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1. Introduction

Due to the existence of some types of uncertainty, we are
unable to effectively employ traditional ways to address
issues including
environmental and health sciences, and economics. Three

in many domains, engineering,
well-known foundational theories that we could use as
mathematical tools to deal with uncertainties are interval
mathematics, fuzzy set theory, and probability theory.
Molodtsov (1999) proposed Soft Set Theory as a
mathematical method to deal with these uncertainties;
however this method has limits as well because each of
these theories has flaws of its own. Since then, this theory
has been applied to a variety of fields, including
information systems, decision-making as in Ozlii (2022a,
202b), optimization theory, game theory, operations
research, measurement theory, and some algebraic
structures such as Ozlii and Sezgin (2021). The initial
contributions to soft set operations were released in Maji
et al. (2003) and Pei and Miao (2005). Following this, Ali
et al. (2009) introduced and discussed several soft set
operations, including restricted and extended soft set
operations. The basic traits of soft set operations were
discussed by Sezgin and Atagiin (2011), and the
connections between them were shown. They also
investigated and defined the idea of restricted symmetric
difference of soft sets. Stojanovic (2021) defined the term
"extended symmetric difference of soft sets" and its

characteristics were investigated. A brand-new soft set
operation called extended difference of soft sets was
presented by Sezgin et al (2019). The two main
categories into which the operations of soft set theory
fall, according to the research, are restricted soft set
operations and extended soft set operations.

The inclusive complement and exclusive complement of
sets, a novel concept in set theory, were proposed and
their relationships were investigatd by Cagman (2021).
As a result of the inspiration from this study, certain
novel complements of sets were developed in (Sezgin et
al, 2023c). Additionally, Aybek (2023) constructed a
number of additional restricted and extended soft set
operations using these complements to soft set theory.
Demirci (2023); Sarlalioglu, 2023; Akbulut (2023)
defined a new type of extended operation and in-depth
examined their fundamental characteristics by changing
the form of extended soft set operations using the
complement at the first and second row of the piecewise
function of extended soft set operations. Additionally,
Eren and Calisici (2019) created a brand-new class of soft
difference operations. Soft binary piecewise operations
were defined by Yavuz (2023), who also carefully
analyzed their core characteristics. In addition, Sezgin
and Demirci (2023), Sezgin and Aybek (2023), Sezgin et
al. (2023a), Sezgin and Yavuz (2023) continued their
work on soft set operations. They altered the soft binary
operation's form by using the complement in the first
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row of piecewise operations.

This paper contributes to the literature on soft set theory
by describing a novel soft set operation, which we call
"complementary soft binary piecewise
operation". The organization of the paper is as follows:

intersection

Section 3, definition and an example of the new operation
are given. Also the full analysis of the algebraic
properties of the new operation, including closure,
associativity, unit, inverse element, and abelian property,
is then made. In Section 4, to add to the body of
knowledge on soft sets, the
complementary soft binary piecewise
operation over extended soft set
complementary extended soft set operations, soft binary
piecewise operations, complementary soft binary
piecewise operations and restricted soft set operations
are specifically targeted. In the conclusion section, we
put into focus the meaning of the study's findings and its
potential influence on the field.

distributions  of
intersection
operations,

2. Preliminaries

Definition 2.1. Let U be the universal set, E be the
parameter set, P(U) be the power set of Uand ACE . A
pair (F,A) is called a soft set over U where F is a set-
valued function such that F: A - P(U) (Molodtsov, 1999).
Throughout this paper, the set of all the soft sets over U is
designated by Sg(U). Let A be a fixed subset of E and
Sa(U) be the collection of all soft sets over U with the
fixed parameter set A. Clearly S, (U) is a subset of Sg(U).
Definition 2.2. (K,D) is called a relative null soft set
(with respect to the parameter set D), denoted by @p, if
K(t) = @ for all teD and (K, D) is called a relative whole
soft set (with respect to the parameter set D), denoted by
Up if P(t) = U for all teD. The relative whole soft set
Ug with respect to the universe set of parameters E is
called the absolute soft set over U (Ali et al.,, 2009).
Definition 2.3. For two soft sets (K, D) and (R, ]), we say
that (K,D) is a soft subset of (R,]) and it is denoted by
(K,D) € (R,]), if DS Jand K(t) € R(t), Vt € D. Two soft
sets (K,D) and (R,]) are said to be soft equal if (K,D) is a
soft subset of (R,]) and (R,]) is a soft subset of (K, D) (Pei
and Miao, 2005).

Definition 2.4. The relative complement of a soft set
(K, D), denoted by (K, D)7, is defined by (K, D)" = (K%, A),
where K™:D = P(U) is a mapping given by (K,D)" =
U\K(t) for all t € D (Ali etal, 2009). From now on, U\
K(t)=[K(t)]" will be designated by K'(t) for the sake of
designation.

Two conditional complements of sets, the inclusive
complement and exclusive complement, were defined in
(Cagman, 2021). For the ease of presentation, we
represent their complements as + and 0, respectively.
These complements, which are binary operations, are
defined as follows: Assume that D and ] are the two
subsets of U. The formulas for the J-inclusive complement
of D and J-exclusive complement are D+]= D’UJ] and ]J-
exlusive complement of D DEJ = D’'NJ’, respectively. Here,
U refers to a universe, D’ is the complement of D over U.

For more information, we refer to (Cagman, 2021).
New complements were created as binary operations on
sets:Let U have the two subsets D and ].D*]=D’UJ’,D@J=DnN
], DBJ=DUJ’ are the results (Sezgin et al.,, 2023b). Aybek
(2023) defined new restricted and extended soft set
operations and looked at their characteristics by applying
these set operations to soft sets.

Soft set operations can be grouped into the following
categories in order to provide a summary: If " V " is used
to denote the set operations (i.e., here can be N, U, \, A,
+,0,%1y), then operations,
operations, complementary extended operations, soft
binary piecewise operations, and complementary soft
binary piecewise operations are as follows:

Definition 2.5. Let (K,D) and (R,]) be soft sets over
U. The restricted V operation of (K,D) and (R,]) is the
soft set (S, F),denoted by (K,D)Vgx(R,]) = (S,F) , where
F=DNJ# @ and VteF, S(t) =K(t)VR() (Ali et al,
2009; Sezgin and Atagiin, 2011; Aybek, 2023).

Definition 2.6. Let (K,D) and (R,]) be soft sets over
U. The extended V operation of (K,D) and (R,]) is the
soft set (S,F), denoted by, (K,D)V.(R,]) = (S,F) , where
F=DuU]Jand Vt €F,

restricted extended

K(b), t e D\J,
S =4 RO, t€J\D,
K(t)VR(t), teDnN].

(Maji et al, 2003; Ali et al, 2009; Sezgin et al., 2019;
Stojanovic, 2021; Aybek, 2023).
Definition 2.7. Let (K, D) and (R,]) be soft sets over U.
The complementary extended V operation of (K,D) and
*
(R))) is the soft set (SF), denoted by, (K, D) v R =
€

(S,F),where F=DUJand Vt € F,

K'(D), teD\J,
S(t) = R' (1), t€\D,
K(t)VR(t), teDN]J.

(Sarialioglu, 2023; Demirci, 2023; Akbulut, 2023).

