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ABSTRACT 

Interest in studying nonlinear models has been increasing in recent years. Dynamical systems, in which the state 

of the system changes continuously over time, have nonlinear interactions. The use of unique nonlinear differential 

equations is inescapable in the evaluation of such systems. In mathematical point of view, for obtaining analytical 

solutions of nonlinear differential equations, it must be fully integrable. Consequently, the importance of fully 

integrable nonlinear differential equations for nonlinear science has become indisputable. Among these equations, 

one of the most studied by physicists and mathematicians is the nonlinear Schrödinger equation. This equation has 

undergone many modifications to evaluate different phenomena. In this study, the resonant nonlinear Schrödinger 

equation, which is the most important of these physical equations in terms of explaining many physical 

phenomena, is solved analytically with the generalized sub-equation method. 

Keywords- Generalized Sub-Equation Method, (1+1)-Dimensional Resonant Nonlinear Schrodinger’s 

Equation, Exact Solution 

 

ÖZ 

Doğrusal olmayan modelleri incelemeye olan ilgi son yıllarda artmaktadır. Sistemin durumunun zaman içinde 

sürekli olarak değiştiği dinamik sistemler doğrusal olmayan etkileşimlere sahiptir. Bu tür sistemlerin 

değerlendirilmesinde benzersiz doğrusal olmayan diferansiyel denklemlerin kullanılması kaçınılmazdır. 

Matematiksel bakış açısına göre, doğrusal olmayan diferansiyel denklemlerin analitik çözümlerini elde etmek için, 

tamamen integre edilebilir olmalıdır. Sonuç olarak, doğrusal olmayan bilim için tamamen integre edilebilir 

doğrusal olmayan diferansiyel denklemlerin önemi tartışılmaz hale gelmiştir. Bu denklemler arasında fizikçiler ve 

matematikçiler tarafından en çok çalışılanlardan biri doğrusal olmayan Schrödinger denklemidir. Bu denklem, 

farklı olayları değerlendirmek için birçok değişikliğe uğramıştır. Bu çalışmada birçok fiziksel olguyu açıklama 

açısından bu fiziksel denklemlerin en önemlisi olan rezonans doğrusal olmayan Schrödinger denklemi 

genelleştirilmiş alt denklem yöntemi ile analitik olarak çözülmüştür. 

Anahtar Kelimeler- Genelleştirilmiş Alt Denklem Yöntemi, (1+1) Boyutlu Resonant Doğrusal Olmayan 

Schrödinger Denklemi, Tam Çözüm 
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I. INTRODUCTION 

The interest on nonlinear phenomena has been increasing in recent decades. The main reason behind this 

is the fact that many events in nature are based on nonlinear interactions. These types of systems where interactions 

are nonlinear are called dynamical systems. Modelling and examining of such dynamical systems are generally 

done with some specific nonlinear differential equations. For instance, Korteweg-de Vries (KdV) [1] equation is 

best fitting equation for examining surface waves of shallow waters. On the other hand, Ginzburg-Landau equation 

is very useful in evaluating many concepts, such as superfluidity [2], Bose-Einstein condensation [3], strings in 

eld theory [4] and lasers [5], etc. Although 150 years have passed since it was first observed by John Scott Russell 

(1808-1882), the concept of soliton is growing in importance. Many researchers, especially from the eld of physics 

and mathematics, concentrate heavily on solitons [6, 7]. While mathematicians are interested in solitons because 

of the aesthetic and compelling appeal of mathematics used to explain solitons [8]. Physicists are interested in 

solitons due to their particle grade stability which can be described as remaining unchanged after a collision. Due 

to these unique properties, solitons are used in many areas of physics, such as plasma physics [9], particle physics 

[10], condensed matter physics [11] and astrophysics [12], etc. The fully integrability of the differential equation 

used to explain a nonlinear phenomenon in terms of mathematics is vital for the obtaining the exact solutions. 

Among the fully integrable nonlinear differential equations, nonlinear Schrödinger equation (NLSE) is of great 

importance in both physics and mathematics. NLSE is very successful in describing the evolution of slowly 

varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. With the 

development of our understanding of explaining nonlinear phenomena, some modifications were made on the 

NLSE and some physical events could be better explained. The most generic example for modified NLSEs is the 

resonant nonlinear Schrödinger equation (rNLSE) which is used for describing intermediate cases (inter-modal 

dispersion) between focusing and defocusing [13]. 

The (1+1)-dimensional resonant nonlinear Schrödinger's equation is given by [14,15], 

 2 4
   0,   1.xx

t xxi a b c d i


     


 
  
 

         (1) 

where ( , )x t  is the complex wave profile and ,x t  spatial and temporal variables. In the last term xx



 the 

differentiation with respect to x  describes the Broglie quantum potential. Its coefficient d  plays an important role 

in the form of the rNLSE, as it determines solutions with different behavior. Many studies on Schrödinger and 

rNLSE are made by various scientists [19-24]. For instance, Williams et al. [17] argued the stability and dynamical 

properties of soliton waves in rLNSE. Lee and Pashaev [18] used the Hirota bilinear approach to consider 

physically relevant soliton solutions of the resonant nonlinear Schrödinger equation with nontrivial boundary 

conditions. 

To the best of our knowledge sub equation method is used for the first time to obtain the solution exact 

solutions of rLNSe. By this method trigonometric and hyperbolic solutions are obtained. Using chain rule with 

this method gives us a chance to turn nonlinear partial differential equation into nonlinear ordinary differential 

equation without using any normalization or discretization.  

