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Abstract 

The main purpose of this research is to present an automatic underwater acoustic classification model with high performance. Thus, a 

new sound dataset was collected. By using this dataset, a new underwater depth classification method is proposed in this work. 

Average pooling has been used to pre-processing underwater sounds. The used average pooling model is both removed the noises and 

compressed signal. S-transform and AlexNet have been used for feature extraction. By deploying S-transform to underwater sounds, 

contour images have been obtained. These images have been utilized input of the AlexNet. Herein, AlexNet has been utilized to 

extract features by using transfer learning. Features extracted have been classified with the Support Vector Machine (SVM). In our 

method, 99.05% accuracy has been calculated. The calculated results and findings illustrate the success of our proposed S-transform 

and AlexNet based model on the underwater sound classification.  

 

Keywords: Underwater sound classification; S-transform; Deep Learning; AlexNet; SVM.   

Deniz Savunma Uygulamaları için Sualtı Akustiğine Dayalı Yeni Bir 

Derinlik Sınıflandırma Yöntemi 

Öz 

Bu araştırmanın temel amacı, yüksek performanslı otomatik bir sualtı akustik sınıflandırma modeli sunmaktır. Böylece yeni bir ses 

veri seti toplanmıştır. Bu veri seti kullanılarak, bu çalışmada yeni bir sualtı derinlik sınıflandırma yöntemi önerilmiştir. Sualtı 

seslerinin ön işlemesi için ortalama havuzlama kullanılmıştır. Kullanılan ortalama havuzlama modeli hem gürültüleri hem de 

sıkıştırılmış sinyali ortadan kaldırmıştır. Özellik çıkarımı için S-dönüşüm ve AlexNet kullanılmıştır. S-dönüşümünün su altı seslerine 

yerleştirilmesiyle kontur görüntüleri elde edilmiştir. Bu görüntüler AlexNet'in girdisi olarak kullanılmıştır. Burada, transfer öğrenme 

kullanılarak öznitelikleri çıkarmak için AlexNet kullanılmıştır. Çıkarılan özellikler Destek Vektör Makinesi (SVM) ile 

sınıflandırılmıştır. Bizim yöntemimizde %99,05 doğruluk hesaplanmıştır. Hesaplanan sonuçlar ve bulgular, su altı ses 

sınıflandırmasında önerilen S-dönüşüm ve AlexNet tabanlı modelimizin başarısını açıkça göstermektedir.  

 

 

Anahtar Kelimeler: Sualtı ses sınıflandırması; S-dönüşümü; Derin Öğrenme; AlexNet; SVM. 
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1. Introduction 

Underwater systems are important for naval defense 

applications. Sound-based applications have been developed for 

underwater monitoring and object detection. Underwater sounds 

can be used for both civil and military applications. Submarine 

vehicles can be detected by using underwater sounds in military 

applications. Moreover, applications are being developed for 

depth and direction detection with underwater sounds. In the 

literature, object detection is made using underwater radar and 

images (Fan et al., 2018; Neves et al., 2020; Song et al., 2018). 

However, there are few studies for underwater sound systems. 

Firat et al. (Fırat et al., 2017), detected ship noise caused by 

propellers and machinery. They collected underwater sounds 

using different marine vehicles such as cruise boats, cargo ships, 

and passenger boats. They applied Demon and Lofar methods to 

underwater sounds. Liu et al. method (Liu et al., 2021), used the 

Convolutional Neural Network (CNN) and determined the 

direction of the target underwater. According to Jiang et al. 

(Jiang, Wu, et al., 2020), proposed a sound-based method for 

underwater target recognition. Sound signals obtained 

underwater are noisy. They used signal preprocessing to reduce 

these noises. They obtained the spectrogram of the preprocessed 

sound signals. The results were computed using CNN and 

machine learning using spectrograms.  

Dong et al. (Dong et al., 2021) provide an efficient method 

for the recognition of unstable underwater acoustic datasets. 

They proposed a convolutional neural network and an entropy-

based method. The proposed approach was applied on unstable 

underwater acoustic datasets of targets and communication 

signals. Time-frequency conversions of unbalanced acoustic 

signals were obtained. Time-frequency transformations were 

converted to images and given as an input to the CNN model. 

