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Highlights 

• Weibull modulus is an important measure of the engineering reliability of a material used in design. 

• Two types of pivotal quantities were proposed for confidence intervals of Weibull modulus. 

• These types are equal-tails and shortest pivotal quantity approaches.  

• This study compares the performances of the equal-tailed and shortest pivotal quantity models. 
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Abstract 

The Weibull distribution has been widely used to model strength properties of brittle materials. 

Estimation of confidence intervals for Weibull shape parameter has been an important concern, 

since small sample sizes in materials science experiments bring about large intervals. Many 

methods have been proposed in the literature for constructing shorter intervals; the methods of 

maximum likelihood, least square, and Menon are among the most extensively studied methods. 

However, they all use an equal-tails approach. The pivotal quantities used for constructing 

confidence intervals have right-skewed and unimodal distributions, thus, they clearly do not 

produce the shortest intervals for a given confidence level in equal tail form. This study constructs 

the shortest confidence intervals for the three aforementioned methods and compares their 

performances by their equal-tails counterparts. To this end, a comprehensive simulation study has 

been conducted for the shape parameter values between 1 to 80 and the sample sizes between 3 

to 20. The comparison criterion is chosen as the expected interval length. The results show that 

the shortest confidence intervals in each of three methods have yielded considerably narrower 

intervals. Further, the unknown parameter values are more centered in these intervals. 
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1. INTRODUCTION 

 

The Weibull distribution [1] has been widely used to model failure times and analyze the strength properties 

of many advanced materials such as fracture strength of ceramics, metallic matrix composites and ceramic 

matrix composites [2], flexural strength of brittle materials [3], fracture toughness behavior of steels in 

ductile-brittle transition region [4]. 

 

The two-parameter Weibull probability density function (pdf) is given by: 

 

𝑓(𝑡) =
𝑚

𝜎0
(

𝑡

𝜎0
)

𝑚−1

𝑒
−(

𝑡

𝜎0
)

𝑚

 (1) 

 

where F is the probability of fracture at uniaxial tensile stress  𝑇, m is the shape parameter and  𝜎0 is the 

scale parameter. The shape parameter m is alternatively referred to as the Weibull modulus. Weibull 

modulus is used as a measure of the variability of the strength of materials [4] or as a measure of component 

and system reliability [5].  
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Confidence intervals of the parameters m and 𝜎0 can be estimated by using classical methods such as the 

methods of maximum likelihood, the generalized linear least squares or moments. In practice, high 

experimental costs limit the number of samples to be tested; and in general, the smaller the sample size the 

worse the statistical properties of Weibull modulus. As a result, confidence interval lengths increase as the 

sample sizes decrease [4]. 

 

In classical methods (maximum likelihood, moments etc.), the most common procedure for constructing 

exact confidence intervals (CI’s) is to employ a pivotal quantity [6]. Two general types of intervals based 

on pivotal quantity are available: The Equal Tails Confidence Interval (ETCI) and the Shortest Confidence 

Interval (SCI). The ETCIs have been predominantly used in research and in practice, while the SCIs have 

rather been a subject of theoretical interest, see for example [7,8]. There has been no study in the literature 

investigating the performance of the SCIs for the Weibull modulus to the authors’ best knowledge.  

 

When the Maximum Likelihood Estimation (MLE), Weighted Linear Least Squares (WLS) or Menon’s 

(MN) methods are used to calculate an estimate of 𝑚, 𝑚̂, McCool [9] showed that  𝑚̂ 𝑚⁄  is a pivotal variable, 

that is, independent of 𝜎0 and 𝑚. The distribution of 𝑚̂ 𝑚⁄  has been shown to be unimodal and asymmetric 

for a given sample size (𝑛) and confidence level (1 − 𝛼) by Monte Carlo simulations.  The 100(1 −  𝛼)% 

ETCI of the Weibull modulus can be obtained from the percentage points  (𝑑𝑙 , 𝑑𝑢) of the distribution with 

the following conditions [10]: 

 

𝑃 ( 𝑑𝑙 <
𝑚̂

𝑚
< 𝑑𝑢) = 1 − 𝛼,   𝑃 ( 

𝑚̂

𝑚
< 𝑑𝑙) = 𝛼 2⁄ , 𝑃 ( 

𝑚̂

𝑚
> 𝑑𝑢) = 𝛼 2⁄ . (2) 

 

The probability statement in Equation (2) can be easily extended to derive a confidence interval minimizing 

the interval length while maintaining the 1 − 𝛼 coverage. 

 

If the distribution of a pivotal statistic is unimodal and symmetric, the ETCI and the SCI are the same, 

hence have the same length [11]. On the other hand, for unimodal and asymmetric distributions, such as 

the distribution of 𝑚̂ 𝑚⁄ , the SCI is shorter than the ETCI [12,13]. Therefore, it would be of interest to evaluate 

the amount reduction in interval length if the SCI is used instead of the ETCI, particularly for small sample sizes. 

