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Abstract 

           The concept of quasilinear space is a field that needs to be matured, the foundations of 

which were laid by S. M. Aseev's published work in 1986. The simplest nonlinear quasi linear 

space example is the set 𝑃 which is a class of closed intervals of real numbers. In this study, it 

was given an interval-valued sequence space using the Cesàro limitation method's matrix domain. 

Also, its quasilinear space structure, some topological characteristics, and some inclusion 

relations were examined. 

Keywords: Quasilinear Space; Interval Valued Sequence; Hausdorff Metric; Cesàro 

Convergence. 

Aralık Değerli Cesaro Yakınsak Diziler Uzayı Üzerine 

Öz 

Quasilineer uzay kavramı, temelleri S. M. Aseev'in 1986 yılında yayınlanan çalışmasıyla 

atılan, olgunlaşması gereken bir alandır. Lineer olmayan Quasilineer uzayın en basit örneği, 

gerçek sayıların kapalı aralıklar sınıfı olan 𝑃 kümesidir. Bu çalışmada Cesàro limitleme 

yönteminin matris etki alanı kullanılarak aralık değerli bir dizi uzayı verildi. Ayrıca bu uzayın 

quasilineer uzay yapısı, bazı topolojik özellikleri ve bazı kapsama ilişkileri incelendi. 
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Anahtar Kelimeler: Quasilineer Uzay; Aralık Değerli Dizi; Hausdorff Metrik; Cesàro 

yakınsaklık. 

1. Introduction 

Aseev [13] introduced the concept of quasilinear spaces in 1986, which generalized linear 

spaces. The partial order relation he used in the definition made it easy to give a consistent 

response to some basic concepts and results of linear algebra. His study has also inspired the 

presentation of many studies on set valued analysis [14], set differential equations [15], fuzzy 

quasilinear spaces [16]. Yılmaz has many studies on quasilinear spaces and has made important 

contributions to the literature [17, 18, 24-31]. 

After Zadeh [1] introduced the concept of fuzzy set to the literature, interval numbers and 

fuzzy numbers have also been used in the construction of mathematical structures.  One of these 

structures is sequence spaces. Interval arithmetic, which was founded by Dwyer [2], was further 

developed by Moore [3, 4]. Chiao introduced sequence of interval numbers and defined the usual 

convergence of sequence interval numbers [23]. Some other studies on this topic: [12], [13]. 

Some studies in which fuzzy sequence spaces are defined and some of their properties are 

examined [6-11, 20]: 

In this paper, we introduce interval valued Cesàro convergent sequence spaces and discuss 

some of their properties.	

2.  Preliminaries 
 

Throughout this study, ℕ, ℝ and ℂ will represent the set of natural, real and complex 

numbers, respectively. Closed interval is a subset of the real numbers {𝑥 ∈ ℝ ∶ 𝐷 ≤ 𝑥 ≤ 𝐷}	  and 

the interval 𝐷 is denoted as 𝐷 = [𝐷, 𝐷], where 𝐷 and 𝐷 are the left and right endpoints of an 

interval D, respectively [5]. Although other types of intervals (open, half-open) appear in 

mathematics, our focus will be on closed intervals. The interval term in this study refers to a 

closed interval. 

𝐷 is said to be degenerate, if 𝐷 = 𝐷. An interval of this type contains a single real number 

𝑑, [5]. 

A closed subset of real numbers is an interval number. It is denoted as a set of all real 

valued interval numbers by 𝑃 in this study. That is, each element of 𝑃 is 𝐷, represented as  

𝐷 = 𝑥 ∈ ℝ:𝐷 ≤ 𝑥 ≤ 𝐷 .              (1) 
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The set of all real valued interval numbers 𝑃 is metric space with	the metric ℎ called the 

hausdorff metric, [5] where ℎ is defined as  

 ℎ 𝐷4, 𝐷5 = 𝑚𝑎𝑥 𝐷4 − 𝐷5 , 𝐷4 − 𝐷5 .             (2) 

It is easily obtained that 𝑃 is complete metric space with the function ℎ. The usual metric of ℝ is 

obtained when 𝐷4 and 𝐷5 are degenerate intervals. 

Also, the set of all real-valued interval numbers P is the normed space with the norm 

function defined [5]: 

𝐷 : = 𝑠𝑢𝑝 𝑡 ℝ, 𝑡 ∈ 𝐷, 𝐷 ∈ 𝑃, 𝑡 ℝ = 𝑡 . 

Let us now go over Aseev's [13] definition of a quasilinear space and some of its basic 

properties. 

The operations of addition, scalar multiplication, and a partial order relation on the set 𝑃 of 

intervals are defined as follows: 

For all 𝑈, 𝑉 ∈ 𝑃, 𝑈 = 𝑈, 𝑈	 ,			𝑉 = 𝑉, 𝑉  and 𝜆 ∈ ℝ, 

𝑈 + 𝑉 = 𝑈, 𝑈	 + 𝑉, 𝑉 = [𝑈 + 𝑉, 𝑈 + 𝑉] 

𝜆𝑈 = 𝜆 𝑈, 𝑈 =
𝜆𝑈	, 𝜆𝑈 ,				𝑖𝑓		𝜆 ≥ 0,
𝜆𝑈, 𝜆𝑈 ,					𝑖𝑓	𝜆 < 0,

 

𝑈 ≤ 𝑉 ⟺ 𝑈,𝑈	 ⊆ 𝑉, 𝑉 . 

Let us continue by defining quasilinear space. 