The used proposed method, 90% accuracy was calculated. Jiang 

et al. (Jiang, Shi, et al., 2020) proposed a multi-scale spectral 

method for noise removal and target recognition in underwater 

acoustic signals. In this study, the noises in the Acoustic data set 

were removed and the target was determined by machine 

learning. They calculated about 90% accuracy in the proposed 

method. Hu et al. (Hu et al., 2018) proposed an extreme learning 

machine (ELM) and CNN-based method for underwater noise 

removal. Feature extraction was performed from underwater 

acoustic signals using the CNN model. Extracted features were 

classified using ELM. They calculated a 93.04% recognition rate 

in the experiments performed on the dataset of civilian ships. 

Wang et al. (Wang et al., 2019) developed multidimensional 

fusion features and modified deep neural network (MFF-

MDNN) based method to recognize underwater acoustic targets. 

Underwater acoustic feature extraction was performed using 

gammatone frequency cepstral coefficient (GFCC) and modified 

empirical mode decomposition (MEMD) methods. The proposed 

method calculated 94.3% accuracy with 800 iterations. Yaman et 

al. (Yaman, Tuncer, et al., 2021) identified propeller types using 

underwater acoustic sounds. They collected an underwater 

acoustic dataset. They developed a DES pattern algorithm to 

extract features from these sound signals. Decision Tree, k 

Nearest Neighbor (KNN), and Support Vector Machine (SVM) 

algorithms were used to classify the obtained features. They 

calculated 99.8% accuracy using the SVM algorithm. 

Our motivation in this study is to collect a new dataset and 

propose a new hybrid method for underwater depth detection. 

Sounds have been collected at depths of 5, 10, 15, 20, 25, and 30 

meters underwater. This sound data has been recorded with 

44,100 kHz. Average pooling has been applied in the signal-

preprocessing step. The data collected 44100 times in 1 second 

has been reduced to 441 sizes. In the literature, 44,100 kHz 

sound signals are divided into 1-second samples for feature 

extraction (Altinors et al., 2021). For this reason, underwater 

sound signals collected in this study have been used by dividing 

into 1-second samples. The feature has been extracted with 

1×441 signal S-transform and these features have been recorded 

as figures. S-transform images have been used with AlexNet and 

1×1000 features have been extracted. Extracted features have 

been classified by SVM. In the proposed method, a hybrid 

model is developed using both S-transform + AlexNet and SVM. 

In this study, a contribution to the literature has been made with 

the proposed method and underwater dataset. 

2. Materials 

In this study, an underwater depth dataset has been collected 

using a sound/video recorder. Features of the used sound/video 

recorder; QuickTime Video File (MOV), the bit rate is 1411 

kbps, channels 2 (stereo), the Sample rate is 44.100 kHz. We 

collected the underwater sound dataset near the Keban dam / 

Turkey. The experimental setup developed to collect the 

underwater depth dataset can be seen in Figure 1. 

Sound 
recorder 
device

5 m

5 m

5 m

5 m

5 m
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15 m

20 m

25 m
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Fig. 1. Experimental setup developed for the collection of 

underwater depth dataset 

As can be seen in Figure 1, the sound recorder has been 

used between five and thirty meters. The sound recorder has 

been fixed under the water at six points. Five minutes of sounds 

have been collected for each point. The features of the 

underwater depth dataset collected are shown in Table 1. 

Table 1. Class information of the collected underwater direction 

dataset 

Class number Class definition 
Time 

(min) 

Number of 

Samples 

Class 1 Five meters 5 300 

Class 2 Ten meters 5 300 

Class 3 Fifteen meters 5 300 

Class 4 Twenty meters 5 300 

Class 5 Twenty-five meters 5 300 

Class 6 Thirty meters 5 300 
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In the depth dataset, we obtained 300×44100 data by taking 

300 seconds of sound for each class. In this case, 1800×44100 

data has been collected for six classes in the depth dataset. In 

this study, sample sound signals from microphones for the depth 

dataset are drawn in Figure 2.  

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 2. Sound samples collected for direction determination a) 

Class 1 b) Class 2 c) Class 3 d) Class 4 e) Class 5 f) Class 6 

3. Proposed Method 

In this study, a new method for underwater depth 

classification is proposed. The block diagram of the proposed 

method is summarized in Figure 3. 

