chemical reactions and 

pollutant dispersal.  

 

 

 

Figure 9. Impact of Dufour number, 𝐷𝑓 on energy (temperature) 

 
Figure 10. Impact of Soret number, 𝑆𝑡 on nanoparticle (specie) concentration 

 
Figure 11. Impact of Prandtl number, 𝑃𝑟 on energy (temperature) 
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Figure 12. Impact of Schmidt number, 𝑆𝑐 on nanoparticle (specie) concentration 

The effects of suction, mixed convection and radiation 

on the skin friction are shown in Table 1. As the fluid 

is extracted from a system, its flowing momentum 

declines, thereby causing an increase in the interaction 

and resistance between the fluid and its boundary walls. 

Thus, an increase in suction leads to a corresponding 

increase in the skin friction. Conversely, the increasing 

effect of the mixed convective parameter, which 

consists of forced and natural convections, begets a 

shrinking condition in the skin friction because the 

forced convection component which is controlled by an 

applied force, improves the fluid motion close to the 

wall, thereby decreasing the thickness of the boundary 

layer and reducing skin friction. Also, as radiation 

improves, the radiative heat dispersal appears more 

pronounced as it aids in the cooling of the fluid close to 

the wall by lowering the temperature differences and 

accordingly diminishing skin friction. In Table 2, the 

impacts of the suction, Prandtl and radiation parameters 

on the rate of heat distribution (Nusselt number) are 

displayed. However, as suction increases, more fluid is 

loss from the system and the convective heat transport 

between the solid wall and the residual fluid becomes 

stronger, thus leading to a greater thermal 

transportation and increased Nusselt number. On the 

contrary, the Prandtl number has a crucial influence on 

the Nusselt number. This is because an improved 

Prandtl number signifies a relatively smaller thermal 

diffusivity in relation to viscosity, which brings about a 

drop in the temperature of the fluid. However, close to 

the wall, the convective heat dispersal rate lessens and 

eventually leads to a decrease in the Nusselt number. 

On the other hand, as the radiation parameter rises, the 

radiative heat distribution becomes more noticeable, 

and produces extra heat exchange between the solid 

wall and surrounding fluid through electromagnetic 

radiation.   

The effect of suction, Schmidt and Soret parameters on 

the Sherwood number are presented in Table 3. The 

Sherwood number signiifies the mass transfer rate from 

the plate’s surface to the immediate fluid. As fluid 

extraction takes place in the system, the mass 

transmitance between the sheet and residual fluid turns 

to be more distinct, and causes an enhanced mass 

transfer and a developed Sherwood number. Thus, an 

enhancement of this number produces an increment in 

the rate of mass transfer. On the contrary, the radiation 

parameter which is related to radiative thermal 

allocation shows a dissimilar result on the Sherwood 

number as it impact on the mass transferal rate. Hence, 

as it increases, the effect of radiative heat transfer 

becomes obvious. Therefore, as the radiative heat 

transfer influences the concentration gradients close to 

the solid surface and changes the mass transfer rate, the 

concentration gradients drops while the mass 

circulation rate decreases, thereby resulting in a lower 

Sherwood number. 
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Table 1. Effect of suction, mixed convection and radiation constraints on skin friction at 𝑴 = 𝟎. 𝟏, 𝑷𝒓 = 𝟎. 𝟕𝟏 

𝑺 𝜸 𝒎𝑶 𝒇′′(𝟎) 

0.2 2.0 1.5 −0.3535 

0.2 2.0 0.2 0.6099 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.0 

0.2 

0.4 

0.6 

2.0 

2.0 

0.5 

1.0 

1.5 

2.0 

2.0 

2.0 

2.0 

2.0 

2.5 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

1.3879 

2.0732 

2.9183 

2.6366 

2.3549 

2.0732 

2.2610 

2.0732 

1.8855 

1.6977 

 
Table 2. Effect of Dufour, Prandtl and suction constraints on Nusselt number (rate of thermal conveyance) at 
 𝑺 = 𝟎. 𝟐, 𝑺𝒄 = 𝟐. 𝟎 

𝑫𝒇 𝑷𝒓 𝒎𝑶 −𝜽′(𝟎) 