Definition 2.8. Let (K,D) and (R,]) be soft sets over
U. The soft binary piecewise V operation of (K,D) and
(R,]) is the soft set (S,D), denoted by (P, D); (R]) =

(S,D), where VteD,

K(t), teD\]J
S(=

K(t)VR(t),
(Eren and Calisici, 2019; Yavuz, 2023).
Definition 2.9. Let (K,D) and (R,]) be soft sets over

U. The complementary soft binary piecewise V operation

of (K,D) and (R,]) is the soft set (S,D), denoted
*

by (K,D)~ (R,]) = (S,D), where VteD;
\Y

teDN]J
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K'(t), teD\J

S(H=

K(t) VR(1),
(Sezgin and Demirci, 2023; Sezgin and Aybek, 2023;
Sezgin et al., 2023a; Sezgin and Yavuz, 2023)
Hoorn and Rootselaar (1967) discussed general theory of
near-semirings. In mathematics, anear-semiring, also
called aseminearring, is an algebraic structure more
general than anear-ringor asemiring. Near-semirings
naturally

teDN]J

arise from functions on monoids.  Near-

"(w), w€eA\B
H(w)=
F(w) NG(w), w€ANB
Since A\B={e;} and AnB={e3}, H(e1) =F'(e1)={hy,h3,h,},
H(e3)=F(e3) nNG(e3)={hy, hyhs}n{hy,hshs}={h,}. Thus,
%

(F.A) ~ (GB)={(ey,{hy ,h3,h4}), (e3, {ha 1)}
n

Theorem 3.3. (Algebraic properties of the operation)

semirings are a common abstraction of semirings and 1) The set Sg(U) is closed under the operation f That
near-rings. An algebraic system (R, +, :) is said to be a n
right (resp., left) near-semiring if R is a an additive is, when (F,A) and (G,X) are two soft sets over U, then so
monoid with identity 0 (not necessarily commutative) *
under addition, semigroup with respect to multiplication, is (FA) ~ (GX).
satisfying right (resp., left) distributive law (a+b)-c = a-c n *
+b-c (resp, c:(a+b)=ca+cb),Vab ceRand0-a=0, Proof: It is clear that ~ is a binary operation in Sg(U).
V a € R (Accordingly 0 is a one-sided (right or left, n
respectively) absorbing element for the multitplication That s,
operation). In addition, if 0-a = a-:0 = 0 for all a € R, then *
. . .. . ~ SE(U)X SE(U)—> SE(U)
we call it a zero-symmetric near-semiring (or seminear- n
rings). For more about near-rings and ideals of near-ring *
and N-ideals, we refer to (Pilz, 1977; Tasdemir et al., ((F.A), (GX)) = (FA) ~ (GX)=(HA)
2013; Tasdemir and Tastekin, 2019) n .
The standard examples of near-semirings are typically of Hence, the set Sg(U) is closed under the operation ~ .
the form M(T), the set of all mappings on a monoid (T, +, n
0), equipped with composition of mappings, pointwise * * * *
addition of mappings, and the zero function. Subsets 2) [(FA) ~ (GA)] ~(HA)=(FA) ~[(GA) ~(HA)].
of M(T') closed under the operations provide further n *n n n
examples of near-semirings. Proof: Let (F,A) ~ (G,A)=(T,A), where VweA;
N
3. Complementary Soft Binary Piecewise
. . . F(w), weA\A=0
Intersection Operation and Its Properties T(w)-=
Definition 3.1. Let (F,A) and (G, B) be soft sets over U. F(w) NG(w), weANA=A
The complementary soft binary piecewise
intersection (N) operation of (F,A) and (G, B) is the soft %
* Let (T,A) ~ (H,A) =(M,A), where VweA;
set (H,A), denoted by, (F,A)~ (G,B) = (H,A), where n
n
Vwea, T'(w), weA\A=p
M(w)=
Fw), wEA\B T(w) NH(w),  weAnA=A
H(w)=
F(w) NG(w), w€eANB Thus,
Example 3.2. Let E={e;,e;,e3,e,} be the parameter set T(w), weA\A=0
A={eq, e3} and B={e,, e3 ,e,} be the subsets of E and M(w)=
U={hq,h;,h3,h,,hs} be the initial universe set. Assume that [F() NG(w)]NH(w) , 0eANA=A
(F,A) and (G,B) are the soft sets over U defined as
following: *
(F,A)={( eq,{h2,hs}),(e3,{hy,hz,hs})}, Let (G,A) ~ (H,A)=(L,A), where VweA;
(G,B)={( ez,{hy ,hyhs}), (e3.{hz,h3,h,}),(es,{ h3 hs}}). n
*
Let (F,A) ~ (G,B)=(H,A). Then, G'(w), weA\A=0
n L(w)=
G(w) NH(w), weANA=A
BSJ] Eng Sci / Aslihan SEZGIN et al. 332


https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Abstract_algebra
https://en.wikipedia.org/wiki/Algebraic_structure
https://en.wikipedia.org/wiki/Near-ring
https://en.wikipedia.org/wiki/Semiring
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Monoid
https://en.wikipedia.org/wiki/Commutative_monoid
https://en.wikipedia.org/wiki/Absorbing_element
https://en.wikipedia.org/wiki/Function_composition

Black Sea Journal of Engineering and Science

*
Let (F,A) ~ (L,A) =(N,A), where VweA;

n

F(w), weA\A=0
N(w)=

F(w) NL(w), weANA=A
Thus,

F(w), weA\A=0
N(w)=

F(w) N [G(w)NH(w)], weANA=A
Itis seen that M=N.

That is, for the soft sets whose parameter sets are the

*
same, the operation ~ has associativity property.
n
However we have the following:
* * * *
3) [(FA) ~ (GX)] ~(HL) # (FA) ~[(GX) ~ (HL)]
n n n n
%
Proof: Let (F,A) ~ (GX)=(T,A), where VweA;
N
F(w), weA\X
T(w)=
F(w) NG(w), weAnX
*
Let (T,A) ~ (H,L) =(M,A), where VweA;
n
T (w), weA\L
M(w)=
T(w) NH(w) , weANL
Thus,
F(w), we(A\X)\L=AnX'nL’
M(w)= F'(w) UG (w), w€e(ANX)\L=ANXNL’
F'(w) NH(w), we(A\X)NL=ANX'NL
[ F(w) NG(w)] NH(w), we(AnX) NL=ANXNL
k
Let (GX) ~ (HL)=(KX), where YweX;
n
G (w), weX\L
K(w)=
G(w) NH(w), weXNL
sk
Let (F,A) ~ (KX) =(S,A), where YweA;
n
F(w), weA\X
S(w)=
F(w) NK(w), weAnX

Thus,

F(w), weA\X
S(w)=1 F(w) NG (w), weAN(X\L)=AnXNnL’
F(w) N[G(w) NH(w)], weANn(XNL)=AnXNL

Here let handle weA\X in the second equation of the first
line. Since A\X= AnX,, if keX’, then weL\X or we(XUL)"
Hence, if weA\X, then weANX’'NL’ or weANX’'NL. Thus, it

£
is seen that M#S. That is, the operation ~ has not
n
associativity property on the set Sg (U).
* *
4) (FA) ~ (GX)#(GX) ~ (FA)
N n
*
Proof: Let (F,A) ~(GX)=(H,A) . Then, VweA;
N
F(w), weA\X
H(w)=
F(w) NG(w), weANX
*
Let (GX) ~ (FA)=(TX) . Then VweX;
n
G (w), weX\A
T(w)=
G(w) NF(w), weXNA

Here, while the parameter set of the soft set of the left
hand side is A; the parameter set of the soft set of the

* *
right hand side is X. Thus, (FA) ~ (GX)#(GX) ~ (FA).
n n
*
Hence, the operation ~ has not commutative property in
n
the set Sg(U). However it is easy to see that
* *
(F,A) ~ (G,A)=(G,A) ~ (F,A). Thatis to say, the operation
n N

£

~ has commutative property, where the parameter sets
n

of the soft sets are the same.

k
5) (FA) ~ (FA)=(F.A)
N
*
Proof: Let (F,A) ~ (F,A)=(H,A), where VweA;
n
F(w), weA\A=0
H(w)=
F(w) NF(w), weANA=A

Here YweA; H(w)= F(w) NF(w)=F(w), thus (H,A)=(F,A).
£

That is, the operation ~ is idempotent in Sg(U).
N
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* *
6) (FA) ~ Oa= Oa~ (FA)= 04
n n
Proof: Let P,=(S,A). Then, VweA; S(w)= 0. Let
*

(F,A) ~(S,A)=(H,A), where VweA,
n
F(w), weA\A =0
H(w)=
F(w) N S(w), weANA=A
Hence, VweA; H(w)= F(w) N S(w) = F(w) N@=0. Thus,
(H,A)= @,. Note that, for the soft sets whose parameter
%
setis A, @, is the absorbing element for the operation ~
n
in Sg(U).
k
7) (F,A) ~ Bg=0a

n
*

Proof: Let @g =(S,E). Hence VweE; S(w)=0. Let (FA) ~
n
(S,E)=(H,A) . Thus, VweA,
F(w), weA\E =0
H(w)=
F(w) NS(w), weANE=A
Hence, H(w)=F(w)NS(w)=F(w)N®=0, so (H,A)=(F,A).
* *
8) (F,A) ~Uux=Up ~ (F,A)=(FA).
n n
Proof: Let U, = (T,A). Then, VweA; T(w)=U. Let (F,A)
%
~ (T,A)=(H,A) , where VweA;
n
F(w), weA\A =0
H(w)=
F(w) NT(w), weANA=A
Thus, VweA; H(w)=F(w)NT(w)=F(w)NU=F(w), hence
(H,A)= (F,A). Note that, U, is the identity element for the
*

operation ~ in Sx(U).
n
REMARK 1: By Theorem 3.3. (1), (2), (4) and (8), (SA(U),
*
~ ) is a commutative monoid with identity U,.