Pre-processing

Underwater Depth Dataset

Sound signal average pooling

S-Transform

S-Transform contour image

SVM

AlexNet

Feature 
Extraction

Classification

Sound signals

 

Fig. 3. Block diagram of the proposed underwater depth 

classification method 

In the first step of the proposed method, we have 

preprocessed the underwater depth dataset. In the preprocessing 

step, average pooling has been applied to the signal. 1×44100 

samples have been collected in 1 second. This example 

transforms into 1×441 after the average pooling step. The 

average pooling result of the sample signal drawn in Figure 2.a) 

can be seen in Figure 4. 

 

 

Fig. 4. Average pooling result of a sample signal (Fig.2.a) 

By using averaging pooling, noise in the signal is reduced. 

This process has been repeated for a total of 1800 samples, 

which have six classes. 1800×44100 data is reduced to 

1800×441 size. Because the size of the sound signals is 

decreased, the feature extraction time is lowered. Short-term 

Fourier and Gabor transform is used in fixed-width windows 

(Das et al., 2013; Gowtham et al., 2019). These transformation 

methods are insufficient in the analysis of non-stationary signals. 

In addition, wavelet transforms do not achieve high success in 

noisy signals. S-transform has been developed to solve these 

problems (Stockwell, 2007). The S-transform consists of a short-

time Fourier transform and a continuous wavelet transform. 

Unlike wavelet transform, S-transform gives frequency-

dependent time-frequency information. The obtained time-

frequency information represents the instantaneous phase 

information. This phase information corresponds to the phase 
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obtained by the Fourier transform. The S-transform is given in 

equation 1 (Stockwell, 1996). 

𝑆𝑇(𝜏, 𝑓) =  ∫ 𝛽(𝑡)
|𝑓|

√2𝜋
𝑒

[−
𝑓2(𝜏−𝑡)2

2
]
𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡

∞

−∞

 (1) 

In Equation 1, the parameter 𝜏 represents the time axis, and 

the parameter 𝑓 represents the frequency axis. The parameter 

𝛽(𝑡)  represents the input function, and 
|𝑓|

√2𝜋
𝑒

[−
𝑓2(𝜏−𝑡)2

2
]
 

represents the Gaussian window. In Figure 2, average pooling 

and S-transform have been applied to the sample signals. The 

images obtained after S-transform can be seen in Figure 5.  

  

a) b) 

  

c) d) 

  

e) f) 

Fig. 5. S-transform conversion of underwater depth sounds a) 

Class 1 b) Class 2 c) Class 3 d) Class 4 e) Class 5 f) Class 6 (see 

Fig.2) 

As can be seen in Figure 5, S-transform contour images 

have been obtained from the sample signals. This process has 

been repeated for six classes. As a result of the S-transform, 

1800 images have been obtained. Feature extraction has been 

performed from these images with pre-trained deep learning 

models. The operation time and accuracy of the models have 

been examined to select the best performing deep learning 

model. Feature extraction has been performed using S-transform 

images with AlexNet, DarkNet19, DarkNet53, DenseNet201, 

GoogleNet, InceptionResNetV2, InceptionV3, MobileNetV2, 

NasNetLarge, NasNetMobile, ResNet18, ResNet50, ResNet101, 

ShuffleNet, Vgg16, Vgg19 and XceptionNet deep models. These 

models are pre-trained models and transfer learning has been 

applied by using these deep networks. The pre-trained networks 

were trained on the ImageNet dataset. The performance results 

calculated for these pre-trained deep learning models can be seen 

in Figure 6. 

 

 
a) 

 
b) 

Fig.6. Performance results of pre-trained deep learning models 

a) Operation time of models b) Classification results of models 

In Figure 6.a), the feature extraction times of the pre-trained 

deep learning models have been computed. The feature 

extraction time from 1800 images ranges from 15.59 seconds to 

91.85 seconds. The fastest feature extraction for the underwater 

depth dataset used in this study has been calculated with 

AlexNet. Thus, we have used AlexNet as a feature extractor. In 

addition, extracted features are classified by Decision 

Tree(DT)(Bedi et al., 2021), Support Vector Machine 

(SVM)(Bayğın et al., 2021),  and K-Nearest Neighbors 

(KNN)(Aydemir et al., 2020) algorithms. AlexNet is preferred 

for feature extraction because of its performance in both 

operation time and accuracy (Haryanto et al., 2020). 