 

In literature, many authors have proposed various methods for point and interval estimation of Weibull 

modulus; for a general overview, see [14-16]. For specific examples, Barbero et al [2,4] obtained the 

percentage points of the estimator of the Weibull modulus in modelling the mechanical properties of 

composite materials and published in tabular form. McCool [17] computed confidence intervals based on 

the MLE; his procedure requires certain tabled quantities determined from simulation studies.  The most 

common methods for constructing confidence intervals of 𝑚 are the MLE and WLS methods, which are 

based on the simulation of pivotal quantities [12,18-21]. The MLE and WLS methods are frequently 

employed for obtaining ETCIs in the materials science literature.  They have been shown to be the best 

methods according to different comparison criteria for confidence interval and point estimation of the 

Weibull modulus [2,3,22-29]. For example, Wu et al [21] studied on the interval estimation precision of 

the Weibull modulus determined by the linear regression, WLS and MLE for analyzing effects of the 

number of testing specimens. Phan and McCool [28] have computed exact confidence limits for the shape 

parameter by using Menon’s method. Bütikofer et al [29] have studied comparison of point and interval 

estimation for Weibull modulus by two least squares (LS) methods with interchanged axes for reliability 

of dental materials. Most of the above referenced studies are related to the estimation of the ETCIs of 

Weibull modulus [2,3,21,26,28,29], and the remaining are about point estimation or analyzing distribution 

of Weibull statistics. To our best knowledge, for the SCI of Weibull modulus, there are two theoretical 

studies by Guenther [7,8] who proposed a method to obtain SCIs and unbiased confidence intervals for 

Weibull, normal, gamma, Laplace, uniform distribution parameters. In addition, Ferentinos and Karakostas 

[30] clarified and commented on methods for finding the SCI and the ETCI for any distribution in general, 

but did not give any practical details for the Weibull distribution. Joula [31] developed confidence intervals 

for a single unknown parameter by using a pivotal quantity and presented an elementary method for 

deriving shortest intervals; but there is no theoretical or practical study for case of the Weibull distribution. 

Besides ETCI and SCI, researchers considered several confidence intervals for estimating Weibull 
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statistics; but they are approximate intervals [32, 33, 34]. This paper aims at the calculation of the exact 

shortest confidence interval for Weibull modulus, and shows that the width of the confidence interval is 

shortest when pivotal quantities has unimodal, asymmetric and right-skewed distributions. The motivation 

of this study comes from the fact that contrary to the previous studies, the performances of SCI and ETCI 

for 𝑚 can be shown by Monte Carlo simulation and a real data.  

 

The pivotal quantities 𝑚̂ 𝑚⁄  for the MLE and WLS methods has unimodal, asymmetric and right-skewed 

distributions [12,13], which implies the potential for significant decreases in confidence interval lengths if 

SCIs are used instead of ETCIs. In this paper, the exact confidence intervals of Weibull modulus have been 

estimated by using ETCIs and SCIs based on the MLE method, the MN method and the WLS method with 

the Faucher and Tyson weight factor and the hazen probability estimator [21]. For comparison of the 

methods, Monte Carlo simulations have been designed and run in the C++ language with large simulation 

run numbers. Small sample sizes between 3 and 20 have been used in the simulations.  

 

The rest of the paper is organized as follows. Section 1 presents a literature review on interval estimation 

of the Weibull modulus. Section 2 includes a detailed description of the ETCI and the SCI of the Weibull 

modulus and their properties and discusses the classical estimation approaches. A simulation study is 

conducted in Section 3. Finally, a brief discussion of the findings is provided in Section 4. 

 

2. MATERIAL METHOD 

 

2.1. Estimation of Equal-Tailed and Shortest Confidence Intervals of Weibull Modulus 

 

In classical inference, the standard method for deriving exact confidence intervals for a parameter is the 

pivotal quantity method [6,7,35]. A pivotal quantity is generally defined as a function of observations and 

unobservable parameters such that the function's probability distribution does not depend on the unknown 

parameters (including nuisance parameters) [36].   

 

The distribution of the pivotal quantity 𝑚̂ 𝑚⁄ , (𝑓𝑑), can be found for a given n and 𝛼 value by Monte Carlo 

simulations. The probability statement, 

 

𝑃 ( 𝑑𝑙 <
𝑚̂

𝑚
< 𝑑𝑢) = 1 − 𝛼 (3) 

 

is converted to 

 

𝑃 ( 
𝑚̂

𝑑𝑢
< 𝑚 <

𝑚̂

𝑑𝑙
) = 𝑃(𝑚𝑙 < 𝑚 < 𝑚𝑢) = 1 − 𝛼 (4) 

 

to obtain a 1 − 𝛼 level confidence interval of 𝑚.  

 

If the pivotal critical values 𝑑𝑙   and 𝑑𝑢 in Equation (3) are calculated in such a way that  

𝑃 ( 
𝑚̂

𝑚
< 𝑑𝑢) =

𝛼

2
 and ( 

𝑚̂

𝑚
> 𝑑𝑙) =

𝛼

2
 , the interval [𝑚𝑙 , 𝑚𝑢] is said to be the equal-tailed confidence interval 

(ETCI) of  𝑚. If pivotal critical values 𝑑𝑙   and 𝑑𝑢 in Equation (3) are calculated to minimize the distance 
|𝑚𝑢 − 𝑚𝑙|, then the interval [𝑚∗

𝑙 , 𝑚∗
𝑢] is said to be the shortest 1 − 𝛼 level confidence interval (SCI) 

based on 𝑚̂ 𝑚⁄  [6,30]. For the SCI, the following constrained minimization problem is solved by using  

optimization algorithms: ( 𝛼 is confidence level ) 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒, 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑎: 
1

𝑑𝑙
−

1

𝑑𝑢
  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ ∫ 𝑓𝑑(𝑥)

𝑑𝑢

𝑑𝑙

 𝑑𝑥 = 1 − 𝛼.   

