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Abstract − This paper presents the solutions of fractional Drinfeld-Sokolov-Wilson (DSW) equa-

tions that occur in shallow water flow models using the residual power series method. The fractional

derivatives and integrals are considered in the conformable sense. In addition, surface plots of the

solutions are given. The solutions and results show that the present method is very efficient and

effective due to the lack of a need for complex calculations and that the method also has a wide

range of practicability in the resolution of partial differential fractional equations.

Subject Classification (2020): 34KXX, 39AXX.

1. Introduction

The use of fractional differential operators and integral operators in mathematical models has become in-

creasingly popular in recent decades. Fractional calculus has, therefore, found numerous applications in

different technical and scientific fields, such as fluid mechanics [1], signal processing [2], thermodynamics

[3], biology [4], economics [5], viscoelasticity [6], control [7] and many other physical mechanisms.

In conjunction with these efforts in research, fractional differential equations (FDEs) have also been pro-

posed and implemented in modeling several physical and engineering problems. As a result, an active

consulting firm has been involved in discovering reliable and effective methods for resolving FDEs. Since,

it is not easy to find the exact solutions of most FDEs, some approximate and numerical schemes must

be produced. Some of the numerical methods used to solve FDEs are differential transform method [8]

for fractional partial differential equation from finance, Adams-Bashforth method [9] for chaotic differen-

tial equations and Fisher’s equation, homotopy analysis method [10] for Nizhnik-Novikov-Veselov system,

q-homotopy analysis method [11] for seventh-order time-fractional Lax’s Korteweg-de Vries and Sawada-

Kotera equations, Shehu transform method [12] for Burgers-Fisher, backward Klomogorov and Klein-Gordon
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equations and some other systems, perturbation-iteration algorithm [13] for fuzzy partial differential equa-

tions and Adomian decomposition method [14] for Burger-Huxley’s equation.

Besides, as analytical methods, the functional variable method [15] for the Zakharov-Kuznetsov equation,

the Benjamin-Bona-Mahony equation and the Korteweg-de Vries equation, Sine-Gordon expansion method

[16] for RLW-class equations, modified Khater method and sech-tanh functions expansion method [17] for

emerging telecommunication model, E xp(−φ(ξ))-expansion method [18] for nematicons, new extended

direct algebraic method [19] for Konno-Ono equation and Kudryashov’s method [20] for nonlinear schrödinger

equation are worth mentioning.

In this piece of research, the residual power series method [21–23] is used to obtain new approximate so-

lutions for below mentioned time-fractional Drinfeld-Sokolov-Wilson equation that arise in shallow water

flow models. We successfully solved differential equations with this method before [26–29]. Also Jaradat et.

al.[30] used RPSM for solving DSW equation where the fractional derivatives are in Caputo sense.

Consider the following nonlinear conformable time-fractional DSW equation, as

∂αw(x, t )

∂tα
+µv(x, t )

∂v(x, t )

∂x
= 0,

∂αv(x, t )

∂tα
+η∂

3v(x, t )

∂x3 +γw(x, t )
∂v(x, t )

∂x
+ξv(x, t )

∂w(x, t )

∂x
= 0, 0 <α< 1,

(1.1)

subject to the initial conditions

w(x,0) = ℏ(x),

v(x,0) =ℵ(x).
(1.2)

The purpose of this study is to construct a power series solution for Eqs. (1.1) and (1.2) by its power series

expansion among its truncated residual function.The major improvement of the RPSM is that by choosing

suitable initial conditions, it can be applied directly to the problem without perturbation, linearization or

discretization, in other words, without any adjustments. Furthermore, present method is capable of obtain-

ing results without complicated calculations.

The remainder of the study is carried out as follows: In Section 2, we present essential definitions and results

for RPSM. Within Section 3, general procedure of the RPSM is summarized In Sections 4, Implementation of

RPSM for Drinfeld-Sokolov-Wilson system is presented. In Section 5, numerical results illustrated. Finally,

Section 5 is reserved for conclusion.