n
*

9) (F.A) ~ Ug=(F.A)
n

Proof: Let
%
(F,A)~ (T,E)=(H,A), then VweA,

n

Ug=(T,E). Hence, VweE, T(w)=U. Let

F(w), weA\E =0
H(w)=

F(w) NT(w), weANE=A

Hence, VweA, H(w)=F(w)NT(w)=F(w)NU=F(w), so

(H,A)=(F,A). Note that, for all the soft sets (no matter

what the parameter set is), Ug is the right identity
*

element for the operation ~ in Sg(U).

n
*

10) UE~ (F,A)=UA
n
*

Proof: Let Ug=(T,E). Then, VweE; T(w)=U. Let (T,E) ~
n
(F,A)=(H,L) , where VweA;
T (w), weE\A

H(w)=
T(w) NF(w), weENA=A

Hence YweA; H(w)= T(w) NF(w)=UNF(w)= F(w), thus

(H,A)= (F.A).
* *
11) (FA) ~ (FA)r= (FA) ~ (FA)= 0,
n n
Proof: Let (F,A)r=(H,A). Hence, VweA; H(w)=F(w). Let
*
(F,A) ~ (H,A)=(T,A), where VweA,
n
F'(w), weA\A=0
T(w)=
F(w) NH(w), weANA=A

Hence, YweA; T(w)=F(w)NH(w)=F(w)NF'(w)= @, thus

(T,A)= ®A-
*
12) (FA) ~ (GX)]=(F,A) #(GX).
: *
Proof: Let (F,A) ~ (G,X)=(H,A). Then, VweA,
N
F(w), weA\X
H(w)=
F(w) NG(w), weAnX

Let (H,A)r=(T,A), so VweA,
F(w), weA\X
T(w)=
F(w) UG (w), weAnX
Thus, (T,A) =(F,A) % (GX).

%
16) (FA) ~ (G A)=U, &(F,A) =U, and (G A) =U, .
n
sk

Proof: Let (F,A) ~(G,A) = (T,A). Hence, VweA,
n
F(w), weA\A=0

T(w)=

F(w) NG(w), weANA=A
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Since, (T,A)= U, ,VweA, T(w)= U. Thus, VweA, T(w)=
F(w)NG(w)=U& Vw € A, F(w)=U and G(w)=U < (F,A) =
UA and (G,A) = UA'

* *
17) @ E(F,A) ~(GX) and Bz E(GX) ~ ((FA).

n n
* *

18) (FA) ~(GX) € U, and (GX) ~ (FA) € Ug

n n
* *

19) (F.A) ~ (G,A) € (FA) ~ (G,A) (Yavuz, 2023)

N U
* *

20)(F,A) ~(G,A) = (FA) ~ (G, A) © (FA) =(GA)
n V)
(Yavuz, 2023)
* *

21) (FA) ~(GA) E(FA)and (FA) ~ (GA) E(GA).

n N
*

Proof: Let (FA) ~(GA)=(H,A). First of all, AcA.
n
Moreover, YweA,

F(w), weA\A=0
H(w)=

F(w)NG(w), weANA=A
Since H(w)=F(w)NG(w) € F(w) and H(w)=F(w)NG(w) S
G(w), YweA, the proof is completed.

*
Let (G,A) ~ (T,A)= (S,A) where YweA,
n
G'(w), weA\A=0
S(w)=
G(w) NT(w), weANnA=A

Since, VweA, F(w)<E G(w) and H(w) €T (w), then K(w)=
F(w) NH(w) €G(w) NT(w). Hence, (K,A) € (S,A).

4. Distribution Rules

In this section, the distributions of complementary soft
binary piecewise intersection (N) operations over other
soft set operations, including complementary extended
soft set operations, complementary soft binary piecewise
operations, soft binary piecewise operations, and
restricted soft set operations, are thoroughly examined.
As aresult, several intriguing discoveries are made.

4.1. Distribution of Complementary Soft Binary
Piecewise Intersection Operation over Extended Soft
Set Operations

4.1.1. Left-distribution of complementary soft binary
piecewise intersection operation over extended soft
set operations

The followings are held where ANX’'NL =@.

% * * B *
22) (F,A) € (G,A) <(FA) ~(GA)= (FA). 1)(F.A) ;[(G,X)nS(H,L)]=[(F,A) ;(G'X)]ﬂ[(H'L) ;(F,A)]-
n )
Proof: Let (F,A) € (G,A), then, YweA, F(w)C G(w) Proof: Let’s first take care of the left hand facet of the
* equality and let (G,X) ng (H,L)=(M,XUL) where VweXUL;
and let (F,A) ~(G,A)=(H,A). Then, VweA,
n G(w), weX\L
M(w) =4 H(w), wel\X
F(w), weA\A=0 G(w)NH(w), weXNL
H(w)= *
F(w)NG(w), weANnA=A Assume that (F,A) ~ (M,XUL)=(N,A), where VweA;
N
Since VweA, H(w)=F(w)NG(w) =F(w), hence (H,A)= (F,A).
* F(w), weA\ (XUL)
For the converse, let (F,A) ~(GA)= (FA). Since, N(w)=
N n N F(w) NM(w), weAN(XUL)
(F.A) ~(G,A) E(GA) by (21), (FA) ~(GA)=(F,A) E(GA).
n n Hence,
* ) _ VAT
23) If (F,A) € (GA) and (H,A) € (T,A), then (F,A) ~ (HA) F(w), weA\ (XUL) =AnX'nL
n F(®) NG(w), weAN(X\L)= ANXNL
* N(@)3 Fw) nH(w), weAN(L\X)= AnX'NL
< (GA) ~(T.A). F(w) N [(G(w)NH(w)], weANXNL= ANXNL
n
Proof: Let (F,A) € (G,A) and (H,A) € (T,A). Then, V w €A,
* Now let take care of the right hand facet of the equality:
F(w)<E G(k) and H(w) € T(k). Assume that (F,A) ~ (H,A)= * * *
n FA)~ (GX)IA[(HL) ~ (FA)]. A that (FA) ~
(KA) where VoA, [C )n( JIN[(H,L) n( ). Assume that (FA) -
(G,X)=(V,A), where YweA;
F(w), weA\A=0
K(w)= F(w), weA\X
F(w) NH(w), weANnA=A V(w)=
F(w) NG(w), weAnX
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*
Let (HL) ~ (F,A)=(W,L), where YwelL;
n
H'(w), weL\A
W(w)=
H(w) NF(w), weLNA

Let (V,A) A (W,L)=(T,A), where VweA;

V(w), w€eA\L
T(w)=
Vw)Nn W(w), weANnL
Hence,
F(w), we(A\X)\L=AnX'NL’
F(w) N G(w), we(AnX)\L=ANXNL’
F(w)NH (0), we(A\X)N(L\A)=0
T(w)= F(w)N[H(w) NF(w)], we(A\X)N(LNA)=ANX'NL

[F(w) N G(w)]NH'(w),

[F(w) NG(w)]IN[H(w) NF(w)],
It is seen that N=T.