(5) 
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This can be implemented, for example, by leveraging Python library “pymc3” or R library “HDInterval” 

[37,38]. The SCI of 𝑚 in classical inference needs only the assumption that the distribution of 𝑚̂ 𝑚⁄ , 𝑓𝑑, is 

unimodal in which there exists a 𝑥* such that 𝑓𝑑(𝑥) is non-decreasing for 𝑥 ≤ 𝑥* and 𝑓𝑑(𝑥) is non-

increasing for 𝑥 ≥ 𝑥* [6]. For any symmetric unimodal pdf, the SCI and the ETCI are the same. 

 

In this study, the distribution of the pivotal quantity 𝑚̂ 𝑚⁄  has been obtained by Monte Carlo simulations 

with 10,000 replications. The flowchart of the simulation procedure for each of the MLE, WLS and MN 

methods is given in Figure 1. 

 

 
 

Figure 1. Flow chart of the simulation procedure for the classical estimation methods 

 

2.2. Maximum Likelihood Method 

 

The maximum likelihood estimates of Weibull parameters, 𝑚̂ and 𝜎̂0, can be obtained by solving the set of 

Equations (6) and (7) [39] 

 

𝑛

𝑚̂
− 𝑛𝐼𝑛𝜎̂0 + ∑ 𝑡𝑖

𝑛

𝑖=1

− ∑ (
𝑡𝑖

𝜎̂0
)

𝑚̂

𝐼𝑛 (
𝑡𝑖

𝜎̂0
) = 0 

𝑛

𝑖=1

 (6) 

 

𝜎̂0 = (
∑ (𝑡𝑖)𝑚̂𝑛

𝑖=1

𝑛
)

1 𝑚̂⁄

 (7) 

 

where 𝑡1, 𝑡2, … , 𝑡𝑛 are an observed sample of size n. The Newton-Raphson method is usually employed for 

solving Equation (6) for 𝑚̂. Then, 𝜎̂0 is found by substituting 𝑚̂ into Equation (7). 

 

2.3. Weighted Linear Least Squares 

 

By taking double logarithms of the both sides of the cumulative density function (cdf) of the Weibull 

distribution, 𝐹(𝑡) = 1 − 𝑒
−(

𝑡

𝜎0
)

𝑚

, 𝑎 linear form of is obtained: 
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𝑙𝑜𝑔 (−𝑙𝑜𝑔(1 − 𝐹(𝑡))) = 𝑚 𝑙𝑜𝑔(𝑡) − 𝑚 𝑙𝑜𝑔(𝜎0). (8) 

 

By defining 𝑌 = 𝑙𝑜𝑔 (−𝑙𝑜𝑔(1 − 𝐹(𝑡))) and 𝑋 = 𝑙𝑜𝑔(𝑡), Equation (8) becomes a linear function of the 

form 𝑌 =  𝑏𝑋 +  𝑎, where: 

 

𝑚 = 𝑏, 𝜎0 = 𝑒𝑥𝑝 (
−𝑎

𝑏
).    (9) 

 

Computation of the least squares regression for Y at the ordinate and X at the abscissa leads to the estimates 

𝑎̂ and 𝑏̂ of the regression coefficients and finally to estimates 𝑚̂ and 𝜎̂0 of the Weibull parameters. 𝐹(𝑡) in 

Equation (10) is usually calculated by applying a discrete probability estimator of the form  

 

𝐹(𝑡(𝑖))    = 𝑖 − 𝑐 𝑛 + 𝑑⁄     (10) 

 

where 𝑐 and 𝑑 are constants historically selected to minimize the bias of  𝑚̂, and 𝑡(𝑖) represents the 𝑖th value 

of an observation among the 𝑛 ordered 𝑡-values forming the sample. The most commonly used estimators 

of 𝐹 are [19,20]: mean ranks, median ranks and hazen ranks (See Table 1).  

