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ABSTRACT  

The reduced electric quadrupole transition probability (B(E2)↑) between 0+ ground state and 2+ state in nuclei is 

an important quantity because it represents basic nuclear information on energies of low-lying levels in the nuclei. 

It provides knowledge about deformation of nuclei. In this study, the B(E2)↑ values of some even-even nuclei in 

110 ≤ A ≤ 190 region have been estimated by using artificial neural network (ANN) method which is a non-linear 

approximator. The present study shows that ANN is found to be useful in order to predict B(E2)↑ values of even-

even nuclei in this region. 

 

Keywords: Electric quadrupole transition probability, atomic structure, artificial neural network 

 

1. Introduction 

 

One of the fundamental properties of the nuclei is 

their shapes. Nuclei with magic numbers of neutron 

and proton have a closed shell. Nuclei with neutron 

(N) or proton (Z) numbers far from a magic number 

generally have deformed shape. The simplest 

deformations are called quadrupole deformations 

where the nuclei can either take an oblate or a prolate 

shape. The reduced electric quadrupole transition 

probability (B(E2)↑) includes nuclear information 

about energy of low-lying levels of nuclei. The first 

excited states of the even-even nuclei are 2+. So, the 

transition from this state to the 0+ ground state is 

important. It is highly related to nuclear quadrupole 

deformation parameter (β), mean lifetime (τ) and 

electric quadrupole moment (𝑄0) by 

   𝛽 =  (
4𝜋

3𝑍𝑅0
2) [𝐵(𝐸2) ↑  

1

𝑒2
]1/2  (1) 

  

  𝜏 =  
40.81 ×  1013 𝐸−5

[𝐵(𝐸2) ↑ / 𝑒2𝑏2] (1 +  𝛼)
 (2) 

 

  𝑄0  =  [
16𝜋

5
 ×  𝐵(𝐸2) ↑  

1

𝑒2
]1/2  (3) 

where E is the energy of the first excited 2+ state, α 

is the total conversion coefficient, Z is the proton 

number of nuclei and 𝑅0  =  1.2 × 10−13 𝐴1/3 cm. 

The deformations of nuclei are important for 

understanding their shapes (prolate, oblate etc.) and 

structures. The lifetimes of the levels are useful for 

determining the energy levels in nuclei. So, there is 

much attention in B(E2)↑ value.  

The reduced electric quadrupole transition 

probability is measured by inelastic electron 

scattering, muonic x-ray measurement, Mössbauer 

spectroscopy, Coulomb excitation, lifetime 

measurement or resonance fluorescence [1]. There 

are also several theoretical model for prediction of 

the B(E2)↑ values based on single-shell asymptotic 

Nilsson model [2], finite-range droplet model [3], 

Woods-Saxon model [4], relativistic mean-field 

model [5], extended Thomas-Fermi Strutinsky-

Integral method [6], Hartree-Fock+BCS method [7] 

and dynamical microscopic model 

[8]   

Recently, artificial neural network (ANN) has been 

used in many fields in nuclear physics such as 

developing nuclear mass systematic [9], 

identification of impact parameter in heavy-ion 

mailto:sakkoyun@cumhuriyet.edu.tr
http://www.sciencedirect.com/science/journal/01678809
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collisions [10-12], estimating beta decay half-lives 

[13], neutron-gamma separation in order to obtain 

clear gamma-ray spectra [14], prediction of peak-to-

background ratio in gamma-ray spectroscopy [15] 

and obtaining nuclear charge radii [16]. In this study, 

feed-forward ANN has been used to estimate B(E2)↑ 

values for some even-even nuclei between 110 ≤ 

A ≤ 190. The adopted values of the B(E2)↑ have 

been obtained from Ref. [1]. In the work performed 

by Raman et al. [1], due to the fact that there are 

several B(E2)↑ values for the nuclei, the more 

reliable weighting values has been used. The main 

aim of the present study is to show success of the 

ANN in describing of the B(E2)↑ values of nuclei by 

using known data. 

 

2. Artificial Neural Network (ANN) 

 

A mathematical model that mimics the brain 

functionality is called as artificial neural network 

(ANN) [17]. This method is a perfect tool which 

does not need any relationship between the data. 

There are two main class of data about the problem 

considered, one is input and the other is desired 

(output). ANN is composed of different main layers. 

These are input, output and hidden layers. Input and 

output layers include input and output data, 

respectively. Each layer has one or more processing 

units called neurons which are connected to each 

other in the next layers by adaptive synaptic weights. 

By transmitting the data between neurons in 

different layers, the communication is performed. 

The aim is the determination of the weight values. 

The input neurons receive the data from outside. The 

most used activation function for the hidden neurons 

is a sigmoid-like function like tangent hyperbolic, 

𝑡𝑎𝑛ℎ =  (𝑒𝑥 − 𝑒−𝑥)  /  (𝑒𝑥 + 𝑒−𝑥). The output 

neurons in the last layer give the result. The input 

and output neuron numbers depend on the variety of 

the input and output data, respectively. Besides, the 

number of neurons in the hidden layer (h) can differ. 