* * *
2)(F.A) ~ [(GX)U(HL)]=[(F.A) ~ (GX)]U[(HL) ~ (FA)].

n n n
* * *

3) (FA) ~ [(GX)A(HL)]=[(F.A) ~ (GX)]T[(HL) ~ (FA)].
n n Y

Proof: Let’s first take care of the left hand facet of the

equality and let (G,X) A¢(H,L)=(M,XUL) where VweXUL;

we(ANX)N(L\A)=0
we(ANX)N(LNA)=ANXNL

G(w), weX\L

H(w), wel\X

G(w) VH'(w), weXNL
*

M(w)=

Assume that (F,A) ~ (M,XUL)=(N,A), where VweA;

n
F(w), weA\(XUL)
N(w)=
F(w) "M(w), weAN(XUL)
Thus,
F(w), weA\(XUL)=ANX'NL’
F(w) NG(w), weAN(X\L)=ANXNL’
N(@©)=1 F(w) NH(w), weAN(L\X)=ANX'NL,

F(w) N[G(w) UH'(w)], @eANXNL= ANXNL

Now let take care of the right hand facet of the equality:
* *

(F.A) ~(GX)]T[(HL) ~ (FA)].

n Y
*

Assume that (F,A) ~ (G,X)=(V,A), where VweA;
n

F'(w),
V(w)=
F(w) NG(w),

weA\X
weANX
%

Let (HL) ~ (F,A)=(W,L), where YwelL;
Y

H'(w), welL\A

W(w)=

|

H'(w) N F(w), weLNA

Let (V,A) U (W,L)=(T,A), where YweA;

V(w), w€e€A\L
T(w)=1
| V(w) UW(w), weANL
F(w), we(A\X)\L=AnX'NL’
F(w) N G(w), we(ANX)\L=AnXNL’
F'(w) UH'(w), we(A\X)N(L\A)=0

T(a))z— F'(w) U[H'(w) N F(w)], we(A\X)N(LNA)=ANX'NL
[ F(w) NG(w)] UH'(w), we(AnX)N(L\A)=0
[F(w) N G(w)]V [H'(w) N F(w)], we(ANX)N(LNA)=ANXNL

Itis see—rn that N=T.

* * *
4) (FA) ~[(GX)\e(HL)]=[(FA) ~(GX)]A[(HL) ~ (FA)]
n N Y

4.1.2. Right-distribution of complementary soft
binary piecewise intersection operation

extended soft set operations
* * *

1[(F.A)V (GX)] ~ (HL)=[(F.A) ~ (HL)]U[(GX) ~ (H,L),
n n n

where ANXNL'=0

Proof: Let’s first take care of the left hand facet of the

equality and let (F,A)U¢(G,X)=(M,AUX) where YweAUX;

over

F(w), weA\X

G(w), weX\A

F(w)UG(w), weAnX
k

M(w) =

Let (M,AUX) ~ (HL)=(N,AUX), where VweAUX

n
M’ (w), we(AUX)\L
N(w)=
M(w) NH(w), we(AUX)NL
P(w), we(A\X)\L=ANX'NL’
G'(w), we(X\A)\L=A'nXNL’
F(w)NG (w), we(ANX)\L=ANXNL’
N(w)=7 F(w) NH(w), we(A\X)NL=ANX'NL
G(w) NH(w), we(X\A)NL=A'nXNL
[ F(w)UG(w)]NH(w), we(ANX)NL=ANXNL

Now let’s take care of the right hand facet of the equality:
* * *

(FA) ~(HL]U[(GX) ~(HL)]. Let (FA)~(HL)=(V.A),
n n n
where VweA;

F'(w)
V(w)=
F(w) NH(w)

w€eA\L

weANL
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*
Suppose that (GX) ~ (HL)=(W,X), where VweX;
n
G'(w), weX\L
W(w)=
G(w) NH(w),  weXNL

Let (V,A) Ug (W,X)=(T,AUX), where YweAUX;

V(w), weA\X
T(w)=1 W(w), weX\A
V(w)uW(w), weAnX
Hence,
F(w), we(A\L)\X=ANX'NL’
F(w) NH(w), we(ANL)\X=ANX'NL
G (w), we(X\L)\A=A'nXNL’
| G(w) NH(w), we(XNL)\A=A’NXNL

we(A\L)N(X\L)=ANXNL’
F(®) U[G(w) NH(w)], we(A\L)N(XNL)=0
[F(w) NH(w)]UG (@), we(ANL)N(X\L)=0
[F(w) NH(w)]U[G(w)NH(w)], we(ANL)N(XNL)=ANXNL

T(w)s F(@)VG' (),

Itis seen that N=T.

* * *
2) [(F.A) ng (GX)] ~ (HL)=[(F,A) ~ (HL)]N:[(GX) ~

n n n
(H,L)], where AnNXNL'=@.

* * *
3)(F.A) \e (GX)] ~ (HL)=[(F.A) ~ (HL)]N[(GX) ~

n n Y

(H,L)], where AnXNL’= A’nXNL =@.
Proof: Let first take care of the left hand facet of the
equality and let (F,A) \¢ (G,X)=(M,AUX), where YweAUX,

Flw), weA\X
M(w) =1 G(w), weX\A
|F(w) N G'(w), weAnX
£
Suppose that (M,AUX) ~ (H,L)=(N,AuUX), where YweAUX;
N
(M’ (w), we(AUX) \L
N(w)=-
M(w) NH(w), we(AUX)NL
Hence,_
F(w), we(A\X)\L=ANX'NL’
G (w), we(X\A)\L=A'nXNL’
| F(w) UG(w), we(AnX)\L=AnXNL’
N@)=| ko) nH(w), we(A\X)NL=ANX'NL
G(w) NH(w), we(X\A)NL=A’nXNL
| [F(w) N G'(w)]NH(w), we(ANX)NL=ANXNL

Now let’s take care of the right hand facet of the equality:
* * *

[(FA) ~(HL)IN(GX) ~ (HL)]. Let (F,A) ~ (HL)=(V,A),
n Y N

where VweA;

F(w), w€eA\L
V(w)=
F(w) NH(w), weANL
*

Let (GX) ~ (H,L)=(W,X), where VYweX;

Y

G (w), weX\L
W(w)=

G’ (w) NH(w), weXNL

Assume that (V,A) N, (W,X)=(T, AUuX), where VweAUX;

V(w), weA\X

T(w)=" W(w), weX\A
V(w) N"W(w), weAnX

Hence,

[ P(w), we(A\L)\X=ANX'NL’

F(w) NH(w), we(ANL)\X=ANX'NL
G'(w), we(X\L)\A=A'nXNL’
G'(w) NH(w), we(XNL)\A=A'nXNL

T | Fw)nG'(w), we(A\L)NX\L)=AnXNL’

(@)= F'(w) N[G (0) NH(w)], we(A\L)N(XNL)=0

[F(w) NH(w)] NG (), we(ANL)N(X\L)=0
[F(w) NH(w)]N[G'(w) NH(w)], we(ANL)N(XNL)=ANXNL

Itis seen that N=T.

* * *
4)[(FA)A(GX)] ~ (HL)=[(F.A) ~ (HL)]U[(GX) ~ (HL)],
n N Y

where ANXNL'= A’'nXNL =@.

4.2. Distribution of Complementary Soft Binary
Piecewise Intersection Operation over
Complementary Extended Soft Set Operations

4.2.1. Left-distribution of complementary soft binary
piecewise intersection operation over

complementary extended soft set operations
* * *
* -
NFA)~[(GX) , (HL)]=[(FA)~(GX)]U[(HL) ~ (FA)]
n € \ Y
Proof: Let’s first take care of the left hand facet of the

*
equality. Let (GX) , (HL)=(MXUL)where VweXUL;
€

G (w), weX\L
M(w) =4 H'(w), weL\X
G'(w)UH(w), weXnL
*
Let (F,A) ~ (M,XUL)=(N,A), where VweA;
n
F(w), weA\(XUL)
N(w)=
F(w) NM(w), weAN(XUL)
Thus,
F(w), weA\(XUL) =AnXNL’
F(w) NG (o), weAn(X\L)= AnXnL’
N(@©)=] F(w) nH' (), weAN(L\X)= AnX'NL

F(w) N[(G'(w)UH (0)], weANXNL= AnXNL
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Now let’s take care of the right hand facet of the equality
* * *

[(FA)~ (GX)]U [(HL) ~ (FA)]. Let (FA)~(GX)=(V,A),
\ Y \
where VweA;

F(w), weA\X
V(w)=

F(w) NG’ (w), weANX
*

Let (H,L) ~ (F,A)=(W,L), where YwelL;

Y

H'(w), wel\A
W(w)=

H(w) NF(w), weLNA

Suppose that (V,A)U (W,L)=(T,A), where YweA;

V(w), weA\L
T(w)=
V(w) UW(w), weANL
Thus,
F(w), we(A\X)\L=AnX'nL’
F(w) N G'(w), we(ANX)\L=ANXNL’
Tw)a F(w) UH' (@), we(A\X)N(L\A)=0

F'(w) U[H (@) NF(w)], we(A\X)N(LNA)=ANX'NL
[F(w) N G ()] UH’ (w), we(ANX)N(L\A)=0
[F(w) N G'(w)]U[H (@) NF(w)], we(ANX)N(LNA)=ANXNL