 

Table 1. Probability Estimators 

Probability Estimator Probability Estimator Equation  

Mn (Mean) 𝐹̂(𝑡(𝑖)) = 𝑖 (𝑛 + 1)⁄  (11) 

Md (Median) 𝐹̂(𝑡(𝑖)) = (𝑖 − 0.3) (𝑛 + 0.4)⁄  (12) 

Hn (Hazen) 𝐹̂(𝑡(𝑖)) = (𝑖 − 0.5) 𝑛⁄  (13) 

Variable 𝐹̂(𝑡(𝑖)) = (𝑖 − 3/8) (𝑛 + 1/4)⁄  (14) 

 

In the least squares method, the probability estimators have different effects on the bias of  𝑚̂. For example, 

the probability estimator in Equation (11) gives the largest bias while Equation (13) results in the smallest 

bias for 𝑛 ≥ 20 [19-21,40,41]. For 𝑛 < 20, Equation (14) is to be preferred [19]. However, it has been 

demonstrated that the coefficient of variation of 𝑚 for the four estimators in Table 1 is approximately equal 

[12,19-21]. Gong [42] showed that values of 𝑐 = 0.999 and 𝑑 = 1000 in Equation (10) resulted in a low 

standard deviation for 𝑚̂ 𝑚⁄ . In another recent study, Gong [43] described a method for determining the 

confidence interval for 𝑚̂ 𝑚⁄  as a function of the sample size, 𝑛, where 𝑐 = 0.5 and 𝑑 = 0. In addition to 

these studies, several authors proposed the use of a correction factor to adjust the bias of the estimated 

Weibull modulus [19,24,25]. In another study, it is shown that 𝑑 = 1 provides the optimum unbiased 

solution for the mean, median and mode of 𝑚 within the range of 0 ≤ 𝑑 ≤ 1 and also that the optimum 

values of 𝑐 are 𝑐 functions of 𝑁 [23]. Several studies showed that the Hazen estimator is generally superior 

to the others given in Table 1 [12,19,20,41,44]. Therefore, in this study, only the Hazen estimator in 

Equation (13) is used as the probability estimator for interval estimation. 

 

In general, estimates with better statistical properties are obtained by introducing weight functions to linear 

least squares estimation (Equations (16), (17) and (18)). Various weight functions have been proposed over 

the years [23,45-47]; the most commonly used are the functions proposed by Bergman [48], Faucher and 

Tyson [49] and Hung [47] as given in Table 2. The case 𝑊𝑖 = 1 corresponds to classical unweighted linear 

least squares and always gives the worst estimation for any probability estimator and any sample size [50]. 

For accurate estimation of the Weibull modulus, the weight factor given in Equation (16) is preferred [50], 

especially with Hazen rank [21]. Therefore, in this study, only the WLS method using Faucher and Tyson 

weight factor and Hazen probability estimator has been chosen for constructing confidence intervals of the 

Weibull modulus. 
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Table 2. Probability Estimators 
Weight Functions Weight Functions Equation  

A1 (Weightless) 𝑊(𝑡(𝑖)) = 1 (15) 

A2 (Faucher andTyson) 
𝑊(𝑡(𝑖)) = 3.3 𝐹(𝑡(𝑖)) − 27.5 [1 − (1 − 𝐹(𝑡(𝑖)))

0.025

] (16) 

A3 (Bergman) 
𝑊(𝑡(𝑖)) = [(1 − 𝐹(𝑡(𝑖)))  𝐼𝑛 (1 − 𝐹(𝑡(𝑖)))]

2

 (17) 

A4  (Hung) 

𝑊(𝑡(𝑖)) =
[(1 − 𝐹(𝑡(𝑖)))  𝐼𝑛 (1 − 𝐹(𝑡(𝑖)))]

2

∑ [(1 − 𝐹(𝑡(𝑖)))  𝐼𝑛 (1 − 𝐹(𝑡(𝑖)))]
2 (18) 

 

2.4. Menon’s Method 

 

The Menon’s method has the advantage of simplicity, requiring only the computation of the mean and 

standard deviation of the logarithms of the values in a sample. The resulting estimators [51] 

 

𝑚̂ =
(𝜋 √6⁄ )

𝑠𝑧
    (19) 

 

𝜎̂0 = 𝑒(𝑧̅+0.450𝑠𝑧) (20) 

 

where 𝑠𝑧 denotes the standard deviation of the natural logarithms of the observations (𝑇) in a random 

sample and 𝑧̅ their mean. As in the MLE method, the pivotal statistic 𝑚̂ 𝑚⁄  have been used for confidence 

interval estimation [28]. 

 

2.5. Comparison Criterion: Expected Length Based on False Coverage Probability 

 

Pratt [52] has shown that the expected length of a confidence set can be computed by integrating the false 

coverage probabilities. Given that we observed T=t, we set up a (1 − 𝛼) level confidence set 𝐶(𝑇) =

(𝐿(𝑇), 𝑈(𝑇)); this set has the probability of false coverage  𝑃𝜃(𝜃′𝜖𝐶(𝑇)) , 𝜃 ≠ 𝜃′. Then the expected 

length of the set 𝐶(𝑇) can be formulated as follows:  

 

𝐸𝜃(𝐿𝑒𝑛𝑔𝑡ℎ |𝐶(𝑇)|) = ∫ 𝐿𝑒𝑛𝑔𝑡ℎ |𝐶(𝑇)| 𝑓𝜃 (𝑡) 𝑑𝑡 = ∫ 𝑃𝜃(𝜃′ ∈ 𝐶(𝑇))
𝜃′≠𝜃

 𝑑𝜃,  𝜃 ∈ Θ, 𝜃′ ≠ 𝜃. (21) 

 

The expected length is a somewhat stronger property than the false coverage probabilities calculated at 

specific 𝜃′ values, because the expected length is calculated as a sum over all false coverages [53]. The 

smaller the interval length of a method the higher the performance. 

