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• The series solution is focused. 

• Homotopy Perturbation Elzaki Transform Method is used. 

• The moments are obtained.  
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Abstract 

The series solutions of the random nonlinear partial differential equations have been examined 

by a hybrid method. The random nonlinear partial differential equations are studied by both 

normal and uniform distributions. Two initial-value problems are indicated to exemplify the 

influence of the solutions acquired by the hybrid method. Also, the functions for the first and 

second moments of the approximate solutions of random nonlinear partial differential equations 

are acquired in the MAPLE software. The hybrid method is implemented to analyze the solutions 

of the random nonlinear partial differential equations. MAPLE software is used to find the 

solutions. Besides, MAPLE software is used for the drawing the figures. 
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1. INTRODUCTION 

 

The ordinary differential equations (ODEs) that include random constants or random variables have been 

current important matters that are named as random ordinary differential equations (RODEs). The topic of 

random partial differential equations (RPDEs) have been used to analyze a lot of applications such as 

engineering, mathematical biology and physics problems. Recently, a lot of scientific problems which 

belongs to fluid mechanics, control theory, climate models, physics and so on are solved. The random 

evolution partial differential equations have been examined. Also, they have analyzed the heat and 

Schrödinger equations by random parameters [1]. A new solution approach for these RPDEs based on deep 

learning has been given [2]. The numerical approximation of RPDEs have been examined [3]. The mean 

square approach and Laplace transform method have been used to solve random hyperbolic PDEs [4]. The 

new Sumudu transform iterative method is applied to obtain the approximate solutions of RPDEs [5].  

 

There are extremely few papers about random nonlinear partial differential equations (RNPDEs) in the 

literature. The partial differential equations (PDEs) that include are random variables or stochastic 

processes are defined as random partial differential equations. RPDEs are very important in a lot of 

applications in a lot of scientific areas. It is often impossible to analytically solve RNPDEs. Thus, a lot of 

numerical methods for RPDEs, ODEs and PDEs have been established. There are a lot of numerical 

methods such as Adomian decomposition method (ADM) [6], homotopy perturbation method (HPM) [7-

10], differential transform method (DTM) [11-16], variational iteration method (VIM) [17], finite 

difference method [18-19], random finite difference scheme [20,21] and a lot of methods. 
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This work studies RNPDEs and to acquire the approximate solutions of these equations by the HPETM. 

Jena and  Chakraverty have applied this method to solve Navier–Stokes equation of fractional order [22].   

 

The main motivation of this work is to obtain the approximate solutions of the RNPDEs by the homotopy 

perturbation Elzaki transform method and calculate the first and second moments of these approximate 

solutions. Besides, the graphs of these moments have been plotted in MAPLE software.  

 

2. BASIC DEFINITIONS 

 

A few basic definitions and features are given in this section. 

 

Definition 2.1 [23] Let the  the function 𝑓(𝑥) is probability density function for random variable 𝑋. Then, 

𝑋 gets normal distribution and is named the normal random variable  

 

𝑓(𝑥) =
1

σ√2π
𝑒

−
1
2

(
𝑥−𝜇

𝜎
)

2

,   − ∞ < 𝑥 < ∞, −∞ < 𝜇 < ∞, 𝜎2 > 0.                                                                  (1) 

 

If 𝑋 has the normal distribution by parameters 𝜇 and 𝜎2, the first and second moments of 𝑋 are defined by 

 

𝐸(𝑋) = 𝜇, 𝑉𝑎𝑟(𝑋) = 𝜎2 .                                                                                                                                           (2) 

 

Definition 2.2 [23] Let the  the function 𝑓(𝑥) is probability density function for random variable 𝑋. Then, 

𝑋 gets uniform distribution and is named the uniform random variable 

 

𝑓(𝑥) =
1

β − 𝛼
,   α < 𝑥 < 𝛽.                                                                                                                                       (3) 

  

If 𝑋 has the uniform distribution by parameters 𝛼 and 𝛽, the first and second moments of 𝑋 are defined by 

 

𝐸(𝑋) = 𝛼, 𝑉𝑎𝑟(𝑋) = 𝛽.                                                                                                                                              (4) 

 

Definition 2.3 [24] The Elzaki transform (ET) of the function 𝑔(𝑡) for 𝑡 > 0 is defined by  

 

𝐸{𝑔(𝑡)} = 𝑇(𝑣) = 𝑣 ∫ 𝑔(𝑡)𝑒−
𝑡
𝑣𝑑𝑡

∞

0

.                                                                                                                        (5) 

 

Definition 2.4 [24] The Elzaki transforms of the partial derivatives are as follows. 