2. Essential Definitions and Results for RPSM

Suppose that f is an infinitely α-differentiable function, for some α ∈ (0,1] at a neighborhood of a point

t = t0 then f has the following conformable fractional power series expansion [24, 25]:

f (t ) =
∞∑

p=0

(T t0
α f )(p)(t − t0)pα

αp p !
, t0 < t < t0 +R1/α, R > 0. (2.1)

where (T t0
α f )(p) is the application of the fractional derivative p times. [23, 25] A power series of the form∑∞

p=0 gp (x)(t )pα for 0 ≤ m −1 <α≤ m is called multiple fractional power series about t0 = 0, where gp ’s are

functions of x called the coefficients of the series. [25] Suppose that u(x, t ) has the following multiple



Hira Tariq et al. / IKJM / 5(2) (2023) 65-75 67

fractional power series representation at t0 = 0:

u(x, t ) =
∞∑

p=0
gp (x)t pα, 0 <α≤ 1, x ∈ I ,0 ≤ t ≤ R1/α. (2.2)

If u(pα)
t (x, t ) are continuous on I × (0,R1/α), k = 0,1,2, . . . , then gp (x) = u(pα)

t (x,0)
αp p ! .

3. General Procedure of the RPSM

The main steps of this procedure are described as follows:

Step 1. Suppose that the solution of Eq. (1.1) and Eq. (1.2) is expressed in the form of fractional power series

expansion about the initial point t = 0, as

w(x, t ) =
∞∑

p=0
hp (x)

t pα

αp p !
,

v(x, t ) =
∞∑

p=0
zp (x)

t pα

αp p !
, 0 <α≤ 1, x ∈ I , 0 ≤ t < R

1
α .

(3.1)

The RPSM guarantees that the analytical approximate solution for Eq. (1.1) and Eq. (1.2) are in the form of

an infinite fractional power series. To obtain the numerical values from these series, let wk (x, t ) and vk (x, t )

denotes the k-th truncated series of w(x, t ) and v(x, t ), respectively. i.e.,

wk (x, t ) =
k∑

p=0
hp (x)

t pα

αp p !
,

vk (x, t ) =
k∑

p=0
zp (x)

t pα

αp p !
, 0 <α≤ 1, x ∈ I , 0 ≤ t < R

1
α .

(3.2)

Take k = 0 and by the initial condition, the 0-th residual power series approximate solution of w(x, t ) and

v(x, t ) can be written in the following form, as

w0(x, t ) = h0(x) = w(x,0) = ℏ(x),

v0(x, t ) = z0(x) = v(x,0) =ℵ(x).
(3.3)

The Eq. (3.2) can be rewritten, as

wk (x, t ) = ℏ(x)+
k∑

p=1
hp (x)

t pα

αp p !
,

vk (x, t ) =ℵ(x)+
k∑

p=1
zp (x)

t pα

αp p !
, 0 <α≤ 1, x ∈ I , 0 ≤ t ,

(3.4)

where k = 1,2,3, . . . . By viewing the representations of wk (x, t ) and vk (x, t ), the k-th residual power series

approximate solutions will be obtained after hp (x), zp (x), p = 1,2,3, ...,k, are available.

Step 2. Define the residual function, for Eq. (1.1) and Eq. (1.2), as

Resw (x, t ) =∂
αw(x, t )

∂tα
+µv(x, t )

∂v(x, t )

∂x
,

Resv (x, t ) =∂
αv(x, t )

∂tα
+η∂

3v(x, t )

∂x3 +γw(x, t )
∂v(x, t )

∂x
+ξv(x, t )

∂w(x, t )

∂x

(3.5)
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and the k-th residual functions, k = 1,2,3, . . ., can be expressed, as

Resw,k (x, t ) =∂
αwk (x, t )

∂tα
+µvk (x, t )

∂vk (x, t )

∂x
,

Resv,k (x, t ) =∂
αvk (x, t )

∂tα
+η∂

3vk (x, t )

∂x3 +γwk (x, t )
∂vk (x, t )

∂x
+ξvk (x, t )

∂wk (x, t )

∂x
.