Generally, as the number of h increases, the 

predictions get better.  

In our calculation we have used ANN with four 

layers in order to estimate reduced transition 

probability in nuclei. The input layer consist of two 

neurons. One is for proton number (Z) and the other 

is for neutron number (N) of the nuclei. After several 

trials, the hidden layer and the neuron numbers have 

been chosen as 2 and 4, respectively. The output 

layer with one neuron corresponds to adopted values 

of the reduced transition probability (B(E2)↑). The 

architecture of the ANN has been 2 - 4 - 4 - 1 (Fig. 

1) and the total number of adjustable weights has 

been 28 according to the formula given as 

 
𝑤 =  𝑝 × ℎ1  +  ℎ1  ×  ℎ2  + ⋯ + ℎ𝑖  

×  𝑟 
(4) 

where w is the number of total weights, h1, h2 and hi 

are hidden neuron numbers in first, second and ith 

hidden layers, respectively, p and r are the numbers 

of the input and output layers, respectively. 

 

Fig. 1.   ANN architecture (2-4-4-1) used in this work. 

 

The ANN method has been composed of two main 

steps: training and test. In the supervised training 

step, the ANN has been constructed by using known 

input and output data. The weights values of each 

connections between the neurons have been adjusted 

for this construction. Until a predetermined 

acceptable error level, the construction process 

continues. In this study, a back-propagation 

algorithm with Levenberg-Marquardt [18,19] has 

been used for adjusting the connections in order to 

obtain agreement between neural network output and 

desired output. The error function which evaluates 

the difference between different outputs is mean 

square error (MSE) given as  

 

 𝑀𝑆𝐸 =  
[∑ ∑ (𝑦𝑘𝑖 − 𝑓𝑘𝑖)

2]𝑁
𝑖=1

𝑟
𝑘=1

𝑁
 (5) 

where yki and fki are desired and neural network 

outputs, respectively, N is the number of training and 

test samples, whichever applies. After the first step 

in ANN process, the second step (test) is started. 

When the unknown data are provided as inputs 

which are not used in the training step, it is expected 

to obtain ANN outputs. If the difference between the 

different outputs is acceptably small, it has been 

concluded that ANN has generalized the data. 

Therefore, this constructed ANN can be used safely 

for all the same group of data. 

 

3. Result and Discussions 

 

In this work, the adopted values of B(E2)↑ [1] have 

been used in ANN. The unit of the B(E2)↑ value has 

been given by e2b2. The nuclei between A=110 and 

A=190 have been considered in the process due to 

the high deformations in this region. The adopted 

values of the nuclei whose atomic numbers are from 
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Z = 52 to Z = 74 in the given mass region have been 

used for the training procedure. The trained ANN 

has been tested first on the training data in order to 

see the learning capability of the network. As can be 

clearly seen in the Fig. 2 that the deviations from 

adopted values are between 0.1 and - 0.1 and mostly 

concentrated near zero. The MSE value belonging to 

the training data is 2.3 ×  10−2. Although the large 

deformation has been seen in the figures, these ANN 

predictions remain within the error limits of the 

adopted levels. Therefore, it can safely be concluded 

that the ANN construction for the prediction is 

successfully completed. Also seen in the figure that, 

the B(E2)↑ values are minimum for near the closed 

shell nuclei and maximum in the middle of a shell.  

 

Fig. 2.  The differences between adopted values and ANN outputs 
for B(E2)↑  values for training data. 

 

After the construction of the ANN in training 

process, the network has been tested over the data 

which are new for the network. These test nuclei 

have been Ba, Ce, Nd, Sm, Gd and Dy. According to 

the results, the MSE values have been lied between 

0.8 ×  10−3 and 2.2 ×  10−3. These small values of 

the MSE indicate that the test set ANN has 

consistently generalized the training set fittings. The 

estimations belonging to these nuclei is shown in 

Fig. 3 in which the adopted values and ANN 

estimations for B(E2)↑ are given in the same graph 

for comparison. As can be clearly seen in the Fig. 3 

the estimations are consistent with the adopted 

values. There is no large difference between the 

adopted and ANN values in the abrupt decreases in 

the neutron magic number 82. Moreover, it has been 

more clear in the Nd and Sm examples that ANN has 

found the neutron magic number 82. 

 

 

 

 

 

 

 

 

 

 
 
Fig. 3.  Adopted values (circle) and ANN estimations (line) for 

B(E2)↑ of the Ba, Ce, Nd, Sm, Gd and Dy isotopes. 

 

4. Conclusions 

  

In order to estimate reduced electric transition 

probability (B(E2)↑) for some  even - even nuclei in 

the region A = 110 - 190, artificial neural network 

(ANN) method has been employed. The inputs have 

been adopted values of B(E2) which were produced 

and compiled before by Raman et al. [1], from 

different experiments. It has been seen in the present 

work that the prediction power of the ANN on Ba, 

Ce, Nd, Sm, Gd and Dy nuclei is high. The results 

from the method is found to be consistent with the 

adopted values of B(E2)↑. The maximum deviations 

is seen in the nuclear magic numbers. 
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