AlexNet consists of eight layers (Krizhevsky et al., 2012) 

and architecture has significantly increased the ImageNet 

classification accuracy. AlexNet contains five convolutional 

layers and three fully connected layers. 

In this study, the pre-trained AlexNet model has been used 

and 1800x1000 features have been extracted for 1800 images. 

Obtained features have been classified by the Cubic SVM 

algorithm. Before choosing the Cubic SVM algorithm, the 

performances of twelve classifiers were tested. These used 

classifiers in tests; are Fine DT, Medium DT, Coarse DT, Linear 

Discriminant, Gaussian Naïve Bayes, Linear SVM, Quadratic 

SVM, Cubic SVM, Fine KNN, Medium KNN, Cosine KNN, 

and Ensemble Boosted Trees. The calculated accuracies for these 

classifiers have been demonstrated in Figure 7. 
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Fig. 7. The accuracy results computed for Fine DT (DT-F), 

Medium DT (DT-M), Coarse DT (DT-C), Linear Discriminant 

(LD), Gaussian Naïve Bayes (NB-G), Linear SVM (SVM-L), 

Quadratic SVM (SVM-Q), Cubic SVM (SVM-C), Fine KNN 

(KNN-F), Medium KNN (KNN-M), Cosine KNN (KNN-C), and 

Ensemble Boosted Trees (EBT) 

As can be seen in Figure 7, the highest accuracy has been 

calculated with Cubic SVM. Therefore, extracted features are 

classified with Cubic SVM. The parameters of the Cubic SVM 

algorithm used in the proposed method are tabulated in Table 2. 

Table 2. Parameters of SVM algorithms used in the proposed 

method 

Parameters Cubic SVM 

Kernel function Cubic 

Box constraint level 1 

Kernel scale mode Auto 

Kernel scale 1 

Multiclass method One-vs-one 

4. Experimental Results 

In this study, the proposed method has been applied on a 

computer with i7-9700 CPU 3.00 GHz, 32GB RAM, and 64-bit 

Windows 10 operating system. In the proposed method, 

preprocessing and feature extraction steps are developed in the 

MATLAB 2020a program with m-file. The classification process 

has been calculated using the MATLAB Classification Learner 

Toolbox. The confusion matrix has been computed using 10-fold 

cross-validation. Confusion matrix calculated with 10-fold cross-

validation can be seen in Figure 8. 
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Fig. 8. Confusion Matrix obtained for Cubic SVM 

In the proposed method, 1000 iterations have been run to 

get results with the Cubic SVM classification method. Accuracy, 

Precision, Recall, Geometric mean, and F1-score results 

computed for Cubic SVM are presented in Table 3. 

 

 

Table 3. Accuracy, precision, recall, geometric mean, and F1-

score (%) results of the used underwater depth acoustic 

classifiers. 

Classifiers Statistics Accuracy Precision Recall 
Geometric 

mean 

F1-

score 

Cubic 

SVM 

Maximum 99.05 99.06 99.05 99.05 99.06 

Minimum 98.16 98.67 98.66 98.65 98.67 

Mean 98.63 99.01 98.99 98.99 99.0 

Standard 

deviation 

0.12 0.07 0.07 0.07 0.07 

Maximum accuracy, precision, recall, geometric mean, and 

F1-Score have been calculated as 99.05%, 99.06%, 99.05%, 

99.05%, and 99.06%, respectively, with 1000 iterations of the 

Cubic SVM algorithm. In this study, 10-fold cross-validation has 

been used to calculate the classification results. In the proposed 

method, Fold-wise results for Cubic SVM have been computed 

and shown in Figure 9. 

%10 %10 %10 %10 %10 %10 %10 %10 %10 %10

%10 %10 %10 %10 %10 %10 %10 %10 %10 %10
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97.22

99.44
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98.33  

Fig. 9. The plot of best accuracy (%) obtained for different folds 

using underwater depth dataset 

As seen in Figure 9, the results of Fold-1, Fold-2, Fold-3… 

Fold-10 have been calculated for the Cubic SVM classification 

algorithm. The highest results have been seen in Fold-2, Fold-6, 

Fold-9 and the lowest result have been seen in Fold-7. Our 

method Class by Class results are shown in Figure 10. 