(3.6)

From [25], some useful results for Resw,k (x, t ) and Resv,k (x, t ) which are essential in the residual power

series solution for j = 0,1,2, ...,k are stated as follows:

(i ) Resw (x, t ) = 0,Resv (x, t ) = 0,

(i i ) lim
k→∞

Resw,k (x, t ) = Resw (x, t ), lim
k→∞

Resv,k (x, t ) = Resv (x, t ), f or each x ∈ I and t ≥ 0,

(i i i )
∂ jα

∂t jα
Resw (x,0) = ∂ jα

∂t jα
Resw,k (x,0) = 0,

∂ jα

∂t jα
Resv (x,0) = ∂ jα

∂t jα
Resv,k (x,0) = 0.

(3.7)

Step 3. Substitute the k-th truncated series of w(x, t ) and v(x, t ) into Eq. (3.6) and calculate the fractional

derivative ∂(k−1)α

∂t (k−1)α of Resw,k (x, t ) and Resv,k (x, t ) , k = 1,2,3, ... at t = 0, together with Eq. (3.7), the following

algebraic systems are obtained:

∂(k−1)α

∂t (k−1)α
Resw,k (x,0) = 0,

∂(k−1)α

∂t (k−1)α
Resv,k (x,0) = 0, 0 <α≤ 1, k = 1,2,3, . . . .

(3.8)

Step 4. After solving the systems (3.8), the values of the coefficients hp (x), zp (x), p = 1,2,3, ...,k are obtained.

Thus, the k-th residual power series approximate solutions is derived.

In the next discussion, the 1st, 2nd, 3rd and 4th residual power series approximate solutions are determined

in detail by following the above steps.

4. Implementation of RPSM

For k = 1, the 1st-residual power series solutions can be written, as

w1(x, t ) = ℏ(x)+h1(x)
tα

α
,

v1(x, t ) =ℵ(x)+ z1(x)
tα

α
.

(4.1)

The 1st-residual functions can be written, as

Resw,1(x, t ) =∂
αw1(x, t )

∂tα
+µv1(x, t )

∂v1(x, t )

∂x
,

Resv,1(x, t ) =∂
αv1(x, t )

∂tα
+η∂

3v1(x, t )

∂x3 +γw1(x, t )
∂v1(x, t )

∂x
+ξv1(x, t )

∂w1(x, t )

∂x
.

(4.2)
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Substitute the 1st truncated series, w1(x, t ) and v1(x, t ) into the 1st residual functions, Resw,1(x, t ) and

Resv,1(x, t ), respectively. i.e.,

Resw,1(x, t ) = h1(x)+µ
(
ℵ(x)+ z1(x)

tα

α

)(
ℵ(1)(x)+ z(1)

1 (x)
tα

α

)
,

Resv,1(x, t ) = z1(x)+η
(
ℵ(3)(x)+ z(3)

1 (x)
tα

α

)
+γ

(
ℏ(x)+h1(x)

tα

α

)(
ℵ(1)(x)+ z(1)

1 (x)
tα

α

)
+ξ

(
ℵ(x)+ z1(x)

tα

α

)(
ℏ(1)(x)+h(1)

1 (x)
tα

α

) (4.3)

From Eq. (3.8) and Eq. (4.3), it can be written, as

h1(x) =−(
µℵ(x)ℵ(1)(x)

)
,

z1(x) =−(
ξℵ(x)ℏ(1)(x)+γℏ(x)ℵ(1)(x)+ηℵ(3)(x)

)
.

(4.4)

The 1st RPS approximate solutions can be written in the following form, as

w1(x, t ) = ℏ(x)− tα

α

(
µℵ(x)ℵ(1)(x)

)
,

v1(x, t ) =ℵ(x)− tα

α

(
ξℵ(x)ℏ(1)(x)+γℏ(x)ℵ(1)(x)+ηℵ(3)(x)

)
.

(4.5)

For k = 2, the 2nd-residual power series solution can be written, as

w1(x, t ) = ℏ(x)+h1(x)
tα

α
+h2(x)

t 2α

2α2 ,

v1(x, t ) =ℵ(x)+ z1(x)
tα

α
+ z2(x)

t 2α

2α2 .