Definition 1: [13] When the addition, scalar multiplication, and partial order relation 

defined on a set 𝑋 satisfy the following conditions, 𝑋 is called quasilinear space: 

i) 𝑢 ≼ 𝑢, 

ii) 𝑢 ≼ 𝑤,	if 𝑢 ≼ 𝑣 and 𝑣 ≼ 𝑤, 

iii) 𝑢 = 𝑣 if  𝑢 ≼ 𝑣 and  𝑣 ≼ 𝑢, 

iv) 𝑢 + 𝑣 = 𝑣 + 𝑢,       

v) 𝑢 + 𝑣 + 𝑤 = 𝑣 + 𝑢 + 𝑤,       

vi) There is a 𝜃 element of 𝑋 that satisfies 𝑥 + 𝜃 = 𝑥, 

vii) 𝜇. 𝜆𝑢 = 𝜇. 𝜆 𝑢, 
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viii) 𝜇. 𝑢 + 𝑣 = 𝜇. 𝑢 + 𝜇. 𝑣, 

ix) 1. 𝑢 = 𝑢, 

x) 0. 𝑢 = 𝜃, 

xi) 𝜇 + 𝜆 . 𝑢 ≼ 𝜇. 𝑢 + 𝜆. 𝑣, 

xii) 𝑢 + 𝑣 ≼ 𝑤 + 𝜑 if 𝑢 ≼ 𝑤 and 𝑣 ≼ 𝜑,         

xiii) 𝜇. 𝑢 ≼ 𝜇. 𝑣 if 𝑢 ≼ 𝑣, 

 
where for all 𝑢, 𝑣, 𝑤,𝜑 ∈ 𝑋 and 𝜇, 𝜆 ∈ ℝ.  

In this study, quasilinear space is abbreviated as QLS. 

When we use ′′ = ′′ as a partial order relation, then the QLS transforms into a linear space. 

The set of all closed intervals of real numbers is a famous understandable example of a non-linear 

QLS.  

Definition 2:	 [13] A norm is a 𝑛 function defined from an 𝑋 QLS to ℝ that satisfies the 

following conditions, in this case 𝑋 is called a normed quasilinear space. That is 𝑛: 𝑋 → ℝ,  

For all 𝑢, 𝑣 ∈ 𝑋 and 𝜇 scalar, 

i. 𝑛 𝑢 > 0,	if 𝑢 ≠ 𝜃 

ii. 𝑛 𝑢 + 𝑣 ≤ 𝑛 𝑢 + 𝑛(𝑣), 

iii. 𝑛 𝜇. 𝑢 = 𝜇 𝑛 𝑢 , 

iv. 𝑛 𝑢 ≤ 𝑛 𝑣 , if 		𝑢 ≼ 𝑣, 

v. For any positive number 𝛿, If 𝑋 has an 𝑢Z  element that satisfies 𝑛 𝑢Z ≤ 𝛿 and, 𝑢 ≤ 𝑣 +

𝑢Z  then 𝑢 ≤ 𝑣. 

 

Now let us define definition of the concept of interval number sequence. 

An interval number sequence is a function whose domain set is ℕ, and the range set is the 

set of closed intervals 𝑃. That is, the function 𝑓 defined as follows: 

𝑓: 𝑁 → 𝑃,       𝑓 𝑘 = 𝐷] ,     

is called an interval number sequence, where 𝐷] = 𝐷], 𝐷] , for each 𝑘, and 𝐷] ≤ 𝐷], [12].   

The class of all interval sequences will be denoted by 𝑤(𝑃) in this study. 

 𝑤(𝑃) = {(𝐷]):	𝑘 ∈ 𝑁,			 𝐷] ∈ 𝑃}, 
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The space 𝑤(𝑃) is a quasilinear space with the following operations defined on interval 

term sequences: For all 𝑈, 𝑉 ∈ 𝑤(𝑃),   

𝑈 = 𝑈] = ( 𝑈4, 𝑈4 , 𝑈5, 𝑈5 , … , 𝑈], 𝑈] , …	) 

𝑉 = 	 (𝑉]) = ( 𝑉4, 𝑉4 , 𝑉5, 𝑉5 , … , 𝑉], 𝑉] , … )	

    𝑈 + 𝑉 = ([𝑈] + 𝑉], 𝑈] + 𝑉]])                                                                     (3)	

𝜆𝑈 = 𝜆 𝑈], 𝑈] = (	𝜆 𝑈], 𝑈] ) 

𝜆 𝑈], 𝑈] =
𝜆𝑈	, 𝜆𝑈 ,				𝜆 ≥ 0
𝜆𝑈, 𝜆𝑈 ,						𝜆 < 0

                                                                       (4) 

𝑈 ≼ 𝑉 ⟺ 𝑈], 𝑈] ⊆ 𝑉], 𝑉] .                                                                                      (5) 

The following is a definition of the convergence of interval number sequences, [23]: 

 Let (𝑈]) be a sequence of interval numbers and 𝑈_ be an interval number. If there is a 

𝑘_ = 𝑘_ 𝜀 	∈ 	𝑁 for which the inequality ℎ(𝑈], 𝑈_) < 𝜀 is provided for all 𝜀 > 0  and for all 

𝑘 > 𝑘_, then the sequence (𝑈]) is said to be convergent to 𝑈_. This convergence is displayed 

as  

                    lim
]
𝑈] = 𝑈_ or 𝑈] → 𝑈_, 𝑘 → ∞ ,	 

 where the limit is taken on the Haussdorff metric ℎ given by equation 2. 

We can conclude that lim
]→e

𝑈] = 𝑈_ ⟺ lim
]→e

𝑈] = 𝑈_ ve lim
]→e

𝑈] = 𝑈_ . 