II. DESCRIPTION OF GENEALIZED SUB-EQUATION METHOD 

In this section a brief description of the considered method called sub-equation method [16] can be 

expressed step by step. Take into account following nonlinear partial differential equation (NLPDE), 

 , , , , ,  . . .   0.t x tt xxP u u u u u   (2) 

Step 1. The wave transform 

,x t     (3) 
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Here,   describes the velocity of the wave. By the help of this transformation and chain rule the function  ,u x t  

changes into ( )U   which includes only one independent variable, also NLPDe turns into a nonlinear ordinary 

differential equation (NODE), 

 , , ,... 0G U U U     (4) 

where prime indicates the Newtonian concept derivative with respect to  . 

Step 2. Assume that the solution of Eq. (4) can be obtained in the following form 

       
 

1 0 1 1 1 ,  0  0
n n

U a a a a or a    


 
   
          (5) 

where 1 0 1, ,a a a  are constant coefficients and going to be achieved later. Also n  can be obtained using balancing 

procedure in Eq. (4) and ( )   is the solution of the following ODE 

    
2

          (6) 

and   is a constant. For the Eq. (6), some special solutions can be stated as follows 

 

 

 

 

tanh , 0,

coth , 0,

( ) tan , 0,

cot , 0,

1
, . , 0.is cons

  

  

    

  

 
 


   

   



 

 

 




  (7) 

Step 3. By replacing the Eqs. (5) and (6) into Eq. (4) and regulating the obtained equation due to powers of ( )i   

and also equating the coefficients of ( )i   to zero, we deduce an algebraic equation system with respect to 

( 0,..., ), ,ia i n k w and  . 

Step 4. Finally, the determined values of  ( 0,..., ), ,ia i n k w  and   are put into Eq. (5) by the help of formulas 

given in (7). So, we get the exact solutions for Eq. (2). 

III. ANALYTICAL SOLUTIONS OF THE (1+1) DIMENSIONAL RESONANT NONLINEAR 

SCHRÖDINGER’S EQUATION 

Using the following transformations in Eq. (1): 

   , ,  ,  ix t e x t kx t           Ω Ω   (8) 

leads to 

   2 3 5 0a d ak b c           (9) 

and   

2 .ak    

Considering the terms  and 5 for in Eq. (9) for balancing procedure, yields
1

2
n  . Here, balancing 

term is a non-integer value. So, this concludes the solution of the Eq. (9) as in the following form 
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       
1 1

 
2 2

1 0 1 .a a a    



          (10) 

Subrogating Eq. (10) into Eq. (9), yields following algebraic equation system. 

2 5

2 2

4

0 2

12 ( ) 4 0,

5 0,

a a d a c

a a c

   


  

 

 

 

2 3 4 3 2

0 2 1 2 2 1

3 2 3 2

0 2 0 1 2 0 2

5 3 3 2 2 2

0 0 1 2 0 0 1 2 0 1 2 0

2 4 2 2 2 3 2 2

1 1 0 1 0 1 2 0 1 1 2 1 2

3 2

0 1

40 20 4 ( ) 0,

10 20 3 0,

20 30 6 0,

( ) 2 10 60 6 20 6 0,

10 20

a a c a a c a b a a d

a a c a a a c a a b

a c a a a c a b a a a c a a a b a ak

a a d a ak a a c a a a c a a b a a c a a b

a a c a





 

    

  

      

        



 

3 2

0 1 2 0 1

2 3 4 3

2 0 1 1 2 1

4

0 1

5

1 1

2 4 2 2 2 2 3 2

2 2 0 2 0 1 2 0 2 1 2 1 2

3 0,

( ) 40 20 4 0,

5 0,

12 ( ) 4 0,

( ) 2 10 60 6 20 6 0.

a a c a a b

a a d a a c a a c a b

a a c

a a d a c

a a d a ak a a c a a a c a a b a a c a a b 

 

    



  

         

  

Solving the above systems yields: 

For 0,    

 
2

2 21
0 2 1 12

1

43
, 0, , , ,

16 4

a a bb
c a d a a ak a b

a


  

 

  
         

 
  (11) 

 
 

1
1 1( , ) tanh ,

tanh

ia
x t a e


  

 



 
 

     
   

 

 

 
 

1
2 1( , ) coth .

coth

ia
x t a e


  

 



 
 

     
   

 

  

For 0,    

 
2

2 21
0 2 1 12

1

43 1
, 0, , , 4 5 ,

416 4

a a bb
c a d a a ak a b

a


  

 

 
          (12) 

 
 

1
3 1( , ) tan ,

tan

ia
x t a e


  

 



 
 

  
 
 

 

 
 

1
4 1( , ) cot .

cot

ia
x t a e


  

 



 
 

  
 
 
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IV. GRAPHICAL REPRESENTATION OF PROBABILITY DISTRIBUTION FOR SOME 

SOLUTIONS 

A single soliton propagated along x  axis can be seen from the Figure 1(a). Moreover, the fading of the 

amplitude with time due to compulsion can be seen from the Figure 1(b). Three solitons having different 

amplitudes propagated along x  axis can be seen from the Figure 1(c). Contrary to 1( , )x t , three distinct solitons 

corresponding to 3( , )x t  localized at different x  positions without fading of the amplitude can be seen from the 

Figure 1(d).   

 

(a) 0.1, 5, 0.01t       

 

(b) 0.1, 5      

 

(c) 0.1, 5, 0.01t     

 

(d) 0.1, 5    

Figure 1. 3D and 2D graphical representations of 3( , )x t for different values 

V. CONCLUSION 

In this article authors find new trigonometric and hyperbolic solutions of the Schrödinger equation and 

interpret them graphically, and the generalized sub-equation method was used to achieve these goals. Also, the 

graphical illustrations and explanations of some solutions are given to express the physical nature of the solutions. 

All generated solutions are verified by utilizing symbolic computation. The results obtained here can be useful to 

understand the physics of various problems encountered in nature. 
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