 

 

Fig. 10. Classification accuracies (%) obtained for various 

classes using our proposed method with an underwater depth 

dataset 

As seen in Figure 10, the best results have been obtained in 

Class 2 and Class 4, while the lowest results have been 

illustrated in Class 6. Class by Class results support the accuracy 

of the confusion matrix obtained in the study. 

5. Conclusion and Discussions 

Underwater acoustic systems are widely used in both civil 

and military applications. Vehicles such as ships, boats, and 

submarines can be detected using underwater sounds. In 

addition, the underwater depths of these vehicles can be known. 

In this study, depth classification has been made using 
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underwater sounds. A microphone has been used underwater and 

sounds have been collected for five minutes from six different 

depths. Preprocessing has been done with average pooling in the 

underwater depth dataset. S-transform and AlexNet have been 

used for feature extraction. The Cubic SVM algorithm has 

classified extracted features. 99.05% accuracy has been 

calculated with the proposed method for six classes. There are 

very few studies on underwater sound classification in the 

literature. The related state-of-art studies to our model are listed 

in Table 4. 

Table 4. Comparison of the results of the proposed method with the literature 

Studies Year Dataset Explanation Method Results 

Liu et al. 

method (Liu 

et al., 2021) 

2021 
DOA acoustic 

dataset 181000 

The direction of arrival 

estimation 

CNN, TensorFlow,  Accuracy = 98.32% 

MUSIC algorithm Accuracy = 98.32% 

Yaman et al. 

(Yaman & 

Tuncer, 2021) 

2021 
Underwater 

acoustic data 

Underwater direction 

classification 
NasNet + SVM 

Accuracy = 77.66%, 

Precision = 77.85%, 

Recall = 77.66%, 

Geo. mean = 76.71%, 

F1-Score = 77.76% 

Reis et al. 

(Reis et al., 

2019) 

2019 
Underwater 

acoustic data 

Acoustic signature and 

boat detection 

Frequency amplitude 

variation 
Accuracy = 93.19% 

Fischell et al. 

(Fischell et 

al., 2018) 

2018 
Underwater 

acoustic data 

Behavior mode 

classification  
KNN Accuracy = 99% 

Dominguez et 

al. (Santos-

Domínguez et 

al., 2016)  

2016 ShipsEar database 
Underwater vessel noise 

classification 
Gaussian mixture models Accuracy = 75.4% 

Sierra et al. 

(Sierra et al., 

2015) 

2015 
Underwater 

acoustic data 

Classification of Small 

Boats 
Fuzzy Accuracy = 93.33% 

Our Method  
Underwater 

acoustic data 

Underwater depth 

classification 

S-transform + AlexNet + 

SVM 

Accuracy = 99.05%, 

Precision = 99.06%, 

Recall = 99.05%, 

Geo. mean = 99.05%, 

F1-Score = 99.06% 

 

The proposed method has been compared with the literature, 

and the proposed method has higher accuracy. According to 

Yaman et al. (Yaman & Tuncer, 2021) determined the direction 

of vehicles moving underwater with underwater sound data in 

their study. They used NasNet deep learning model and SVM in 

their study, and 77.66% accuracy was calculated. Fischell et al. 

(Fischell et al., 2018) proposed a KNN-based method to 

determine the underwater position of underwater vehicles. Their 

method calculated 99% accuracy. On the other hand, Sierra et al. 

(Sierra et al., 2015) proposed a fuzzy-based method for detecting 

speedboats, and 93.33% accuracy was calculated. 

6. Future Works 

Studies are carried out in both civil and military fields by using 

underwater acoustic signals. Due to underwater acoustic signals, 

there are many studies such as underwater target detection, 

detection of leaks in pipelines, and object detection. In this 

study, depth detection has been performed using underwater 

sound signals. In future studies, it is aimed to collect acoustic 

datasets in deeper regions. In addition, underwater target 

detection methods will be developed with the developed 

methods. Methods will be developed to detect the location of the 

target by collecting underwater sound signals from many areas. 
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