 

3. THE RESEARCH FINDINGS AND DISCUSSION 

 

3.1. Simulation Inputs 

 

An extensive Monte Carlo simulation has been performed to compare the performances of the ECTI and 

SCI methods based on the three classical estimation methods. Figure 2 shows the flowchart of the 

simulation procedure. All computations shown in Figure 2 have been implemented in the C++ language. 

Pivotal critical values (𝑑𝑙 , 𝑑𝑢) of the ETCI and the SCI for each 𝑛 are calculated according to the flowchart 

in Figure 1. 
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Figure 2. Flow chart of the simulation procedure 

 

In the simulation, 𝜎0 is fixed at 𝜎0 = 1, since it has no effect on the results. For each set of given sample 

size and Weibull modulus, 10000 ETCIs and 10000 SCIs are estimated using the methods described in 

Section 2. The reason for selecting the small 𝑚 values in Figure 2 is to examine the effect of the shape of 

the Weibull probability density function, which is positively skewed for 𝑚 < 2.6, approximates the 

normal pdf for 2. 
 

3.2. Simulation Results 

 

A detailed summary of the simulation results is presented in Table 3 for each n and m according to the 

expected length criteria in Equation (21). In Table 3, the methods are abbreviated as WLSE, WLSS, MLEE, 

MLES, MNE and MNS, where the last string refer to the type of interval: S is used for the SCI and E for 

the ETCI. In Table 3, the result of the best method, that is the shortest interval length, for each n is shown 

in bold and the second best method is in italic.  

 

As shown in Table 3, for the almost all n values, except for n = 3, the MLES method shows the best 

performance in terms of the expected length. For n = 3, the WLSS is the best method, and also the second 

best for the other n values. The best and second methods are based on the SCI. Since the distribution of 

pivotal quantity 𝑚̂ 𝑚⁄  is asymmetric, the shortest interval has unequal tails probabilities and therefore, any 

method using the shortest pivotal quantity method gives narrower intervals than its the equal-tailed 

counterpart.  

 

For n = 3, the performance ranking from best to worst is as follows: WLSS, MLES, MNS, MLEE, WLSE 

and MNE, hence all SCIs are always better than ETCIs. However, when n =4, 5 and 6, the performance 

ranking changes: MLES, WLSS, MLEE, WLSE, MNS and MNE.  When n>7, it is observed the MLEE 

method outperforms the WLSS method and so the first three best method are changed as MLES, MLEE, 

WLSS; the rest remaining the same. MNS has not yielded narrower intervals than MLEE and WLSE 

methods for n > 3. But for all 𝑛 values, MLES and WLSS have yielded shorter intervals than the ETCI of 

the all three methods.  
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Table 3. Expected Interval Lengths for Weibull Modulus 

𝑛 Method 
Weibull Modulus 

1.5 1.8 2 2.2 2.5 2.8 3 4 5 10 20 40 60 80 

3 

WLSE 5.59 6.33 7.48 8.11 9.21 10.56 11.37 15.06 18.42 37.51 76.03 149.15 227.00 303.05 

WLSS 4.87 5.37 6.58 7.26 8.01 9.23 10.13 13.52 16.61 32.91 67.22 131.56 202.28 271.79 

MLEE 5.44 6.19 7.29 7.89 8.97 10.27 11.07 14.63 17.88 36.40 73.84 145.31 220.55 294.38 
MLES 4.89 5.43 6.61 7.28 8.07 9.27 10.18 13.54 16.63 33.01 67.42 132.45 202.99 272.45 

MNE 5.80 6.53 7.77 8.42 9.51 10.95 11.77 15.68 19.06 38.76 78.63 155.15 235.05 313.22 
MNS 5.08 5.61 6.88 7.57 8.35 9.63 10.54 14.13 17.26 34.24 69.94 137.68 210.62 282.40 

4 

WLSE 3.69 4.46 4.92 5.44 6.20 6.98 7.50 9.98 12.30 24.81 49.37 99.22 146.86 196.33 

WLSS 3.51 4.24 4.68 5.17 5.90 6.64 7.14 9.50 11.70 23.60 46.96 94.07 139.69 186.68 
MLEE 3.65 4.40 4.86 5.37 6.12 6.88 7.40 9.86 12.13 24.49 48.74 97.87 145.08 193.93 

MLES 3.47 4.20 4.63 5.12 5.84 6.55 7.05 9.38 11.55 23.32 46.42 93.04 138.15 184.64 

MNE 4.01 4.83 5.33 5.89 6.70 7.56 8.16 10.83 13.30 26.97 53.54 107.72 159.69 213.04 

MNS 3.73 4.50 4.96 5.48 6.24 7.04 7.60 10.09 12.38 25.11 49.84 99.89 148.68 198.38 

5 

WLSE 2.94 3.55 3.92 4.28 4.94 5.52 5.95 7.82 9.75 19.83 39.22 78.52 118.34 157.41 

WLSS 2.85 3.44 3.79 4.15 4.78 5.35 5.76 7.57 9.44 19.21 37.99 76.06 114.64 152.48 

MLEE 2.86 3.44 3.80 4.15 4.79 5.36 5.77 7.59 9.47 19.28 38.09 76.19 115.02 153.00 
MLES 2.79 3.36 3.71 4.05 4.68 5.23 5.63 7.41 9.24 18.82 37.17 74.37 112.27 149.33 

