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Abstract 

 

The generalized (3+1) dimensional Shallow Water-Like (SWL) equation, which is one of the higher 

dimensional evolution equations, is successfully constructed with aid of the  1 G -expansion method, 

which is one of the analytical solution instruments in mathematics. Solitary waves are depicted by 

assigning specific values to the parameters in the SWL equation travelling wave solutions, which have a 

significant place in physical energy transport. Graphics representing the solitary wave at any given 

moment are displayed in 2D, 3D and contours. A simulation of the wave is created for different values of 

the velocity of a solitary wave, which is a physical quantity. In addition, by keeping the parameters other 

than the rupture event of the wave constant, the situation at which the velocity the wave reaches the 

breakage event is discussed.  
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1. Introduction 

 

When one of the independent variables in the SWL 

equation depends on the time parameter t, it is defined 

as the nonlinear evolution equation [1]. Observations of 

physical phenomena and the resulting nonlinear partial 
differential equations (NPDEs) corresponding to these 

observations have always been a subject of research 

since. These research topics have application areas in 

fluid dynamics, quantum mechanics, materials science, 

chemistry and similar situations [2-4]. As a result of the 

observations in these application areas, models of 

situations related to physical events are created [5-7]. 

For this reason, firstly, the mathematical equivalents of 

these models were determined. In the next process, the 

exact solutions of these NPDEs were investigated with 

the help of powerful and effective methods. Generally, 

the solutions obtained were associated with the soliton 
concept first defined by Russell [8]. From this starting 

point, these application areas have been continuously 

developed and rapid progress has been made. One of the 

causes for this is that the travelling wave solutions 

found are of various types, which enabled these studies 

to continue continuously. When the literature is 

examined, it has been observed that various methods 

have been developed. 

 

Some of these methods: modified sub-equation method 

[9], Lie transformation method [10], sine-Gordon 

expansion method [11], the first integral method [12], 

Hirota bilinear method [13] and so on [14-27]. 

 

The (3+1)-dimensional equation of generalized SWL is 
a nonlinear equation of evolution that has recently 

become very common [28]. 

3 3 0.        xxxy xx y x xy yt xzu u u u u u u    
  (1.1) 

Recently, there have been several articles on this 

equation.  /G G -expansion method procedure was 

obtained by Zayed, and travelling wave solutions were 

obtained with the aid of the generalized binary operator 

by Zhang [29-30]. With the aid of the Bernoulli sub 

equation process, wave solutions of Eq. (1.1) were 

attained by Dusunceli [31].  

By using the  1/ 'G -expansion method, we aim to 

achieve travelling wave solutions for Eq. (1.1) in this 

study [32,33]. 
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The  1/ 'G  method is a method inspired by the 

 /G G  method. While three different types of 

solutions are obtained with the  /G G  method, the 

solution obtained in the  1/ 'G  method is different 

from these three solutions. One of the most significant 

reasons for choosing this method is to shed light on the 

shock wave phenomenon with nonlinear wave 

propagation in shallow waters. 
 

2.   1 G -Expansion Method 

 

This method was introduced to the literature in Yokus' 

Phd thesis [34]. Let us consider a NPDE as follows: 

 , , , , , ,... 0.t x y z xxW u u u u u u                           (2.1)                           

Where, let 

   , , , , , 0.u x ky wx y z t U U wmz t          

Here ,k m  are numbers of wave and w  is a physical 

quantity and the velocity parameter of the wave. We can 

transform (2.1) to the following ODE for  U  : 

 , , ,... 0.S U U U                                   (2.2)           

Solution of Eq. (2.2) has the form 

  0

1

1
,

in

i

i

U a a
G




 
    

                     (2.3)          

here  0 1 2
i

a , i , , ,...,n  are constants,  G G   

provides the following quadratic linear ordinary 

differential equation (ODE) 

0, , .G G R                     (2.4) 

The solution format produced by the method is as 

follows: 

 

     

1 1
, A R.

G
Acosh Asinh

  


 


  

                     (2.5) 

 

Considering that the solution satisfies the equation, (2.3) 

substituted in Eq. (2.2). To obtain the polynomial 

 1 0P G  . The coefficients of all the powers of 

 1 G  are set to zero. Thus, a system of equations is 

created. By solving the system of equations, unknown 

constants are found. 

The resulting constants are substituted in Eq. (2.3) and 

by applying inverse transform, a travelling wave 

solution of Eq. (2.1) is achieved. 

 

 

 

3.  Solutions of SWL Equation 

 

Applying the transform    , , ,u u x y z t U    in 

Eq. (1.1), we get  
4 6 ( ) 0,kU kU U kw m U              (3.1)

           

where w represents the velocity of the wave. After Eq. 

(3.1) is integrated, the following equation is attained  

 
2

3 ( ) 0.kU k U kw m U                    (3.2)

           

The n  balancing term is a constant obtained between 

the highest order linear term and the highest order 

nonlinear term in any ODE [34]. So, balancing between 

highest order linear term U  with highest nonlinear 

term  
2

U   in Eq. (3.2), we find the balancing term 

2n   and by considering in Eq. (2.3),  

 

 
2

0 1 2

1 1
.U a a a

G G


   
         

             (3.3)

          

Let us substitute the Eq. (3.3) in the Eq. (3.2) so that the 

coefficients in the Eq. (3.3) can be calculated. After 

some mathematical operations, a polynomial equation 

based on  1/ 'G  is constructed. The coefficient of each 

term of this polynomial is equal to zero and the 

following system of equations is created. 