For example, let us consider the interval number sequence (𝑈]) = [− 4
]fg

, 4
]fg

]. If we 

examine the convergence of this sequence of intervals, we get that 

lim
]→e

𝑈] = lim
]→e

− 4
]fg

, 4
]fg

= 0,0 = θ. This means that the sequence 𝑈]  is convergent to 

the interval number [0,0] = 𝜃. 

The spaces of null, convergent, and bounded sequences of interval numbers are defined 

as follows, respectively: 

𝑃	ij = 𝑈] ∈ 	𝑤 𝑃 : 𝑙𝑖𝑚
]
𝑈] = 0,0 = 𝜃 , 
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𝑃l = 	 𝑈] ∈ 	𝑤 𝑃 : 𝑙𝑖𝑚
]
𝑈] = 𝑈_, 𝑈_ ∈ 𝑃 ,	

𝑃	ℓn = 𝑈] ∈ 	𝑤 𝑃 :	sup
]

𝑈] , 𝑈] < ∞ .       

These spaces are complete metric spaces with the function 𝑑 defined as follows for each 

𝑈 and 𝑉 sequence taken from these spaces: [12]. 

𝑑 𝑈], 𝑉] = 𝑠𝑢𝑝
]
{𝑚𝑎𝑥 𝑈] − 𝑉] , 𝑈] − 𝑉] }.  

An interval valued sequence is Cesàro convergent to 𝑉 ∈ 𝑃 if and only if  

ℎ(4
r

𝑈]r
]s4 , 𝑉) → 0	 for 𝑛 → ∞. 

3. Main Results 
 
𝐶u 1 	and 𝐶uj 1  represent the spaces of interval valued Cesàro convergent sequences 

and interval valued Cesàro null convergent sequences, respectively, in this study. That is, 

								𝐶u 1 = {(𝑈]) ∈ 𝑤(𝑃) ∶ limr→eℎ
4
r

𝑈], 𝑈] , 𝑉, 𝑉r
]s4 = 0, for	some	 𝑉, 𝑉 ∈ 𝑃} 

𝐶uj 1 = {(𝑈]) ∈ 𝑤(𝑃) ∶ limr→eℎ
1
𝑛

𝑈], 𝑈] , 0,0
r

]s4

= 0} 

Now let us show that this set is well defined, that is, it has at least one element. 

For instance, the sequence ([−1, 4
r
]) belongs to the set 𝐶u 1 . Really it can be easily seen that 

lim
r

1
𝑛

	

−1,
1
𝑖
= −1,0
	

r

zs4

 

Therefore 𝐶u 1 ≠ ∅.  

Theorem 1:	The space 𝐶u 1  is a metric space with the function 𝑑 defined as	

𝑑 𝑈, 𝑉 = 𝑠𝑢𝑝
r
{𝑚𝑎𝑥 4

r
𝑈z − 𝑉zr

zs4 , 4
r
	 𝑈z − 𝑉zr

zs4 }.                                    (6)      

Proof: i)	For all	𝑈, 𝑉 ∈ 𝐶u 1 	,	when	𝑈 ≠ 𝑉, it is easy to see that	𝑑 𝑈, 𝑉 > 0,	

Let us prove that		𝑈 = 𝑉 ⟺ 𝑑 𝑈, 𝑉 = 0.		 

𝑈 = 𝑉 ⟺ 𝑈z = 𝑉z, for each 𝑖 ∈ ℕ, 

            ⟺ 𝑈z = 𝑉z and 𝑈z = 𝑉z, for each 𝑖 ∈ ℕ, 
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From here  

𝑈z − 𝑉z =0, and 𝑈z − 𝑉z = 0 ⟺ 𝑑 𝑈, 𝑉 = 0                                                                            

             ii) It is clear that 𝑑 𝑈, 𝑉 = 𝑑 𝑉, 𝑈   

iii)  𝑑 𝑈, 𝑉 = 𝑠𝑢𝑝
r

𝑚𝑎𝑥 4
r

𝑈z − 𝑉zr
zs4 , 4

r
	 𝑈z − 𝑉zr

zs4  

                     =𝑠𝑢𝑝
r

𝑚𝑎𝑥 4
r

𝑈z − 𝑉z − 𝑍z + 𝑍zr
zs4 , 4

r
	 𝑈z − 𝑉z − 𝑍z + 𝑍zr

zs4  

              ≤ 𝑠𝑢𝑝
r

𝑚𝑎𝑥 4
r

𝑈z − 𝑍z + 𝑍z − 𝑉zr
zs4 , 4

r
𝑈z − 𝑍z + 𝑍z − 𝑉zr

zs4  

              =𝑠𝑢𝑝
r

𝑚𝑎𝑥 4
r

𝑈z − 𝑍z , 𝑈z − 𝑍z +r
zs4

4
r
	 𝑍z − 𝑉z , 𝑍z − 𝑉zr

zs4  

=𝑠𝑢𝑝
r

𝑚𝑎𝑥 4
r

𝑈z − 𝑍z , 𝑈z − 𝑍zr
zs4 + 𝑚𝑎𝑥 4

r
	 𝑍z − 𝑉z , 𝑍z − 𝑉zr

zs4  

										≤ 	 𝑠𝑢𝑝
r

𝑚𝑎𝑥
1
𝑛

𝑈z − 𝑍z , 𝑈z − 𝑍z

r

zs4

+ 𝑠𝑢𝑝
r

𝑚𝑎𝑥
1
𝑛
	 𝑍z − 𝑉z , 𝑍z − 𝑉z

r

zs4

	

= 𝑑 𝑈, 𝑍 + 𝑑 𝑍, 𝑉  

Thus, it can be written that 

𝑑 𝑈, 𝑉 ≤ 𝑑 𝑈, 𝑍 + 𝑑 𝑍, 𝑉 . 