MNE 3.25 3.91 4.34 4.76 5.46 6.10 6.57 8.65 10.77 21.94 43.42 86.86 131.08 174.27 
MNS 3.09 3.72 4.13 4.52 5.19 5.79 6.25 8.22 10.24 20.85 41.26 82.53 124.56 165.61 

6 

WLSE 2.50 3.02 3.37 3.71 4.22 4.68 5.05 6.77 8.44 16.85 33.75 67.15 100.47 134.29 

WLSS 2.42 2.92 3.27 3.60 4.09 4.53 4.89 6.56 8.18 16.33 32.70 65.08 97.37 130.15 
MLEE 2.43 2.93 3.27 3.61 4.10 4.55 4.90 6.57 8.20 16.35 32.82 65.24 97.66 130.43 

MLES 2.37 2.86 3.20 3.52 4.00 4.44 4.78 6.42 8.00 15.96 32.03 63.67 95.31 127.28 

MNE 2.82 3.40 3.80 4.20 4.75 5.28 5.68 7.62 9.51 18.95 38.20 75.70 113.01 151.30 

MNS 2.69 3.24 3.63 4.00 4.53 5.03 5.41 7.26 9.07 18.06 36.40 72.13 107.68 144.16 

7 

WLSE 2.24 2.67 2.97 3.29 3.72 4.15 4.45 5.95 7.33 14.90 29.58 59.37 89.13 118.53 

WLSS 2.18 2.60 2.89 3.20 3.62 4.04 4.33 5.79 7.14 14.51 28.79 57.79 86.76 115.37 

MLEE 2.18 2.60 2.89 3.19 3.62 4.04 4.32 5.78 7.13 14.48 28.78 57.74 86.70 115.13 
MLES 2.14 2.56 2.84 3.14 3.56 3.97 4.25 5.69 7.01 14.24 28.30 56.79 85.28 113.24 

MNE 2.56 3.05 3.39 3.76 4.26 4.75 5.07 6.81 8.39 17.04 33.79 67.78 102.13 135.03 
MNS 2.46 2.93 3.26 3.61 4.09 4.56 4.87 6.54 8.05 16.36 32.44 65.08 98.05 129.64 

8 

WLSE 2.00 2.42 2.68 2.98 3.36 3.77 4.04 5.38 6.70 13.36 26.73 53.73 80.75 107.53 

WLSS 1.97 2.38 2.64 2.94 3.31 3.72 3.98 5.30 6.60 13.16 26.34 52.95 79.58 105.96 
MLEE 1.96 2.36 2.62 2.91 3.29 3.69 3.95 5.27 6.55 13.06 26.15 52.57 79.07 105.19 

MLES 1.93 2.33 2.59 2.88 3.25 3.65 3.90 5.21 6.48 12.92 25.85 51.97 78.17 103.99 

MNE 2.34 2.82 3.12 3.47 3.93 4.39 4.69 6.29 7.82 15.56 31.27 62.85 94.28 125.58 

MNS 2.24 2.71 3.00 3.34 3.77 4.21 4.51 6.04 7.50 14.94 30.02 60.33 90.52 120.56 

9 

WLSE 1.85 2.21 2.46 2.72 3.07 3.45 3.68 4.90 6.16 12.39 24.59 49.33 74.05 98.72 

WLSS 1.82 2.18 2.43 2.68 3.04 3.41 3.63 4.84 6.08 12.24 24.29 48.73 73.14 97.52 

MLEE 1.81 2.16 2.41 2.65 3.01 3.38 3.60 4.80 6.03 12.12 24.08 48.24 72.39 96.55 
MLES 1.79 2.15 2.39 2.64 2.99 3.36 3.57 4.77 5.99 12.04 23.92 47.92 71.90 95.90 

MNE 2.18 2.60 2.90 3.19 3.61 4.09 4.34 5.79 7.26 14.58 28.99 58.18 87.04 116.08 
MNS 2.09 2.49 2.78 3.06 3.47 3.93 4.16 5.55 6.97 14.00 27.83 55.85 83.56 111.44 

10 

WLSE 1.72 2.06 2.30 2.53 2.86 3.21 3.44 4.61 5.75 11.51 23.06 45.69 68.73 91.89 

WLSS 1.69 2.03 2.26 2.48 2.81 3.16 3.38 4.53 5.65 11.31 22.66 44.90 67.53 90.30 
MLEE 1.68 2.02 2.25 2.47 2.80 3.14 3.36 4.51 5.63 11.25 22.57 44.70 67.17 89.89 