Itis seen that N=T.
* " * *
2) (FA)~[(GX) GE(H,L)]=[(F,A)~(G,X)]ﬁ[(H.L) ~ (FA)]

U \ Y
£ 3 * £ 3

* ~

3)(FA) ~[(GX) . (HL)]=[(FA) ~ (GX)]U[(HL) ~(FA)]
n £ \ n

Proof: Let first take care of the lefthand facet of the

*
equality.Assume (G,X) " (H,L)=(M,XUL) where VweXUL;
€

G (w), weX\L
M(w) =" H(w), wel\X
G'(w)UH(w), weXnL
*
Let (F,A) ~ (M,XUL)=(N,A), where VweA;
n
F(w), w€eA\(XUL)
N(w)=
F(w) NM(w), weAN(XUL)
Thus,
F(w), weA\ (XUL) =AnX'nL’
F(w) NG’ (w), weAN(X\L)= AnXnL’
N(@)=7 F(w) nH'(w), weAN(L\X)= AnX’'nL

F(») N[(G'(w)UH(w)], weANXNL= ANXNL

Now let’s take care of the right hand facet of the equality

* * *
[(FA) ~(GX)]U[(HL) ~ (FA)].Assume that (FA) ~
\ n \
(G,X)=(V,A), where VweA;
F(w), weA\X
V(w)=
F(w) NG’ (w), weAnX
*k

Let (HL) ~ (F,A)=(W,L), where VweA;

n

H'(w), w€eL\A
W(w)=

H(w) NF(w), weLNA

Suppose that (V,A)U (W,L)=(T,A), where VweA;

V(w), w€eA\L
T(w)=
V(w)UW(w), weANnL
Thus,
F(w), we(A\X)\L=AnX'NL’
F(0) NG'(w), we(ANX)\L=AnXN L’
F(w)UH' (@), we(A\X)N(L\A)=0

T(w]5 F'(w)U[H(w) NF(w)], we(A\X)N(LNA)=ANX'NL
[ F(w) N G'(w)]UH' (w), we(ANX)N(L/A)=0
[F(w) N G'(w)]U[H(w) NF(w)], we(ANX)N(LNA)=ANXNL

Itis seen that N=T.
* " * *
4) (FA) ~[(GX)  (BL)J=[(FA) ~ (GX)IN[(HL) ~
€
n \ n
(F.A)].
4.2.2. Right-distribution of complementary soft
binary piecewise intersection operation
complementary extended soft set operations
£
k ~ ~
DIEA) o (GX)]~ (HL)=(FA) ) (HL)]N[(GX) |, (HL)],
N

over

where ANXNL'=0
Proof: Let’s first take care of the left hand facet of the

*
equality. Let (F,A) 0 (G,X)=(M,AUX), where YweAUX;
€

F(w), weA\X

G(w), weX\A

F(w)NG'(w), weAnX
*

M(w) =

Let (M,AUX) ~ (H,L)=(N,AUX), where YweAUX;

n
M’ (w), we(AUX)\L
N(w)=
M(w) NH(w), we(AuX)NL
Thus,
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F(w), we(A\X)\L=AnX'NL’

Glw), we(X\A)\L=A'NXNL’

| Flw)uG(w), we(ANX)\L=ANXNL’
N(@)=| p(w)nH(w), we(A\X)NL=ANX'NL
(@) NH(w), we(X\A)NL=A'NXNL
[F'(0)NG ()] NH(w), we(ANX)NL=ANXNL

Now let take care of the right hand facet of the equality:
[(F,A);(H,L)]ns[(G,X);(H,L). Assume  that (F,A);
(H,L)=(V,A), where VweA;

F(w), weA\L
V(w)=

F(w) NH(w), weANL
Let (GX) ;(H,L)z(W,X), where Voex;

G(w), weX\L
W(w)=

G'(w) NH(w), weXNL

Assume that (V,A) N, (W,X)=(T,AUX), where YweAUX;

V(w), weA\X
T(w)=" W(w), weX\A
V(w)NW(w), weAnX
Hence, _
F(w), we(A\L)\X=AnX'NL’
F'(w) NH(w), we(ANL)\X=ANX'NL
G(w), we(X\L)\A=A'NXN L’
| G(w) NH(w), we(XNL)\A=A’NXNL
F(w)NG(w), we(A\L)N(X\L)=ANXNL’
T(w)= | F(w) N[G'(w) NH(w)], we(A\L)N(XNL)=0
[F'(w) NH(w)]NG(w), we(ANL)N(X\L)=0
| [F'(@) NH()]N[G' (@) NH(w)], we(ANL)N(XNL)=ANXNL

Itis seen that N=T.

2[(FA) 4 (GX)] t(H.L)=[(F,A);(H,L)]us[(G,X) JOLL)]
where ANXNL'=0 "

DIEA) |y (GX)] :« (HL)=[(FA)y (HLINI(GX) 1, (H1)]
where ANXNL'= A'NXNL =0 .

Proof: Let’s first take care of the left hand facet of the

*
equality, let (F,A) v (G,X)=(M,AUX), where YweAUX;
€

F(w), weA\X
M(w) =1 G(w), weX\A
weANnX

F(w) NG(w),
sk

Let (M,AUX) ~ (H,L)=(N,AUX), where VweAUX;

n
M’(w), we(AUX)\L
N(w)=
M(w) NH(w), we(AUX)NL
Therefore,

F(w), we(A\X)\L=AnX'NL’
Glw), we(X\A)\L=A'NXNL’
F(w)UG (@), we(ANX)\L=ANXNL
N(@)=] p(w) nH(w), we(A\X)NL=ANX'NL
(@) NH(w), we(X\A)NL=A'NXNL
[F'(@) NG(w)]NH(w), we(ANX)NL=ANXNL

Now let’s take care of the right hand facet of the equality:
[(F,A);(H,L)] Ne[(GX) (HL). Assume that (F,A];
(H,L)=(V,A), where VweA;

F(w), weA\L
V(w)=

F(w) NH(w),  weANL
Let (GX) , (HL)=(WX), where VweX;

G(w),
W(w)=
G(w) NH(w),

weX\L
weXNnL

Assume that (V,A) Ng(W,X)=(T,AUX), where VweAUX;

V(w), weA\X
T(w)="1 W(w), weX\A
V(w) NW(w), weAnX
Hence,
" Fw), we(A\L)\X=ANX'NL’
F'(w) NH(w), we(ANL)\X=ANX'NL
G(w), we(X\L)\A=A'NXNL’
| G(w) NH(w), we(XNL)\A=A'nXNL
F(w) NG(w), we(A\L)N(X\L)=ANXNL’
T(w)= | F(w) N[G(w) NH(w)], we(A\L)N(XNL)=0
[F (@) NH(w)]NG(w), we(ANL)N(X\L)=0
| [F() NH(w)]N[G(w) NH(w)], we(ANL)N(XNL)=ANXNL

Itis seen that N=T.
*

HIFEA) (6X)]~HL=[(FA), HLIULGX) SHL]
n

where ANXNL'= A’nXNL =0 .

4.3. Distribution of Complementary Soft Binary
Piecewise Intersection Operation over Soft Binary
Piecewise Operations

4.3.1. Left-distribution of complementary soft binary
piecewise intersection operation over soft binary
piecewise operations

The followings are held where ANX'NL=0:

* * *
1)(FA) ~ [(GX)U(H,L)]= [(FA) ~ (GX)]U[(HL) ~ (FA)]
n n n
Proof: Let’s first take care of the left hand facet of the

equality, let (G,X) U (H,L)=(M,X), where VweX;

G(w),
M(w)=
G(w)UH(w),

weX\L

weXNL
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*
Let (F,A) ~ (M,X)=(N,A), where VweA;
n
F(w), weA\X
N(w)=
F(w) "M(w), weANnX
Thus,
F(w), weA\X
N(w)=+ F(w) NG(w), weAN(X\L)= AnXNL’

F(w) N[G(w)UH(w)], weANXNL= ANXNL

Now let take care of the right hand facet of the equality:
* * *

[(F,A) ~(GX)]U(HL) ~ (F,A)]. Let (FA) ~(GX)=(V,A),
n n n
where VweA;

F(w), weA\X
V(w)=

F(w) NG(w), weAnX
sk

Let (HL) ~ (F,A)=(W,L), where YweL;

n
H'(w), wel\A
W(w)=
H(w) NF(w), weLNA

Suppose (V,A)U (W,L)=(T,A), where YweA;

V(w), w€eA\L
T(w)=
V(w)uW(w), w€ANL
F(w), we(A\X)\L =AnX'nL’
F(w) NG(w), we(ANX)\L= AnXNL’

T(w)F P (w)ul (0), we(A\X)N(L\A)=0
F'(w)U[H(w) NF(w)], we(A\X)N(LNA)= ANX'NL
[F(w) NG(w)UH’(w), we(ANX)N(L\A)= @

[F(w) NG(w)]U[H(w)NF(w)], we(ANX)N(LNA)=ANXNL

Here let handle weA\X in the first equation of the first
line. Since A\X= ANX’, if weX’, then weL\X or we(XUL)"
Hence, if weA\X, then weANX'NL’ or weANX’'NL. Thus, it
is seen that N=T.