That is,	𝑑	is a metric.  

Theorem 2: The spaces (𝐶u 1 , 𝑑), 𝐶uj 1 , 𝑑  are complete metric spaces with the metric 

𝑑 defined in (6).  

Proof: Consider 𝑈}  as a Cauchy sequence in 𝐶u 1  space. We get  

                                 𝑑 𝑈~, 𝑈} → 0, 𝑟,𝑚 → ∞ , 

where 𝑈𝒓 = 𝑈]~ = 𝑈4~, 𝑈5~, … , 𝑈]~, … , 𝑈} = 𝑈]}  and 𝑈]~ = 𝑈]~, 𝑈]
~
. From here, for 

𝑟,𝑚 → ∞  

 𝑠𝑢𝑝
r

𝑚𝑎𝑥 1

𝑛
𝑈]~ − 𝑈]}𝑛

𝑘=1 , 1
𝑛

𝑈]
~
− 𝑈]

}𝑛
𝑘=1 → 0.		 

It means that for each 𝑛,  

                       𝑚𝑎𝑥 1

𝑛
𝑈]~ − 𝑈]}𝑛

𝑘=1 , 1
𝑛

𝑈]
~
− 𝑈]

}𝑛
𝑘=1 → 0,   𝑟,𝑚 → ∞ . 



Kılınç	&	Yıldırım	(2023)	ADYU	J	SCI,	13(1&2),1-17	
	

 
8 

 Hence, for each 𝑛,  

                                              4
r

𝑈𝑘
𝑟 − 𝑈𝑘

𝑚r
]s4 → 0, and 4

r
𝑈𝑘
𝑟
− 𝑈𝑘

𝑚r
]s4 → 0. 

This shows us that cesaro transform of the sequences of real numbers 𝑈]} }s4
e

and 

𝑈]
}

}s4

e
 is the cauchy sequence. If the space of Cesàro convergent classical real number 

sequences is denoted by 𝑐(1), we know that this sequence space is complete. Therefore, suppose 

that the sequences 𝑈]}  and 𝑈]
}

 are Cesàro convergent to the numbers 𝑈] and 𝑈], 

respectively. Since we know that for all 𝑘, 𝑈]} ≤ 𝑈]
}

, we write 𝑈] ≤ 𝑈]. Take into account 

the interval 𝑈 = 𝑈], 𝑈]   thus produced. Then, we get 𝑑 𝑈~, 𝑈} → 𝑑 𝑈, 𝑈} , for	𝑟 → ∞.  

Because the sequences 𝑈]}  and 𝑈]
}

 are Cesàro convergent to the numbers 𝑈] and 𝑈], 

respectively, we can say that for all positive numbers 𝜀4 and 𝜀5, there are the numbers 𝑚_ 𝜀4  

and 𝑚_ 𝜀5  such that  

                                                  4
r

𝑈𝑘 − 𝑈𝑘
𝑚 ≤r

]s4 𝜀1  

when 𝑚 > 𝑚_ 𝜀4  and   

                                                   4
r

𝑈𝑘 − 𝑈𝑘
𝑚

≤r
]s4 𝜀2, 

when 𝑚 > 𝑚_ 𝜀5 . 

Let us say 𝜀 to the maximum of 𝜀4 and 𝜀5 numbers, that is 𝜀 = 𝑚𝑎𝑥 𝜀4, 𝜀5 .  In this case, for  

𝑚 > 𝑚𝑎𝑥 𝑚_ 𝜀4 ,𝑚_ 𝜀5 , 

    𝑚𝑎𝑥 1

𝑛
𝑈] − 𝑈]} , 1

𝑛
𝑈] − 𝑈]

}𝑛
𝑘=1

𝑛
𝑘=1 < 𝜀.                                 (7)              

If the course of the proof is followed, it is seen that the (7) inequality is provided for each 𝑛. It 

means that 

                        𝑑 𝑈, 𝑈} = 𝑠𝑢𝑝
r

𝑚𝑎𝑥 1

𝑛
𝑈] − 𝑈]} , 1

𝑛
𝑈] − 𝑈]

}𝑛
𝑘=1 ≤ 𝜀. 

 This indicates that it is 𝑈 ∈ 𝐶u 1 . Thus, it has completed the proof. 

  Theorem 3:	The spaces	𝑃l	and		𝐶u 1 	are not linear isomorphic.		
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Proof:	To demonstrate that two spaces are linear isomorphic, we must demonstrate the 

existence of a one-to-one and onto a linear transformation between them.		

Let us define the	transform 𝑇,	𝑇:	𝑃l → 𝐶u
(4),													

𝑈 → 𝑇 𝑈 = 𝑉,					𝑉 = 𝑉r ,								 𝑉r =
1
𝑛

𝑈], 𝑈]

r

]s4

						 𝑛	 ∈ ℕ . 

For all 𝑋 = 𝑋] = 𝑋], 𝑋]  and 𝑈 = 𝑈] = 𝑈], 𝑈] ∈ 𝑃l,  

𝑇(𝑋 + 𝑈) =
1
𝑛

𝑋] + 𝑈], 𝑋] + 𝑈]

r

]s4

								

                               = 𝑇(𝑋) + 𝑇(𝑈) 

𝑇(𝛼. 𝑋) = 	 4
r

[𝛼r
]s4 𝑋], 𝛼𝑋]] = 𝛼. (4

r
[r

]s4 𝑋], 𝑋]]) = 𝛼. 𝑇(𝑋), 𝛼 ∈ ℝ .	