MLES 1.66 2.00 2.22 2.45 2.77 3.11 3.33 4.46 5.57 11.14 22.33 44.23 66.46 88.94 

MNE 2.03 2.45 2.72 2.99 3.38 3.79 4.07 5.46 6.80 13.55 27.28 53.94 81.32 108.90 

MNS 1.98 2.38 2.64 2.91 3.29 3.69 3.96 5.31 6.62 13.19 26.54 52.46 79.10 105.93 

20 

WLSE 1.13 1.36 1.50 1.65 1.88 2.11 2.26 3.01 3.76 7.52 15.05 30.14 45.10 60.38 

WLSS 1.12 1.35 1.50 1.64 1.88 2.10 2.25 3.00 3.74 7.50 15.00 30.03 44.93 60.16 

MLEE 1.10 1.32 1.46 1.60 1.83 2.05 2.19 2.92 3.65 7.31 14.62 29.26 43.81 58.61 
MLES 1.10 1.32 1.46 1.60 1.83 2.05 2.20 2.93 3.66 7.32 14.64 29.30 43.87 58.70 

MNE 1.40 1.68 1.86 2.04 2.32 2.60 2.80 3.72 4.66 9.31 18.64 37.20 55.85 74.50 

MNS 1.36 1.63 1.81 1.99 2.27 2.54 2.73 3.63 4.54 9.07 18.16 36.25 54.42 72.61 
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The MLES, WLSS and MNS methods result in different rates of decrease in the interval length respectively 

as compared to the MLEE, WLSE and MNE; the difference become significant particularly for 𝑛 ≤ 10. 

For 𝑛=3, the WLSS results in a decrease of 10%-13% in the interval length of WLSE. Similarly the MLES 

and MNE methods result in 10%-7% and 14%-10% decreases, respectively. These rates drop to 

approximately 6% for 𝑛=4. As the sample size increases, the estimation performances of SCI and ETCI for 

the MLE, WLS and MN become closer. The rates of decrease approaches to zero for the WLS and MLE 

methods for 𝑛=20, but remains at 3% for MN. For 𝑚=1.5, 2.5, 10 and 80, the rates of decrease achieved by 

the MLES, WLSS and MNS are also shown graphically in Figure 3 (a-b) and Figure 4 (a-b). 

 

 
(a) 

 

 
(b) 

 

Figure 3. Rates of decrease in expected length achieved by SCIs as compared to ETCIs for : (a) 

𝑚=1.5 (b) 𝑚=2.5 
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(a) 

 

 
(b) 

Figure 4. Rates of decrease in expected length achieved by SCIs as compared to ETCIs for : (a) 

𝑚=10 (b) 𝑚=80 

 

As it is well known, for a 95% ETCI, the area in each tail is equal to 0.025. However, the pivotal statistic 

𝑚̂ 𝑚⁄   has a positively skewed distribution and so the SCI gets different area value in each tail differently 

from the ETCI. The left tail probabilities, 𝑃( 𝑚̂ 𝑚⁄ < 𝑑𝑙),  and right tail probabilities, 𝑃( 𝑚̂ 𝑚⁄ > 𝑑𝑢), of 

WLSS, MLES and MNS are summarized in Table 4. For 𝑛=3, the WLSS, the MLES and the MNS yield 

the SCI with % 0.3 left tailed-% 4.7 left tailed probability. By increasing sample size, these methods show 

a non-monotonic increase on the left tail; but, even when 𝑛=20, left tail probabilities for the SCIs do not 

reach at 0.025. As a result, lower and upper bounds of SCIs are always smaller than those of ETCIs.  

 

Table 4. The left tail and right left tail probabilities of WLSS, MLES and MNS 

METHOD TAILS 
Weibull shape parameter 𝒎 

3 4 5 6 7 8 9 10 20 

WLSS 
𝑃( 𝑚̂ 𝑚⁄ < 𝑑∗

𝑙) 0.003 0.006 0.011 0.010 0.013 0.016 0.013 0.016 0.016 

𝑃( 𝑚̂ 𝑚⁄ > 𝑑∗
𝑢) 0.047 0.044 0.039 0.040 0.037 0.034 0.037 0.034 0.034 

MLES 
𝑃( 𝑚̂ 𝑚⁄ < 𝑑∗

𝑙) 0.003 0.008 0.013 0.013 0.012 0.014 0.016 0.016 0.019 

𝑃( 𝑚̂ 𝑚⁄ > 𝑑∗
𝑢) 0.047 0.042 0.037 0.037 0.038 0.036 0.034 0.034 0.031 

MNS 
𝑃( 𝑚̂ 𝑚⁄ < 𝑑∗

𝑙) 0.003 0.006 0.009 0.009 0.011 0.009 0.013 0.012 0.014 

𝑃( 𝑚̂ 𝑚⁄ > 𝑑∗
𝑢) 0.047 0.044 0.041 0.041 0.039 0.041 0.037 0.038 0.036 

 

Figure 5 and 6 plots average confidence intervals obtained from the 6 methods for 𝑚= 1.5 and 𝑚=80, that 

is, any lower or upper bound is the average of the lower or upper bounds of 10,000 confidence intervals 
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estimated by Monte-Carlo simulations. They show that the WLSS, the MLES and the MNS methods 

generate confidence intervals that are more centered around 𝑚 as compared to the WLSE, the MLEE and 

the MNE methods. This phenomenon is particularly noticeable for small samples. 