 

 

 

 

 

3

1 1 1

2 2 2 3

1 1 1 1 2 2 22

2 2 2 2

1 1 2 2 2 1 23

3 2 2 2 2 2

1 1 2 2 24 1

1

,

0:

1
: 7 3 2 2 8 0,

1
: 12 6 2 2 38 12 0,

1
: 6 3 54 24 12 0

,m a kw a k a
G

m a kw a k a k a m a kw a k a
G

k a k a m a kw a k a k a a
G

k a k a k a k a a k a
G

  


       


      


    


  

  









   

   






 





           

 

 

3 2 2

2 1 25

2

26

2

2

1
: 24 12 24 0,

1
: 12 0,

k a k a a k a
G

k a
G

  
















          (3.4) 

 

using a software application, obtain the 

1 2, , , , ,k w a a   and m  constants, from Eq. (3.4). 

 

Case 1.  If 

 

 2

1 22 , 0, ,a a m k w             (3.5)   
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Figure1: Graphs for the Eq. (3.6) for 

0 1, 1, 0.1, 1, 0.1, 1, 1, 1.a w k y z A         

 

substituting values Eq. (3.5) into Eq. (3.3) and one may 

have an exact solution of the hyperbolic type for Eq 

(1.1):      

     2
1 0

2

( , , ,

c

)
2

,

osh sinh

u a

A tw x ky kz w A tw x ky z w

z

k

x y t



   



 

      



        
   

                                                                                   (3.6)                                      

 

Case 2.  If 
2

1 22 , 0, ,
m k

a a w
k





                        (3.7)                   

substituting Eq. (3.7) into Eq. (3.3), one may have an 

exact solution of the hyperbolic type for Eq. (1.1):      

       

 

 

 

 
 
Figure2: Graphs for the Eq. (3.8) for 

0 1, 0.1, 0.1, 1, 5, 1, 1, 1, 1.a w k y z A m         

 

   
2 0

2 2

2
( , , , )

c

,

osh sinh

u x y z t a
t m k t m k

A x ky mz A x ky mz
k k



 
 



  
       
              

            

         

               (3.8) 
 

4. Results and Discussion 

 

We have attained the travelling wave solution to the 

generalized SWL equation by aid of the  1/ G  

method in this study. While Duran and Kaya produced 

travelling wave solutions in hyperbolic, trigonometric 

and rational forms with the sub equation method in their 

studies [35], in the Yokus study, travelling wave 

solutions were produced with the modified Kudryashov 

method [36]. In Yokus et al. studies, complex 

hyperbolic type solution was obtained with modified 

 1/ G  method [37], and in this study, hyperbolic type  
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Figure3: Graphs for the Eq. (3.6) for 

0 1, 1, 0.1, 0.1, 1, 1, 1.a k y z A          

solution was produced with the  1/ G  method.  We 

especially observed that the  1/ G  method is 

applicable for the SWL equation, which is a high 

dimensional evolution equation. It was observed that the 

solution attained by this method supports the solutions 

obtained in the literature. Solitary wave solutions were 

created with the aid of particular values given to the 

travelling wave solutions attained in this article. The 
effect of changes in the velocity parameter in the 

solitary solution on wave behavior was analyzed. In this 

analysis part, other parameters are taken as constant. It 

has been observed that the change in velocity causes 

distortions at the extremes of the wave after a certain 

value. By aid of Mathematica package program, this 

situation is presented in 3D in the simulation below. 

 

As seen in Figure3, it has been determined that the 

speed factor is a very effective parameter in solitary 

wave solutions. As seen in the simulation presented for 

different values of “w” which represents the velocity of 
the solitary wave, it can be observed that for w = 2.5, 

the wave begins to exhibit behaviors different from the 

normal behavior at the extreme points. We also 

observed that the wave was broken for w = 2.7. In 

future studies, taking into account the changes in the 

coefficients of classical wave transformation, its effect 

on wave behavior can be examined. When Eq. (3.6) is 

examined carefully, the velocity parameter w affects the 

distribution of the travelling wave in the direction z. The 

wave number in the direction z of the travelling wave 

cannot be observed in Figure3. Because variable z is 
considered as constant and z=1 is taken. In addition, the 

parameter  , which comes from the methodology of 

the method and is more clearly seen in the Eq. (2.5), 

plays a significant role in the nonlinear distribution. It is 

an important parameter that affects both the wave 

velocity and the wave number. 

The theme of discussion in this work is the physical 

parameter w, which represents the wave velocity. The 

effects of the wave velocity on the travelling wave 

solution and the condition that causes the wave to break 

are a matter of debate. Parameters other than the 

velocity parameter are out of the scope of this study. In 
the discussions about the behavior of travelling waves in 

the future, the k and m parameters, which affect the 

wave propagation in the y and z directions and represent 

the wave number, can be taken into account. It is also 

predicted that these physical discussions are valuable 

for experimental workers. 

 

5. Conclusion 

 

In this manuscript, the travelling wave solutions of the 

generalized SWL equation were successfully obtained 

with the  1/ G  method. It was concluded that the 

 1/ G  method for Eq. (1), which is one of the higher 
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dimensional evolution equations, is applicable 

according to many methods we have given in the 

introduction. 2D, contour and 3D graphics of these 

solitary waves are presented. In Figure3, the relation 

between velocity parameter and  , , ,u x y z t  is 

presented in 3D, provided that the other parameters are 

taken as constant. The velocity values causing the 

breaking of the wave were investigated and determined. 

In future studies, many studies can be done on high 

dimensional nonlinear evolution equations with the help 

of this method. 
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