So, the transform 𝑇	is linear.		

Let us investigate the	𝑇	transform's one-to-one. For this purpose, let us assume		

𝑇(𝑋) = 𝑇(𝑈).		Then, we get	𝑇(𝑋) − 𝑇(𝑈) = 𝜃	

where	𝜃 = 0,0 .		𝑇(𝑋 − 𝑈) = 	𝜃	is obtained, because the	𝑇	transform is linear.		

𝑇(𝑋 − 𝑈) =
1
𝑛

([
r

]s4

𝑋], 𝑋]] − 𝑈], 𝑈] ) = 0,0 ,	

                           	= 4
r

( 𝑋] − 𝑈], 𝑋] − 𝑈] = 0,0r
]s4 .        

This requires	𝑋] = 𝑈],	and	𝑋] = 𝑈]	for all	𝑘	 ∈ ℕ.	This means	 	𝑋], 𝑋] ≠ 𝑈], 𝑈] .	

So,	𝑇	is not 1: 1. Therefore,	the spaces	𝑃l	and		𝐶u 1 	are not linear isomorphic.		

Theorem 4:	An interval valued convergent sequence is also Cesáro convergent.	

Proof: Let us assume that the sequence	𝑋 = (𝑋r)	converges to an element	𝑌 = [	𝑌	, 𝑌]	in	

𝑃.	That is lim
r→e

	ℎ 𝑋r, Y = 0. We get from here that,   

                                          lim
r→e

𝑚𝑎𝑥 𝑋r − 𝑌 	, 	𝑋r − 𝑌 =0	
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This means that lim
r→e

𝑋r − 𝑌 = 0 ve lim
r→e

	𝑋r − 𝑌 = 0. Thus, the real sequences 𝑋r  and 

(𝑋r)  are convergent. We know that sequences of convergent real numbers are Cesáro 

convergent.		

Let us assume that the sequences 𝑋r  and (𝑋r) of real numbers Cesàro converge to 𝑈 

and 𝑈. Where 𝑈 and	𝑈 are real numbers. Since for all	𝑛 ∈ ℕ, 𝑋r ≤ 𝑋r	, we know that lim
r→e

𝑋r ≤

lim
r→e

𝑋r. From here, we have 𝑈 ≤ 𝑈.	  In addition, since the Cesáro limit and the limit of a 

convergent sequence in sequences with real terms are equal, 	

	 lim 	
r→e

ℎ 𝑋r, 𝑋r , 𝑈, 𝑈 = 	 lim
r→e

(𝑚𝑎𝑥 𝑋r − 𝑈 , 	𝑋r − 𝑈 )	

= 𝑙𝑖𝑚
r→e

(𝑚𝑎𝑥 𝑋r − 𝑌 , 	𝑋r − 𝑌 					(𝑛 → ∞). 

It means that the sequence 𝑋 = (𝑋r)  Cesàro converges to 𝑌 = [	𝑌	, 𝑌]. 

Consequently, we can say that the sequence space	𝐶u 1 	contains the sequence space	𝑃l.	

That	is,	𝑃l ⊂ 𝐶u 1 .	Similarly,	𝑃	ij ⊂ 𝐶uj 1  inclusion relation is also valid. 

Example 1: Consider the following sequence (𝑋r) = [1 + 4
r
, 3] . We see that it 

converges to [1,3]. We can prove easily. Really,  

             ℎ 1 + 4
r
, 3 , 1,3 = 𝑚𝑎𝑥 1 + 4

r
− 1 , 3 − 3  

= 𝑚𝑎𝑥 4
r
, 0 = 4

r
→ 0, (𝑛 → ∞).	

Now, let us investigate Cesàro convergence. We must demonstrate that      

ℎ
1
𝑛

𝑋r

r

]s4

	 , 1,3 → 0,					 𝑛 → ∞ . 

ℎ(
1
𝑛

𝑋r

r

]s4

	 , [1,3]) = 	ℎ(
1
𝑛

	[
r

]s4

1 +
1
𝑘
	,3], [1,3])	

= ℎ(
1
𝑛
([1 + 1, 3] + [1 +

1
2
, 3] + ⋯+ [1 +

1
𝑛
, 3]), [1,3])	

= ℎ((
1
𝑛
+
1
𝑛
,
3
𝑛
+	

1
𝑛
+
1
2𝑛

,
3
𝑛
+ ⋯+	

1
𝑛
+

1
𝑛. 𝑛

,
3
𝑛
), [1,3])	
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= ℎ([1 +
1
𝑛
(1 +

1
2
+ ⋯+

1
𝑛
), 3], [1,3])	

= 𝑚𝑎𝑥 1 +
1
𝑛
1 +

1
2
+ ⋯+

1
𝑛

− 1 , 3 − 3  

=
1
𝑛
1 +

1
2
+ ⋯+

1
𝑛

→ 0, (𝑛 → ∞) 

  So, the proof is completed. 

Now, let us see with an example that an interval sequence that is divergent can be 

convergent according to the Hausdorff metric in the Cesáro sense.  

 Example 2: Although the sequence 𝑋 = (𝑋r) = ([−1,0], [0,1], [−1,0], [0,1], … ) is 

divergent, it is Cesàro convergent to − 4
5
, 4
5
	according to the Hausdorff metric. Let us examine 

the Cesàro convergence depending on  𝑛 is even or odd which stamps the terms of the sequence. 