 

 
Figure 5. The position of estimated confidence intervals according to 𝑚=1.5 

 

 
Figure 6. The position of estimated confidence intervals according to 𝑚=80 

 

For verification of the simulation results, an exercise estimating confidence intervals of Weibull modulus 

of a composite component was performed using the previously presented simulation findings [54]: 19 

identical composite specimens were prepared from quasi-isotropic carbon-epoxy sheets with (0°)3 

configuration, 0.89 mm thickness, and 295 gr/m2 weight and the tension experiments were carried out using 

an Instron 8516+ universal testing machine. The fracture strength values measured are presented in Table 

5. In order to diversify the application study in terms of sample size, in addition to an application to the 

entire sample, random subsets of size of 3, 5 and 10 were drawn from the sample of 19 observations: These 

subset consists of { 473, 442, 502.7 } for 𝑛=3, { 450.9, 442, 476.5, 521.6, 439 } for 𝑛=5 and { 513.6, 

552,519, 521.6, 439,450.9, 463.5, 497.5, 476.5, 477 } for 𝑛=10. For each data set, the p-values of the 

Kolmogorov-Smirnov test are more than 0.05 which means that the assumption of following Weibull 

distribution cannot be rejected. The six methods were carried out to estimate the confidence intervals of 𝑚 

for each data set. The result of the best method for each 𝑛 was shown in bold in Table 6. 

 

Table 5. Fracture strength of carbon-epoxy composite material specimens (megapascals) 
Test No. 1 2 3 4 5 6 7 8 9 10 

Fracture 

strength 

[MPa] 

532.7 502.5 442 473 519 502.7 477 510 522 552 

Test No. 11 12 13 14 15 16 17 18 19  

Fracture 

strength 

[MPa]  

522 439 513.6 497.5 521.6 450.9 476.5 507.3 463.5  
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As can be seen in Table 6, the experimental results are quite similar to simulation results and the MLES 

model outperforms the other methods. 

 

Table 6. Experimental results: Interval lengths, their lower and upper limits 

 Method n=3 n=5 n=10 n=19 

MLES 

33,484  

[0,909 34,393] 

18,568 

[3,525 22,093] 

14,752 

[7,214 21,966] 

13,153 

[11,725 24,877] 

MLEE 

35,853 

[2,637 38,49] 

19,207 

[4,217 23,424] 

15,037 

[7,663 22,7] 

13,191 

[11,954 25,145] 

WLSS 

36,975 

[1,177 38,152] 

19,432 

[3,277 22,709] 

16,137 

[7,461 23,599] 

13,891 

[11,668 25,559] 

WLSE 

40,169 

[2,92 43,09] 

20,27 

[4,182 24,452] 

16,425 

[8,02 24,445] 

13,999 

[12,079 26,078] 

MNS 

36,239 

[0,757 36,996] 

26,751 

[3,904 30,655] 

19,961 

[7,318 27,279] 

16,939 

[11,181 28,121] 

MNE 

39,731 

[2,748 42,479] 

28,722 

[5,34 34,062] 

20,687 

[8,498 29,185] 

17,511 

[11,893 29,404] 

 

As can be seen in Table 6, the experimental results are quite similar to simulation results and the shortest 

pivotal quantity technique based on maximum likelihood (MLES) outperforms the other methods. As 𝑛 

increases, performances of the WLS and MLES methods become closer to each other, but the MLES 

maintains its superiority by a small difference in estimated interval length. 

 

4. RESULTS 

 

This study compares the performances of the equal-tailed and shortest pivotal quantity models based on the 

maximum likelihood (MLE), weighted linear least squares (WLS) or Menon’s (MN) methods for estimating 

exact confidence intervals of the Weibull modulus (𝑚) in small samples. These models of methods are 

abbreviated as WLSE, WLSS, MLEE, MLES, MNE and MNS, where the last string S and E refers to the 

shortest and the equal-tailed pivotal quantity, respectively. For a comparison, an extensive Monte-Carlo 

simulation study has been conducted and the results have been assessed in terms of the expected interval 

length.  

 

The simulation results show that since the pivotal statistic 𝑚̂ 𝑚⁄  has a positively skewed distribution, any 

of the MLES, the WLSS or the MNS methods gives better results in expected interval length than its the 

equal-tailed counterpart. However, MNS has not even yielded narrower intervals than MLEE and WLSE 

methods for n > 3. Among the six methods, MLES yields the narrowest expected interval for the almost all 

n values, except for n = 3 where WLES is best. In addition, any of the MLES, the WLSS or the MNS 

methods generates more centered confidence intervals around 𝑚 as compared to its the equal-tailed 

counterpart. This result is very important for engineers that want the unknown parameter to lie in or near 

the center of the estimated interval, especially having narrower length.  

 

In this study, for the WLS method, only the Faucher and Tyson weight factor and the hazen probability 

estimator have been choosen based on the literature; but any WLS method on the combination of different 

weight factors and probability estimators will generate a positively skewed distribution for the pivotal 

statistic 𝑚̂ 𝑚⁄  and so any WLSS will give again better results in the expected interval length as compared 

to its the equal-tailed counterpart. However, for future studies, different pivotal statistics can be used to 

estimate exact confidence intervals of 𝑚; and within this framework the performances of the MLE, the MN 

and different WLS methods can be compared. 
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