* * *
2)(FA) ~[(GX)A(HL)]=[(F.A) ~ (GX)IN[(HL) ~ (FA)]
n n n
* B * *

3)(F.A) ~[(GX\(HL]=[(F.A) ~(GX)] A[(HL) ~ (FA)].
n U ¥

Proof: Let’s first take care of the left hand facet of the
equality, let (GX) \ (H,L)=(M,X), where VweX;

G(w), weX\L
M(w)=

G(w) NH'(w), weXnL

(F,A) ~ (M,X)=(N,A), where YweA;
n

[ F(w), weA\X
N (w) =

i F(w) NM(w), weAnX

[ P(w), weA\X
N(w)=7 F(w) NG(w), weANn(X\L)= AnXnL’
| F(w) N[ G(w) N H'(w)], weAnXnL=ANXNL

Now let’s take care of the right hand facet of the equality

* * *
[(F.A) ~ (GX)IA[(HL)~ (FA)]. Let (FA) ~ (GX)=(V,A),
n Y n

where VweA;
F(w), weA\X
V(w)=

F(w) NG(w), weAnX
*

Let (H,L) ~ (F,A)=(W,L), where YweL;

Y

H'(w), weL\A
W(w)=

H'(w) NF(w), weLNA

Assume that (V,A) N (W,L)=(T,A), where VweA;

V(w), weA\L

T(w)=
V(w) "W(w), weANL

Therefore,
F(w), we(A\X)\L =ANX'NL’
F(w) NG(w), we(ANX)\L= ANXNL’
F(w) NH' (@), we(A\X)N(L\A)=0

T@)=7 p(w) N[H(0)NF(w)], we(A\X)N(LNA)= ANX'NL
[F(w) NG(w)] NH'(@), we(ANX)N(L\A)=0
[F(@) NG(w)NH' (@),  we(AnX)N(LNA)=ANXNL
* * *

4)(FA) ~[(GX)AHLI=[(FA) ~(GX)] T [(HL) ~ (FA)]
n n v

4.3.2. Right-distribution of complementary soft
binary piecewise intersection operation over soft
binary piecewise operations

The followings are held where ANXNL'=@.
* * *

1) [(FA)D(GX)] ~ (HL)=[(F.A) ~ (HL)]T[(GX) ~ (HL)].
n n n
Proof: Let first take care of the left hand facet of the

equality. Suppose (F,A) U (G,X)=(M,A), where VweA,

F(w),
M(w)=
F(w) UG(w),
*

weA\X

weANX

Let (M,A) ~ (H,L)=(N,A), where VweA,

n
M’ (w), weA\L
N(w)=
M(w) NH(w), weANL
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F(w), we(A\X)\L =ANX'NL
F'(0) NG'(w), we(ANX )\L= AnXNL
N(@)=7 (o) nH(w), we(A\X)NL= ANX'NL

[F(w) UG(w)] NH(w), we(ANX)NL= ANXNL

Now let’s take care of the right hand facet of the equality

%k * %k
[(F,A) ~ (H,L)] U[(GX) ~ (H,L)]. Let (F,A) ~(H,L)=(V.A),
n N n

where VweA;

F(w), weA\L
V(w)=

F(w) NH(w), weANL

*
Let (GX) ~ (HL)=(W,X), where YVweX;

n

G (w), weX\L
W(w)=

G(w) NH(w), weXNL

Suppose that (V,A) U (W,X)=(T,A), where Vw€eA;

* * *
2)[(F.A) A(GX)] ~ (HL)=[(F.A) ~ (HL]A[(GX) ~

n n n

* * *

3)[(F.A) A(GX) ~ (HL)=[(F.A) ~(HL)IT[(GX) ~ (HL)].
n n Y
Proof: Let’s first take care of the left hand facet of the

equality. Suppose (F,A) A (GX)=(M,A), where VweA,

(H.L)]

F(w),
M(w)=
F(w) VU G (w),
%

weA\X

weANX

Let (M,A) ~ (H,L)=(N,A), where VweA,

n

M), weA\L
N(w)=-

| M(w) NH(w), weANL
Thus,

F(w), we(A\X)\L =AnX'NL’

F'(0) NG(w), we(ANX)\L= ANXNL’

N@)=7 (o) nH(w), we(A\X)NL= AnX'NL

| [F(@) U G'(@)]NH(w), we(ANX)NL= ANXNL

V(w), weA\X
T(w)= , ) )
V(w) UW(w), weAnX Now le; s take care of tile right hand facet :f the equality:
Thus, [(F.A) ~ (HL)]T[(GX) ~ (HL)]. Let (F.A) ~(HL)=(V.A) ,
- n ¥ n
F'(w), we(A\L)\X=AnX'NL’ where VweA;
F(w) NH(w), we(ANL)\X=AnX'NL
F'(w) UG (), we(A\L)N(X\L)=AnXNL’ F(w), weA\L
T(wI:F’(w) U [G(w) NH(w)], we(A\L)N(XNL)=0 V(w)=
[F(w) NH(w)]UG'(»), we(ANL)N(X\L)=0 F(w) NH(w),  weANL
[F(w)UG(w)] NH(w)], we(ANL)N(XNL)=ANXNL
- *
It is seen that (1)=(2). Let (GX) ~ (HL)=(W,X), where VweX;
Y
REMARK 2:_In Yavuz (2023), it is proved that (S5 (U), U)
is a commutative monoid with identity @,. And in G'(w), weX\L
* W(w)=
Remarkl, we show that (S,p(U),~) is a commutative G'(w) NH(w),  weXNL
n
% ~
monoid. Moreover, @5 ~ (F,A)= @,. That is to say, @, is Suppose that (V,A) U (WX)=(T,A), where VweA;
n
* V(w), weA\X
the left-absorbing element for the operation ~. Besides, T(w)=
« n V(w) UW(w), weAnX
by the subtitle 4.3.2. (1), ~ satisfies the right distributive
n Hence,
lav:ll< over U. As a result we can conclude that (S, (U), F(w), we(A\L)\X=AnX'nL’
U,;) is a (right) near-semiring. Moreover, since g((ww))r:}-({}(?a}), zj((g{]LLj)r}z(X:\?‘r)]fAr;\l)‘(nL’
* % % F'(w) U[G' (w) nl-,l(w)], we(A\L)N(XNL)=0
(FA)~ 0= Oa~(FA)= By (Sa(U), U=) is a zero  T(@)=| [F@) MH@IUG(W),  we(AnL)n(X\L)=0
n n n [F(w) UG (w)] NH(w), we(ANL)N(XNL)=ANXNL
symmetric near-semiring. One can similarly show that It is seen that N=T.
* * * *
(Sa(U), U,~) isalso a hemiring. )[(FA)\(GX)] ~(HL)=[(FA) ~(HL)IA[(GX) ~ (H,L)]
n n n Y
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4.4. Distribution of Complementary Soft Binary
Piecewise Intersection Operation over
Complementary Soft Binary Piecewise Operations
4.4.1. Left-distribution of complementary soft binary
piecewise intersection operation over
complementary soft binary piecewise operations

* * * *
1)(F.A) ~[(GX) ~ (HL)]=[(F.A) ~(GX)]U[(HL) ~ (FA)]

n * \ \
whereANXNL=0

Proof: Let’s first take care of the left hand facet of the
sk

equality, let (GX) ~ (H,L)=(M,X), where VweX;
*

G (w), weX\L
M(w)=

G'(w)UH'(w), weXNL
*

Let (F,A) ~ (M,X)=(N,A), where VweA;
n

Fw), weA\X

N(w)=+
F(w)NM(w), weAnX

F(w), wWeA\X
N(w)=4F(w)NG'(w), weAN(X\L)= AnXNL’
| F(w)N[(G'(w) UH ()], weANXNL= ANXNL