   If 𝑛 is an odd number, then 𝑋5rf4 = − rf4
5rf4

, r
5rf4

. 

Let us try to demonstrate that 					 lim
r→e

ℎ( 𝑋5rf4, [−
4
5
, 4
5
]) = 0. 

        					 lim
r→e

ℎ( 𝑋5rf4, [−
4
5
, 4
5
]) = 	 lim

r→e
ℎ( − rf4

5rf4
, r
5rf4

, [− 4
5
, 4
5
]) 

= 𝑙𝑖𝑚
r→e

(𝑚𝑎𝑥{ −
𝑛 + 1
2𝑛 + 1

− (−
1
2
) ,

𝑛
2𝑛 + 1

−
1
2
})	

= 𝑙𝑖𝑚
r→e

(𝑚𝑎𝑥 −
𝑛 + 1
2𝑛 + 1

+
1
2
) ,

𝑛
2𝑛 + 1

−
1
2
) 

If here the maximum expression is − rf4
5rf4

+ 4
5

, we get  lim
r→e

− rf4
5rf4

+ 4
5
= 0.	

If here the maximum expression is 	 r
5rf4

− 4
5

, then lim
r→e

r
5rf4

− 4
5
= 0. 

Let us now consider, the case where 𝑛 is an even number. In this case, since  

𝑋5r = − 4
5
, 4
5
,  

lim
r→e

ℎ 𝑋5r, −
4
5
, 4
5

= lim
r→e

𝑚𝑎𝑥 − 4
5
+ 4

5
, 4
5
− 4

5
= lim

r→e
𝑚𝑎𝑥{0,0} = 0. 

As a result, the goal is accomplished. 
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Thus, we gave an example of an interval sequence that is Cesàro convergent even though 

it is divergent. This indicates that the coverage of		𝑃l ⊂ 𝐶u 1 	is certain. 

Theorem 5: The space 𝐶u 1 	is a subspace of 𝑃	ℓn . 

Proof: We will show that when 𝑈 = (𝑈]) 	 ∈ 	 𝐶u 1 , 𝑈 is the element of 𝑃	ℓn. 

𝑈 ∈ 	𝐶u
(4) ⟺ 𝑙𝑖𝑚

r→e
ℎ(4

r
𝑈], 𝑉r

]s4 ) = 0, for any 𝑉 ∈ 𝑃.  

ℎ
1
𝑛

𝑈], 𝑈]

r

]s4

, 𝑉 = ℎ
1
𝑛

𝑈4, 𝑈4	 + ⋯+ 𝑈r, 𝑈r , 𝑉, 𝑉 ,

= ℎ
𝑈4 + ⋯+ 𝑈r

𝑛
	,
𝑈4 + ⋯+ 𝑈r

𝑛
, 𝑉, 𝑉 , 

= 𝑚𝑎𝑥
1
𝑛
𝑈4 + ⋯+ 𝑈r − 𝑉 ,

1
𝑛
𝑈4 + ⋯+ 𝑈r − 𝑉 → 0,											(𝑛 → ∞)	

⇔ 4
r
𝑈4 + ⋯+ 𝑈r − 𝑉 → 0 and 4

r
𝑈4 + ⋯+ 𝑈r − 𝑉 → 0,								 𝑛 → ∞	 . 

From here the sequences (𝑈]) and (𝑈]) are Cesàro convergent in ℝ. Therefore, they are 
also bounded. Since for all 𝑘 ∈ ℕ, 𝑈] ≤ 𝑈], the interval [𝑈], 𝑈]] is bounded and we get 
that 𝑈 = (𝑈]) belongs to 𝑃	ℓn. We have, the space 𝐶u 1  is covered by 𝑃	ℓn .		

																	𝑋 ∈ 𝐶𝐼 1 ⇔ ℎ( 1
𝑛
𝑋1 + ⋯+ 𝑋𝑛 , 1

𝑛
𝑋1 + ⋯+ 𝑋𝑛 , 𝑈, 𝑈 ) → 0(𝑛 → ∞) ,  

𝑌 ∈ 𝐶u 1 ⇔ ℎ
1
𝑛
𝑌4 + ⋯+ 𝑌r ,

1
𝑛
𝑌4 + ⋯+ 𝑌r , 𝑉, 𝑉 → 0 𝑛 → ∞ , 

where 𝑈, 𝑉 ∈ 𝑃. Now, let us show that for 𝑋, 𝑌 ∈ 𝐶u 1 , 𝑋 + 𝑌 ∈ 𝐶u 1 . Since 

ℎ(
1
𝑛
𝑋4 + 𝑌4 + ⋯+ 𝑋r + 𝑌r , 	

1
𝑛
𝑋4 + 𝑌4 + ⋯+ 𝑋r + 𝑌r , 𝑈 + 𝑉	, 𝑈 + 𝑉 												 

=ℎ([4
r
(𝑋4 + ⋯+ 𝑋r),

4
r
(𝑋4 + ⋯+ 𝑋r)] + [	

4
r
(𝑌4 + ⋯+ 𝑌r),

4
r
(𝑌4 + ⋯+ 𝑌r)],				[𝑈, 𝑈] +

	[𝑉, 𝑉]) 	→ 0 (	𝑓𝑜𝑟	𝑛 → ∞), we get 

ℎ([
1
𝑛
(𝑋4 + 𝑌4 + ⋯+ 𝑋r + 𝑌r), (	

1
𝑛
(𝑋4 + 𝑌4 + ⋯+ 𝑋r + 𝑌r)], [𝑈 + 𝑉	, 𝑈 + 𝑉]) → 0,											 

so 𝑋 + 𝑌 ∈ 𝐶u 1 . 