0.0 0.71 3.0 0.6329 

1.0 0.71 3.0 0.5867 

2.0 

3.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

0.71 

0.71 

0.7 

1.0 

2.0 

3.0 

0.71 

0.71 

0.71 

0.71 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

1.5 

2.0 

2.5 

3.0 

0.5404 

0.4941 

0.5317 

0.7912 

1.6435 

2.4868 

0.3865 

0.4763 

0.5178 

0.5404 

 
Table 3.  Effect of suction, Schmidt and Soret numbers on Sherwood number (rate of mass distribution) at 
 𝑺 = 𝟎. 𝟐, 𝑷𝒓 = 𝟎. 𝟕𝟏 

𝑺𝒕 𝒎𝑶 𝑺𝒄 −∅′(𝟎) 

2.0 1.5 2.0 0.7939 

2.0 2.0 2.0 1.3216 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

0.0 

1.0 

2.0 

3.0 

2.5 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

2.0 

2.0 

1.5 

2.0 

2.5 

3.0 

2.0 

2.0 

2.0 

2.0 

1.5658 

1.6985 

1.1911 

1.6985 

2.2038 

2.7078 

2.0741 

1.8863 

1.6985 

1.5107 
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4. Conclusion 

Having examined the analysis of MHD convective 

stream over an exponentially expanded infinite plate 

with suction and cross-diffusion impacts, the following 

conclusions are reached.  

1. An increase in mixed convective and radiation 

parameters 𝛾 = 0.5, 1.0, 1.5, 2.0 and 𝑆 =
0.0,0.2,0.4,0.6, begets a rise in velocity and 

temperature. 

2. Enhancement of Dufour, 𝐷𝑓 = 0, 1, 2, 3 and Soret 

𝑆𝑡 = 0.0, 1.0, 2.0, 3.0 numbers leads to a surge in 

temperature and concentration. 

3. The improvement of the skin-friction, Nusselt (heat 

transfer rate) and Sherwood numbers (mass 

transference rate) is as a result of increasing suction 

𝑚𝑜 = 1.5, 2, 2.5, 3 parameters. 

4. An upsurge in Dufour number reduces the Nusselt 

number whereas a rising effect of Soret parameter 𝑆𝑡 =
0.0, 1.0, 2.0, 3.0  shows a growth in the Sherewood 

number. 

5. A rise in the values of Prandtl factor, 𝑃𝑟 =
0.7, 1.0, 1.5, 2.0 indicate an increase in the heat transfer 

rate. 

Future Study Recommendations 

In line with the current study, the following 

recommendations are made as areas of future studies. 

1. Parametric Studies: The investigation of the 

sensitivity of the flow characteristics to various 

parameters is essential. Future studies can explore how 

changes in vital parameters, such as the magnetic field 

strength, suction velocity, and diffusion coefficients, 

affect the flow patterns and boundary layer properties. 

Thus, understanding the parameter dependencies can 

guide engineers and researchers in optimizing real-

world applications. 

2.  Multiscale Modeling: The consideration of 

multiscale modeling approaches that incorporate both 

macroscopic and microscopic phenomena is vital. 

However, Cross-diffusion effects often involve 

interactions at the molecular level, while MHD flow is 

a macroscopic phenomenon. Future research can 

explore how to bridge the gap between these scales to 

develop more accurate and comprehensive models for 

practical scenarios where both effects are present. 
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Nomenclature 

CNTs Carbon nanotubes 
MHD Magnetohydrodynamic 

𝑛𝑝 Nanoparticle 

𝑛𝑓 Nanofluid 

u, v Velocity components in 𝑥 𝑎𝑛𝑑 𝑦 axe (𝑚𝑠−2) 

x, y Coordinates of the horizontal and vertical axes 

U Dimensionless free stream velocity (𝑚𝑠−1) 

𝑈𝑤 Velocity at the wall of the plate (𝑚𝑠−1) 

𝑇∞ Temperature far from the plate (𝐾) 

𝑇𝑤 Temperature at the exterior of the plate (𝐾) 

𝐶𝑤 Nanoparticle concentration at the wall (𝑘𝑔 𝑚−3) 

𝐶∞ Nanoparticle mass far away from the wall (𝑘𝑔 𝑚−3) 

𝑇 Fluid temperature (𝐾) 

𝐷𝑇 Coefficient of thermophoresis 

𝐷𝑚 Coefficient of mass diffusivity (𝑚2𝑠−1) 

𝜂 Similarity variable 

𝑓′ Dimensionless velocity 

𝜃 Non-dimensional temperature 

∅ Dimensionless concentration. 
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