Now let’s take care of the right hand facet of the equality:
* * *

[(FA)~ (GX)]T[(HL)~ (FA)lLet (FA)~ (GX)=(V.A) ,
\ \ \

where VweA;
F(w), weA\X
V(w)=

F(w)NG'(w), weAnX
*

Suppose that (H,L) ~ (F,A)=(W,L), where VweL;
\

H'(w), w€eL\A
W(w)=
H(w)NF (w), w€eLNA

Let (V,A) U(W,L)=(T,A), where VweA;

V(w), w€eA\L
T(w)=
V(w) UW(w), weANL
Hence,
F(w), we(A\X)\L =AnX’'nL’
F(w)NG'(w), we(AnX)\L= AnXnL’
F'(w) UH'(w), we(A\X)N(L\A)=0

F'(w) U[H(0)NF(0)], we(A\X)N(LNA)= ANX'NL
[F(0)NG'(0)]UH’ (0), we(ANX)N(L\A)=0
[F(w)N[G (@)UH(w), we(AnX)N(LNA)=ANXNL

T(w)=

Here let’s handle weA\X in the first equation. Since A\X=

ANnX’, if w €X’, then welL\X or we(XUL)'. Hence, if weA\X,
weANX'NL’ or weANX’NL. Thus, it is seen that N=T.

* * * *
2)(FA) ~[(GX) ~ (H,L)]=[(F.A) : (GX)]O[(H,L) : (F.A)]
n
where ANXNL=0
* * * *
3)(FA) ~ [(GX) ~ (HL)]=[(F.A) ~ (GX)]A[(HL) ~ (FA)]
n ¢ \ n

where ANX'NL=0
Proof: Let’s first take care of the left hand facet of the

k
equality, let (GX) ~ (H,L)=(M,X), where VweX;
¥
G'(w), weX\L
M(w)=
G'(w) NH(w), weXNL
%
Let (F,A) ~ (M,X)=(N,A), where VweA;
n
F(w), weA\X
N(w)=
F(w)NM(w), weAnX
Therefore,
F(w), weA\X
N(w)= F(w) NG’ (w), weAn(X\L)= AnXnL’

F(w) N[(G'(w) NH(w)], weANXNL= ANXNL

Now let’s take care of the right hand facet of the equality:
* * *

[(FA)~ (GX)IA[HL) ~ (FA)]. Let (FA)~ (GX)=(V.A) ,
\ n \

where VweA;

F(w), weA\X
V(w)=
F(w) NG'(w), weAnX
*
Suppose that (H,L) ~ (F,A)=(W,L), where YweL;
n
H'(w), w€eL\A
W(w)=
H(w) NF(w), weLNA

Let (V,A) A(W,L)=(T,A), where VweA;

[ V(w), weA\L
T(w)=-
_V(w) NW(w), weANL
[ F(w), we(A\X)\L =AnX'NL’
F(w) NG (), we(ANX)\L= AnXNL’
| F(w) nH'(w), we(A\X)N(L\A)=0
T(w)= | F@) N[Hw) NF@)], we(A\X)n(LNA)= ANX'NL
[F(w) NG (0)]NH’ (@), we(ANX)N(L\A)=0
| [F(w) NG'(w)]NH(w), we(AnNX)N(LNA)=ANXNL
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* * * *
4)(F.A) ~ [(GX) ~ (HL)]=[(F.A) ~ (GX)]U[(H.L) ~ (F.A)]
n + \ n
where ANX'NL=0
4.4.2. Right-distribution of complementary soft
binary piecewise intersection operation
complementary soft binary piecewise operations
The followings are held where ANXNL'=0:

over

* *
1) [(F, A) ~(GX)] ~ (HL)=[(F.A) , (HL)IALGX) y (HL)]
0 n
Proof: Let’s first take care of the left hand facet of the
sk
equality, let (F,A) ~ (G,X)=(M,A), where YweA,
]
F(w), weA\X
M(w)=
F(w)NG'(w), weANX
*
Let (M,A) ~ (H,L)=(N,A), whereVweA,
n
M(w), weA\L
N(w)="
| M(w) NH(w),  weANL
Thus,
[ F(w), we(A\X)\L =ANX'NL’
F(w)UG(w) we(AnX)\L= AnXnL’
N@)=7 pw) nH(w) we(A\X) NX= ANX'NL
[ F(@)NG'(w)] N"H(w) we(AnX)NL= ANXNL

Now let’s take care of the right hand facet of the equality:
[(FA) { (HLIAIGX) y (HL)].  Let  (FA)  (HL)=(V,A),

where VweA;

F(w), weA\L
V(w)=
F'(w) NH(w), w€ANL
Assume that (G,X) y (H,L)=(WX), where VweX;
G(w), weX\L
W(w)=
G’ (w) NH(w), weXNL

Let (V,A) N (W,X)=(T,A), where YweA;

V(w) weA\X
T(w)=
V(w)NW(w) weAnX
Therefore,
F(w), we(A\L)\X=AnX'NL’
F(w) NH(w), we(ANL)\X=AnX'NL
F(w)NG(w), we(A\L)N(X\L)=ANXNL’
F(w)N[G'(w) NH(w)], we(A\L)N(XNL)=0
T(®)= | [F(0) NH(w)]NG(w), we(ANL)N(X\L)=0

[ F'(@) NG’ (@) NH(w)], we(ANL)N(XNL)=ANXNL

Itis seen that N=T.

* * ~ ~
2) [(F.A)~ (GX)] ~ (HL)=[(F.A) y (HL)]U[(GX) y (HL)]
%
* n* - -
3) [(F,A) ~ (GX)]~ (HL)=[(F.A)y (HL)IU[(GX)  (HL)]
+ n
Proof: Let’s first take care of the left hand facet of the
sk
equality, let (F,A) ~ (G,X)=(M,A), where VweA,
+
F'(w), weA\X
M(w)=
F(w)UG(w), weAnX
k
Let (M,A) ~ (H,L)=(N,A), whereVweA,
n
M(w), weA\L
N(w)=-
| M(w) NH(w),  weANL
Hence,
F(w), we(A\X)\L =ANX’'NL’
F(w) N G'(w), we(AnX)\L= AnXnL’
N(w)="] F'(w) NH(w), we(A\X) NX= AnNX’NL
[F(w) UG(w)]NH(w), we(ANX)NL=ANnXNL

Now let’s take care of the right hand facet of the equality:
[(FA) y (RUITIGX(HL)].  Let  (FA) y (HL)=(VA),
where VweA;
F(w), w€eA\L
V(w)=
F(w) NH(w), weANL
Assume that (G,X) ; (H,L)=(W,X) , where VweX;
G(w), weX\L
W(w)=
G(w) NH(w), weXNL

Let (V,A) U (W,X)=(T,A), where VweA;

V(w) weA\X
T(w)=
V(w)UW(w) weAnX
Therefore,
F(w), we(A\L)\X=AnX'NL’
F'(w) NH(w), we(ANL)\X=ANX'NL
T(w)= F(w) UG(w), we(A\L)N(X\L)=AnXNL’

F(w)U[G(w) NH(w)], we(A\L)N(XNL)=0
[F'(0) NH(w)UG(w), we(ANL)N(X\L)=0
[F'(w) UG(w)] NH(w), we(ANL)N(XNL)=ANXNL
It is seen that N=T.

* * - N
4) [(F, A)~ (GX)] ~ (H,L)=[(F,A)Y(H.L)]ﬁ[(G,X) n (HL)]
Y n

BSJ] Eng Sci / Aslihan SEZGIN et al.