(4.6)

Substitute the 2nd truncated series u2(x, t ) into the 2nd residual function Res2(x, t ), i.e.,

Resw,2(x, t ) = h1(x)+h2(x)
tα

α
+µ

(
ℵ(x)+ z1(x)

tα

α
+ z2(x)

t 2α

2α2

)(
ℵ(1)(x)+ z(1)

1 (x)
tα

α
+ z(1)

2 (x)
t 2α

2α2

)
,

Resv,2(x, t ) = z1(x)+ z2(x)
tα

α
+η

(
ℵ(3)(x)+ z(3)

1 (x)
tα

α
+ z(3)

2 (x)
t 2α

2α2

)
+γ

(
ℏ(x)+h1(x)

tα

α

+h2(x)
t 2α

2α2

)(
ℵ(1)(x)+ z(1)

1 (x)
tα

α
+ z(1)

2 (x)
t 2α

2α2

)
+ξ

(
ℵ(x)+ z1(x)

tα

α

+ z2(x)
t 2α

2α2

)(
ℏ(1)(x)+h(1)

1 (x)
tα

α
+h(1)

2 (x)
t 2α

2α2

)
(4.7)

From Eq.(3.8) and Eq.(4.7), it can be written, as

h2(x) =−
(
µz1(x)ℵ(1)(x)+µℵ(x)z(1)

1 (x)
)
,

z2(x) =−
(
ξz1(x)ℏ(1)(x)+ξℵ(x)h(1)

1 (x)+γh1(x)ℵ(1)(x)

+γℏ(x)z(1)
1 (x)+ηz(3)

1 (x)
) (4.8)
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The 2nd residual power series approximate solutions can be written in the following form, as

w2(x, t ) = ℏ(x)− tα

α

(
µℵ(x)ℵ(1)(x)

)
− t 2α

2α2

(
µz1(x)ℵ(1)(x)+µℵ(x)z(1)

1 (x)
)
,

v2(x, t ) =ℵ(x)− tα

α

(
ξℵ(x)ℏ(1)(x)+γℏ(x)ℵ(1)(x)+ηℵ(3)(x)

)
− t 2α

2α2

(
ξz1(x)ℏ(1)(x)

+ξℵ(x)h(1)
1 (x)+γh1(x)ℵ(1)(x)+γℏ(x)z(1)

1 (x)+ηz(3)
1 (x)

)
.

(4.9)

For k = 3, substitute the 3rd truncated series,

w3(x, t ) = ℏ(x)+h1(x)
tα

α
+h2(x)

t 2α

2α2 +h3(x)
t 3α

6α3 ,

v3(x, t ) =ℵ(x)+ z1(x)
tα

α
+ z2(x)

t 2α

2α2 + z3(x)
t 3α

6α3 .

, (4.10)

of Eq. (1.1) and Eq. (1.2) into the 3rd residual function, Res3(x, t ), of Eq.(3.6), i.e.,

Resw,3(x, t ) = h1(x)+h2(x)
tα

α
+h3(x)

t 2α

2α2 +µ
(
ℵ(x)+ z1(x)

tα

α
+ z2(x)

t 2α

2α2 + z3(x)
t 3α

6α3

)(
ℵ(1)(x)

+ z(1)
1 (x)

tα

α
+ z(1)

2 (x)
t 2α

2α2 + z(1)
3 (x)

t 3α

6α3

)
,

Resv,3(x, t ) = z1(x)+ z2(x)
tα

α
+ z3(x)

t 2α

2α2 +η
(
ℵ(3)(x)+ z(3)

1 (x)
tα

α
+ z(3)

2 (x)
t 2α

2α2 + z(3)
3 (x)

t 3α

6α3

)
+γ

(
ℏ(x)+h1(x)

tα

α
+h2(x)

t 2α

2α2 +h3(x)
t 3α

6α3

)(
ℵ(1)(x)+ z(1)