For 𝑋 ∈ 𝐶u 1  and 𝜆 ∈ ℝ	, let us show that 𝜆	𝑋 ∈ 𝐶u 1  
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𝜆	𝑋 = 	𝜆 𝑋, 𝑋 =
𝜆𝑋	, 𝜆𝑋 , 𝑖𝑓	𝜆 ≥ 0	
𝜆𝑋, 𝜆𝑋 , 𝑖𝑓	𝜆 < 0	

 

Since 𝑋 ∈ 𝐶u 1 ⟺ 	ℎ 4
r
𝑋4 + ⋯+ 𝑋r , 4

r
𝑋4 + ⋯+ 𝑋r , 𝑈, 𝑈 → 0(𝑛 → ∞),  

(𝑈 ∈ 𝐶u 1 ).		If 𝜆 ≥ 	0 , 𝜆𝑋 = [𝜆𝑋, 𝜆𝑋]. We have  

ℎ(
1
𝑛
𝜆𝑋4 + ⋯+ 𝜆𝑋r ,

1
𝑛
𝜆𝑋4 + ⋯+ 𝜆𝑋r , [	𝜆𝑈, 𝜆𝑈]) 

= ℎ(𝜆[
1
𝑛
(𝑋4 + ⋯+ 𝑋r),

1
𝑛
(𝑋4 + ⋯+ 𝑋r)], 𝜆[𝑈, 𝑈])	

= 	𝜆ℎ 4
r
𝑋4 + ⋯+ 𝑋r , 4

r
𝑋4 + ⋯+ 𝑋r , 𝑈, 𝑈 → 0 𝑓𝑜𝑟	𝑛 → ∞ .  

If 𝜆 < 0, 𝜆𝑋 = [𝜆𝑋, 𝜆𝑋]. We have 

ℎ([	
1
𝑛
𝜆𝑋4 + ⋯+ 𝜆𝑋r ,

1
𝑛
(𝜆𝑋4 + ⋯+ 𝜆𝑋r)], [	𝜆𝑈, 𝜆𝑈] 

 = ℎ 4
r
−𝜆 𝑋4 + ⋯+ 𝑋r , 4

r
−𝜆 𝑋4 + ⋯+ 𝑋r , −𝜆 𝑈, 𝑈  

= (−𝜆)ℎ([
1
𝑛
(𝑋4 + ⋯+ 𝑋r),

1
𝑛
(𝑋4 + ⋯+ 𝑋r)], [𝑈, 𝑈]) → 0(𝑛 → ∞)	 

 We have shown that when 𝑋 ∈ 𝐶u 1 , 𝜆	𝑋 ∈ 𝐶u 1 . 

Theorem 6: The space 𝐶u 1  is a QLS with the operations given by (3), (4) and the partial 

order relation given by (5). 

Proof: For all 𝑈, 𝑉, 𝑍 ∈ 𝐶u 1  and 𝜆	 ∈ 	ℝ also, for 𝑘 ∈ ℕ,  

i) It is trivial that 𝑈 ≼ 𝑈. 

ii) When 𝑈 ≼ 𝑉 and 𝑉 ≼ 𝑍  for all 1 ≤ 𝑘 < ∞, we have  𝑈] ⊆ 𝑉] and 𝑉] ⊆ 𝑍] due 

to (5). Since 𝑈], 𝑉],	𝑍] ∈ 	𝑃 and 𝑃 is a QLS, it becomes 𝑈] ⊆ 𝑍], for all 1 ≤ 𝑘 < ∞. Because 

of (5), 𝑈 ≼ 𝑍.  

iii) Let 𝑈 ≼ 𝑉 and 𝑉 ≼ 𝑈. In this case, for all 1 ≤ 𝑘 < ∞, 𝑈] ⊆ 𝑉] and 𝑉] ⊆ 𝑈]. 

Since 𝑈], 𝑉] ∈ 𝑃, and 𝑃 is a QLS, equality 𝑈] = 𝑉] is obtained. So, 𝑈 = 𝑉. 

It can be easily seen that these two equations are satisfied: 

iv) 		𝑈 + 𝑉 = 𝑉 + 𝑈,  

v)  𝑈 + 𝑉 + 𝑍 = 𝑈 + 𝑉 + 𝑍, 
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vi) There is 𝜃 = 𝜃:, 𝜃:, … , 𝜃:, … ∈ 𝐶u 1   to be provided 𝑈 + 𝜃 = 𝑈, where 

 𝜃: = 0.  

vii) It is very easy to see that  
𝜆. 𝛽. 𝑈 = 𝜆. 𝛽. 𝑈4, 𝛽. 𝑈5, … , 𝛽𝑈r, …  

                                                            = 𝜆𝛽. 𝑈4, 𝜆𝛽. 𝑈5, … , 𝜆𝛽𝑈r, … = 𝜆𝛽 . 𝑈, 

viii) 𝜆 𝑈 + 𝑉 = 𝜆 𝑈4	 + 𝑉	4, 𝑈5	 + 𝑉	5, … , 𝑈r + 𝑉r, …  
                 = 𝜆𝑈4	 + 𝜆𝑉	4, 𝜆𝑈5	 + 𝜆𝑉	5, … 𝜆𝑈r + 𝜆𝑈r, …   
																			= 	𝜆𝑈 + 𝜆𝑉, 

ix) 1. 𝑈 = 𝑈, 
 

x) 0. 𝑈 = 0. (𝑈4, 𝑈5, … , 𝑈r, … ) = 	 (0. 𝑈4, 0. 𝑈5, … , 0. 𝑈r, … ) = (0,0, … .0) = 𝜃, 
xi) 𝜆 + 𝛽 . 𝑈 = 𝜆 + 𝛽 . 𝑈4, 𝑈5, … , 𝑈r, … 	