343



Black Sea Journal of Engineering and Science

4.5. Distribution of Complementary Soft Binary
Piecewise Intersection Operation over Restricted
Soft Set Operations
The followings are held where ANXNL =@.
* * *
1)(F.A) ~ [(GX)Nr(H,L)]=[(F.A) ~ (GX)]UR[(F.A) ~ (H,L)
n Y Y
Proof: Let’s first take care of the left hand facet of the
equality, suppose (G, X)Ng(H,L)=(M,XNL) and so VweXNL,

k
M(w)=G(w) NH(w). Let (F,A) ~ (M,XNL)=(N,A), so VweA,
n
 Pw), weA\(XNL)
N(w)=
| F(w) NM(w), weAN(XNL)
P, weA\(XNL)
N(w)= T
| F(w) N[G(w) NH(w)], weAN(XNL)

Now let’s take care of the right hand facet of the equality:

b % *x
[(FA) ~(GX)]UR[(F,A) ~ (HL)]. Let (FA) ~ (GX)=(V.A),
¥ Y ¥
so VweA,
F(w), weA\X
V(w)=
F(w)NG(w), weAnX
%k
Let (F,A) ~ (H,L)=(W,A), so VweA,
Y
F(w), w€e€A\L
W(w)=
F(w)NH(w), weANL

Assume that (V,A) Ug (W,A)=(T,A), and so VweA, T(w)
=V(w) U W(w). Thus,

F'(w) UF' (), we( A\X)N(A\L)
F'(w) U[F'(0)NH(w)], we(A\X)N(ANL)
T@=1 pw)nG(w)]UF (), we(ANX)N(A\L)
[ F'(0)NG(w)]V[ F(w)NH(w)], @€(ANX)N(ANL)
Hence,
F(w), weANX'NL’
F(w), weANX'NL
T(@)=7 p(w, weANXNL’

[F'(w)NG(w)]V[F'(w)NH(w)], weANXNL

Considering the parameter set of the first equation of the
first row, that is, A\(XNL); since A\(XNL) =AN(XNL)', an
element in (XNL)' may be in X\L, in L\X or (XUL). Then,
A\(XNL) is equivalent to the following 3 states:
AN(XNL"), An(X'nL) and AN(X'NL"). Hence, (1)=(2).

* * *
2)(FA) ~[(GX)Ur(HL)]=[(F.A) ~ (GX)]NR[(F.A) ~ (HL)

n + +
* * *

3)(F.A) ~ [(GX)Br(HL)]I=[(F.A) ~ (GX)]UR[(F.A) ~ (H,L)
n 0 0

Proof: Let’s first take care of the left hand facet of the
equality, suppose (G,X)0g (H,L)=(M,XNL) and so VweXnL,

%
M(w)=G'(w)NH'(w). Let (F,A) ~ (M,XNL)=(N,A), so VweA,
n
[ F(w), weA\ (XNL)
N(w)=-
| F(w) NM(w), weAN(XNL)
Thus,
F(w), weA\(XNL)
N(w)="
| F(w) N[G(w) NH(w)], weAN(XNL)

Now let’s take care of the right hand facet of the equality,

% k k
[(F.A) ~ (GX)]UR[(F.A) ~ (H,L)]. Let (F,A) ~ (GX)=(V,A),
0 0 0
and VweA,
F(w), weA\X
V(w)=
F(w)NnG'(w), weANnX
*
Let (F,A) ~ (H,L)=(W,A) and €A,
6
F(w), weA\L
W(w)=
F(w)nH' (w), weANL

Assume that (V,A) Ug (W,A)=(T,A), so YweT(w) =V(w) U
W(w),

F(0) UF (), we( A\X)N(A\L)
F/(@) U[F (0)NH' ()], we(A\X)N(ANL)
T(@)= [ pw)n6 (@) UF (), we(ANX)N(A\L)

[ F(0)NG(0)]U[F (0)NH'(0)], we(AnX)N(ANL)

Thus,
F(o), weAnX'NL’
F(w), weANX'NL
T(@)=7 p(), weANXNL’
[ F'(w)NG (w)]V] F(w)NH’ (w)], w EANXNL
* * *
4)(FA) ~ [(GX) *r(HL)]=[F.A) ~(GX)] Nr[(F.A) ~(HL)
n % %k
sk %k 5k
5)(F.A) ~ (GX)yr(HL)]=[(F,A) ~(GX)]URr [(F.A) g (HL)]
n Y

Proof: Let’s first take care of the left hand facet of the
equality, suppose (G,X) yr(H,L)=(M,XNL) and so VweXNL,

k
M(w)= G(w) NH(w). Let (FA) ~ (MXNL)=(N,A), so
n
VweA,
F(w), weA\(XNL)
N(w)=
F(w) "M(w), weANn(XNL)
Thus,
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F(w), weA\(XNL)
N(w)=

F(w) N[G'(w) NH(w)], weAN(XNL)

Now let’s take care of the right hand facet of the equality:
* ES *

[(FA) ~(GX)]NR[(FA) ~ (HL)]. Let (F.A) ~ (GX)=(V.A),
Y ) Y

so VweA,

F(w), weA\X
V(w)=

F(w)NG(w), weANX
*

Let (F,A) ~ (H,L)=(W,A), so VweA,
6

F(w),
W(w)=
F(w)Nn H'(w),

w€eA\L
w€ANL

Assume that (V,A) Ug (W,A)=(T,A), and so VweA, T(w)
=V(w) U W(w),. Thus,

F'(w) UF' (), we( A\X)N(A\L)
| F(@) U[F(@)n ()], we(A\X)N(ANL)
T [ pw)n6(w)]uF (), we(ANX)N(A\L)

[ F'(0)NG(w)]U[F (0)N H'(0)], we(ANX)N(ANL)

Hence,
F(w), weAnX'NL’
F(w), weANX'NL
T(@)=7 p(w), weANXNL/
[F(w)NG(w)]V[F (w)N H'(w)], weANXNL
% % %
6)(F.A) ~ [(GX)AR(HL)]=[(F.A) ~ (GX)]NR[(F.A) ~(HL)]
n + %
* % %
7(F.A) ~[(GX)\r(HL)]=[(F.A) ;(G'X)]OR[(F'A) ~ (HL)]
N +

Proof: Let first take care of the left hand facet of the
equality, suppose (G,X)\r (H,L)=(M,XNL) and so VweXNL,
3k

M(w)=G(w)NH'(w). Let (F,A) ~ (M,XNL)=(N,A), so VweA,

n
F(w), weA\ (XNL)
N(w)=
F(w) NM(w), weAn(XNL)
Thus,
F(w), weA\(XNL)
N(w)=

F(w) N[G(w) NH' (w)], @€AN(XNL)

Now let’s take care of the right hand facet of the equality,

%k %k 3k

(FA) ~(GX)]NRr[(FA) ~ (HL)] Let (FA) ~ (GX)=(V,A),
ES + %k

and VweA ,

F(w), weA\X
V(w)=

F(w) UG (w), weAnX

sk
Let (F,A) ~ (H,L)=(W,A) and VweA,

+

F(w), weA\L
W(w)=

F(w) UH(w), weANL

Assume that (V,A) Ug (W,A)=(T,A), so VweT(w) =V(w) U
W(w). Thus,

F(0) N F(0), we(A\X)N(A\L)
F'(0) N[F' (@) UH(w)], we(A\X)N(ANL)
T(@)=] [P () UG (W)]NF (@), we(ANX)N(A\L)
[ F'(w) UG (w)]N[F (@)UH(w)], we(ANX)N(ANL)
Thus,
F(w), weAnX'Nl’
F(w), weANX'NL
T(@)=7 p(w), weANXNL’
[ F'(w) UG (0)]N[F'(w) UH(w)], weAnXnL
* £ %k
8)(F1A) ~ [(G'X)+R(H'L)]z[(F!A) ~ (G'X)]UR[(FIA) ~ (H!L)
n 0 Y

5. Conclusion
In this paper, we have contributed to the literature on
soft sets by defining a novel form of soft set operation,
which we call complementary soft binary piecewise
intersection operation. The basic algebraic properties of
the operations are examined. By examining the
distribution rules, we determine the connections
between this new soft set operation and other soft set
operations, including extended soft set operations,
complementary extended soft set operations, soft binary
piecewise operations, complementary soft binary
piecewise operations, and restricted soft set operations.
Additionally, we demonstrate that the set of all the soft
sets with a fixed parameter set together with the
complementary soft binary piecewise intersection
operation and the soft binary piecewise union operation
is a zero-symmetric near-semiring and also a hemiring.
In the future studies, new types of soft set operations
may be established. Moreover, since soft set is powerful
mathematical tool for uncertain object detection, with
this study, suggest

encryption or decision making methods based on soft

researchers may some new
sets. Also, studies on the soft algebraic structures may be
handled again as regards the algebraic properties by the
operation defined in this paper.
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