1 (x)
tα

α

+ z(1)
2 (x)

t 2α

2α2 + z(1)
3 (x)

t 3α

6α3

)
+ξ

(
ℵ(x)+ z1(x)

tα

α
+ z2(x)

t 2α

2α2 + z3(x)
t 3α

6α3

)(
ℏ(1)(x)

+h(1)
1 (x)

tα

α
+h(1)

2 (x)
t 2α

2α2 +h(1)
3 (x)

t 3α

6α3

)

(4.11)

Now, solving the equation ∂(k−1)α

∂t (k−1)α Resk (x,0) = 0, for k = 3 gives the required value of g3(x), as

h3(x) =−
(
µz2(x)ℵ(1)(x)+2µz1(x)z(1)

1 (x)+µℵ(x)z(1)
2 (x)

)
,

z3(x) =−
(
ξz2(x)ℏ(1)(x)+2ξz1(x)h(1)

1 (x)+ξℵ(x)h(1)
2 (x)+γh2(x)ℵ(1)(x)

+2γh1(x)z(1)
1 (x)+γℏ(x)z(1)

2 (x)+ηz(3)
2 (x)

) (4.12)

Based on the previous results for g0(x), g1(x) and g2(x), the 3rd residual power series approximate solution

becomes

w3(x, t ) = ℏ(x)− tα

α

(
µℵ(x)ℵ(1)(x)

)
− t 2α

2α2

(
µz1(x)ℵ(1)(x)+µℵ(x)z(1)

1 (x)
)

− t 3α

6α3

(
µz2(x)ℵ(1)(x)+2µz1(x)z(1)

1 (x)+µℵ(x)z(1)
2 (x)

)
,

v3(x, t ) =ℵ(x)− tα

α

(
ξℵ(x)ℏ(1)(x)+γℏ(x)ℵ(1)(x)+ηℵ(3)(x)

)
− t 2α

2α2

(
ξz1(x)ℏ(1)(x)

+ξℵ(x)h(1)
1 (x)+γh1(x)ℵ(1)(x)+γℏ(x)z(1)

1 (x)+ηz(3)
1 (x)

)
− t 3α

6α3

(
ξz2(x)ℏ(1)(x)+2ξz1(x)h(1)

1 (x)+ξℵ(x)h(1)
2 (x)+γh2(x)ℵ(1)(x)

+2γh1(x)z(1)
1 (x)+γℏ(x)z(1)

2 (x)+ηz(3)
2 (x)

)
.

(4.13)
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For k = 4, substitute the 4th truncated series,

w4(x, t ) = ℏ(x)+h1(x) tα

α +h2(x) t 2α

2α2 +h3(x) t 3α

6α3 +h4(x) t 4α

24α4 , v4(x, t ) =ℵ(x)+ z1(x) tα

α + z2(x) t 2α

2α2 + z3(x) t 3α

6α3 +
z4(x) t 4α

24α4 of Eq. (1.1) and Eq. (1.2) into the 4th residual function,Res4(x, t ), of Eq.(3.6), i.e., Res4(x, t ) is

equals to

Resw,4(x, t ) = h1(x)+h2(x)
tα

α
+h3(x)

t 2α

2α2 +h4(x)
t 3α

6α3 +µ
(
ℵ(x)+ z1(x)

tα

α
+ z2(x)

t 2α

2α2

+ z3(x)
t 3α

6α3 + z4(x)
t 4α

24α4

)(
ℵ(1)(x)+ z(1)

1 (x)
tα

α
+ z(1)

2 (x)
t 2α

2α2 + z(1)
3 (x)

t 3α

6α3

+ z(1)
4 (x)

t 4α

24α4

)
,

Resv,4(x, t ) = z1(x)+ z2(x)
tα

α
+ z3(x)

t 2α

2α2 + z4(x)
t 3α

6α3 +η
(
ℵ(3)(x)+ z(3)

1 (x)
tα

α

+ z(3)
2 (x)

t 2α

2α2 + z(3)
3 (x)

t 3α

6α3 + z(3)
4 (x)

t 4α

24α4

)
+γ

(
ℏ(x)+h1(x)

tα

α
+h2(x)

t 2α

2α2

+h3(x)
t 3α

6α3 +h4(x)
t 4α

24α4

)(
ℵ(1)(x)+ z(1)