                                            = ((𝜆 + 𝛽). 𝑈4, 𝜆 + 𝛽 . 𝑈5, … , 𝜆 + 𝛽 . 𝑈r, … ),	

and it is obtained that  

𝜆. 𝑈 + 𝛽. 𝑈 = 𝜆. (𝑈4, 𝑈5, … , 𝑈r, … ) + 𝛽. (𝑈4, 𝑈5, … , 𝑈r, … ) 

                       = (	𝜆. 𝑈4 + 𝛽. 𝑈4, 𝜆. 𝑈5 + 𝛽. 𝑈5, … , 𝜆. 𝑈r + 𝛽. 𝑈r, … ). 

For all 1 ≤ 𝑘 < ∞, when 𝑈 ∈ 𝐶u 1 , since 𝑈], 𝑉] ∈ 𝑃 and  𝑃 is a QLS, we have  

                                       𝜆 + 𝛽 . 𝑈] ⊆ 𝜆. 𝑈] + 𝛽. 𝑈],  

and thus, it is obtained that (𝜆 + 𝛽). 𝑈	 ⊆ 𝜆. 𝑈 + 𝛽. 𝑈, 

xii) If 𝑈 ≼ 𝑉and 	𝑍 ≼ 𝑊, for 1 ≤ 𝑘 < ∞, then 𝑈] ⊆ 𝑉] and 𝑍] ⊆ 𝑊]. It is founded 
that 

                               𝑈] + 𝑍] ⊆ 𝑉] + 𝑊],	and 𝑈 + 𝑍 ≼ 𝑉 +𝑊. 

xiii) If 𝑈 ≼ 𝑉,	since 𝑈] ⊆ 𝑉], for 𝜆 ∈ 	ℝ, we get 𝜆. 𝑈] ⊆ 	𝜆. 𝑉]. From here 𝜆. 𝑈 ≼ 𝜆. 𝑉 
obtained.  
So, 𝐶u 1  is a quasilinear space with operations (3), (4) and (5). 
 

Theorem 7: The space 𝐶u 1  is a normed quasilinear space with the function 𝑛 defined 

as 

𝑛: 𝐶u 1 → ℝ,  𝑛 𝑈 = 𝑠𝑢𝑝
]

𝑈] :, 

where 𝑈] : = 𝑚𝑎𝑥 𝑈] , 𝑈] . 

Proof: For all 𝑈, 𝑉 ∈ 𝐶u 1  and 𝛽𝜖ℝ,  

i) It is clear that 𝑛 𝑈 ≥ 0. 

ii) 𝑛 𝑈 = 0 ⇔ 𝑠𝑢𝑝
]

𝑈] : = 0, 𝑘 ∈ ℕ  
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                                     ⇔For all 𝑘 ∈ ℕ, 𝑈] : = 0, 

                                     ⇔ 𝑈 = 𝜃. 

iii) 𝑛 𝑈 + 𝑉 = 𝑠𝑢𝑝
]

𝑈] + 𝑉] :,    𝑘 ∈ ℕ  

                 ≤ 𝑠𝑢𝑝
]

𝑈] : + 𝑉] : ,   

                                     =	𝑠𝑢𝑝
]

𝑈] : + 𝑠𝑢𝑝
]

𝑉] :  

                                     = 𝑛 𝑈 + 𝑛 𝑉 , 

iv) 𝑛 𝛽𝑈 = 𝑠𝑢𝑝
]

𝛽𝑈] :,     𝑘 ∈ ℕ  

              = 𝑠𝑢𝑝
]

𝛽 𝑈] : ,     𝑘 ∈ ℕ , 

														= 	 𝛽 . 𝑠𝑢𝑝
]

𝑈] : ,     𝑘 ∈ ℕ  

															= 𝛽 𝑛 𝑈 .     

v) Let us assume that  𝑈≼𝑉. This implies it to be 𝑈] ⊆ 	𝑉], and 𝑈] : ≤ 𝑉] : for 

each 𝑘 ∈ ℕ, 𝑈], 	𝑉] ∈ 𝑃, since 𝑃 is a normed QLS. From here it is obtained  

𝑠𝑢𝑝
]

𝑈] : ≤ 𝑠𝑢𝑝
]

𝑉] :, and it means 𝑛 𝑈 ≤ 𝑛 𝑉 . 

vi) Let 𝛿 > 0 be given and let 𝑈, 𝑉 ∈ 𝐶u 1 . Assume that there exists an element 

𝑈Z ∈ 𝐶u 1  such that 𝑈 ≼ 𝑉 + 𝑈Z  and 𝑛 𝑈Z ≤ 𝛿. To verify the last case, we 

must show that 𝑈≼𝑉 in these conditions. From the hypothesis, we get 𝑈] ⊆ 𝑉] +

𝑈Z� and 𝑠𝑢𝑝
]

𝑈Z� :
≤ 𝛿 for each positive integer 𝑘. Since 𝑃 is a normed QLS, 

we can say 𝑈] ⊆ 𝑉] for each positive integer 𝑘. Hence, this means 𝑈≼𝑉. This 

completes the proof. 

 

4. Conclusion 
	

We define an interval valued space and then present some topological characteristics and 

inclusion relations of this space. By demonstrating that, this sequence space has the quasilinear 

space structure described by Aseev, we also made a contribution to the study of quasilinear spaces. 

The paper serves as a guide for future research in a related field. 
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