1 (x)
tα

α
+ z(1)

2 (x)
t 2α

2α2 + z(1)
3 (x)

t 3α

6α3

+ z(1)
4 (x)

t 4α

24α4

)
+ξ

(
ℵ(x)+ z1(x)

tα

α
+ z2(x)

t 2α

2α2 + z3(x)
t 3α

6α3

+ z4(x)
t 4α

24α4

)(
ℏ(1)(x)+h(1)

1 (x)
tα

α
+h(1)

2 (x)
t 2α

2α2 +h(1)
3 (x)

t 3α

6α3 +h(1)
4 (x)

t 4α

24α4

)

(4.14)

From Eq. (3.8) and Eq. (4.14), it can be written, as

h4(x) =−
(
µz3(x)ℵ(1)(x)+3µz2(x)z(1)

1 (x)+3µz1(x)z(1)
2 (x)+µℵ(x)z(1)

3 (x)
)
,

z4(x) =−
(
ξz3(x)ℏ(1)(x)+γh3(x)ℵ(1)(x)+3ξz2(x)h(1)

1 (x)+3ξz1(x)h(1)
2 (x)+ξℵ(x)h(1)

3 (x)

+2γh2(x)z(1)
1 (x)+3γh1(x)z(1)

2 (x)+γℏ(x)z(1)
3 (x)+ηz(3)

3 (x)
) (4.15)

Based on the previous results for h0(x), h1(x), h2(x) and h3(x) and z0(x), z1(x), z2(x) and z3(x), the 4th

residual power series approximate solution can be obtained. For the convergence analysis, see [25]

5. Numerical Results

To illustrate the authenticity of the RPSM method to solve the nonlinear conformable time-fractional Drinfeld-

Sokolov-Wilson equation, three applications are considered. Consider the following time-fractional Drinfeld-

Sokolov-Wilson equation, as

∂αw(x, t )

∂tα
+3v(x, t )

∂v(x, t )

∂x
= 0,

∂αv(x, t )

∂tα
+2

∂3v(x, t )

∂x3 +2w(x, t )
∂v(x, t )

∂x
+ v(x, t )

∂w(x, t )

∂x
= 0, 0 <α< 1,

(5.1)

subject to the initial conditions

w(x,0) = 3sech2(x),

v(x,0) = 2sech(x).
(5.2)
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The exact solution of this problem for α= 1 is given in , as

w(x, t ) = 3sech2(x −2t ),

v(x, t ) = 2sech(x −2t ).
(5.3)

It can be observed that numerical results are agreement with the exact solution with a high accuracy. Also,

it is clear that the adding new terms of the residual power series approximations can make the overall error

smaller.

Figure 1. 3D surface plots for the 4th residual power series solution w4(x, t ) with a. α = 0.8 and b. α = 0.9
for Example 5

Figure 2. 3D surface plots of exact solution and approximate solution w4(x, t ) at α= 1 of Example 5.

6. Conclusion

In this research, we have given an algorithm, namely the Residual Power Series Method (RPSM), for the ap-

proximate solution of the fractional Drinfeld - Sokolov - Wilson equation system. The scheme is based on

the power series and the solutions are determined in the form of a converging series with simple calcula-

tions. The approach offers approximate solutions with a good level of precision. Summing up these results,

we can conclude that the residual power series method, in its general form, offers a fair amount of calcu-

lations, is an efficient method and simple to apply for nonlinear fractional differential equations in general

form.
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Figure 3. 3D surface plots for the 4th residual power series solution v4(x, t ) with a. α= 0.8 and b. α= 0.9 for
Example 5

Figure 4. 3D surface plots of exact solution and approximate solution v4(x, t ) at α= 1 of Example 5.

Figure 5. 2D plot of solutions w3 at t = 0.1 for Example 5.
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Figure 6. 2D plot of solutions v2 at t = 0.1 for Example 5.
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