 

𝐸 [
𝜕𝑔(𝑥, 𝑡)

𝜕𝑡
] =

1

𝑣
𝑇(𝑥, 𝑣) − 𝑣𝑔(𝑥, 0), 𝐸 [

𝜕2𝑔(𝑥, 𝑡)

𝜕𝑡2
] =

1

𝑣2
𝑇(𝑥, 𝑣) − 𝑔(𝑥, 0) − 𝑣

𝜕𝑔(𝑥, 0)

𝜕𝑡
, 

 

𝐸 [
𝜕𝑔(𝑥, 𝑡)

𝜕𝑥
] =

𝑑

𝑑𝑥
[𝑇(𝑥, 𝑣)], 𝐸 [

𝜕2𝑔(𝑥, 𝑡)

𝜕𝑥2
] =

𝑑2

𝑑𝑥2
[𝑇(𝑥, 𝑣)].                                                                             (6) 

 

 

Also, the normal and uniform distributions are used in the examples. 

 

3. A HYBRID METHOD  

 

Consider the NPDE by the initial conditions 
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{
𝐷𝑤(𝑢, 𝑡) + 𝐿𝑤(𝑢, 𝑡) + 𝑁𝑤(𝑢, 𝑡) = 𝑔(𝑢, 𝑡),

𝑤(𝑢, 0) = ℎ(𝑢), 𝑤𝑣(𝑢, 0) = 𝑓(𝑢)
                                                                                                         (7) 

 

where 𝐷 is the second order linear differential operator, 𝐿, 𝑁 are respectively linear and nonlinear 

differential operators and also, the order of 𝐿 is smaller than two, 𝑔(𝑢, 𝑡) is the nonhomogeneous term [25]. 

 

If ET is applied to both sides of (7), then it is obtained as [25] 

 

𝐸[𝐷𝑤(𝑢, 𝑡)] + 𝐸[𝐿𝑤(𝑢, 𝑡)] + 𝐸[𝑁𝑤(𝑢, 𝑡)] = 𝐸[𝑔(𝑢, 𝑡)].                                                                                 (8) 

 

If the differential property of Elzaki transform and initial conditions (ICs) are used, then (9) is obtained.  

 

𝐸[𝑤(𝑢, 𝑡)] = 𝑣2𝐸[𝑔(𝑢, 𝑡)] + 𝑣2ℎ(𝑢) + 𝑣3𝑓(𝑢) − 𝑣2𝐸[𝐿𝑤(𝑢, 𝑡) + 𝑁𝑤(𝑢, 𝑡)].                                          (9) 

 

If the inverse Elzaki transform is applied to both sides of (9), then it is found as [25]  

 

𝑤(𝑢, 𝑡) = 𝐺(𝑢, 𝑡) − 𝐸−1{𝑣2𝐸[𝐿𝑤(𝑢, 𝑡) + 𝑁𝑤(𝑢, 𝑡)]}                                                                                     (10) 

 

where 𝐺(𝑢, 𝑡) is the term that arises by the nonhomogeneous term and ICs. 

 

Now, HPM  

 

𝑤(𝑢, 𝑡) = ∑ 𝑝𝑛𝑤𝑛(𝑢, 𝑡)

∞

𝑛=0

                                                                                                                                        (11) 

 

is applied and the nonlinear term has been decomposed as  

 

𝑁𝑤(𝑢, 𝑣) = ∑ 𝑝𝑛𝐻𝑛(𝑤)

∞

𝑛=0

                                                                                                                                       (12) 

 

where 𝐻𝑛(𝑤) are given by 

 

𝐻𝑛(𝑤0, 𝑤1, … , 𝑤𝑛) =
1

𝑛!

𝜕

𝜕𝑝𝑛 [𝑁 (∑ 𝑝𝑖𝑤𝑖

∞

𝑖=0

)]

𝑝=0

, 𝑛 = 0,1,2, …                                                                     (13) 

 

(11) and (12) are substituted in (10), it is obtained as [25] 

 

∑ 𝑝𝑛𝑤𝑛(𝑢, 𝑡)

∞

𝑛=0

= 𝐺(𝑢, 𝑡) − 𝑝 {𝐸−1 {𝑣2𝐸 [𝐿 ∑ 𝑝𝑛𝑤𝑛(𝑢, 𝑡)

∞

𝑛=0

+ ∑ 𝑝𝑛𝐻𝑛(𝑤)

∞

𝑛=0

]}}.                                   (14) 

 

This is the coupled of the ET and HPM. 

 

If the same powers of 𝑝 are compared, then the iterations which obtained are as follows: 

 

𝑝0: 𝑤0(𝑢, 𝑡) = 𝐺(𝑢, 𝑡), 
𝑝1: 𝑤1(𝑢, 𝑡) = −𝐸−1{𝑣2𝐸[𝐿𝑤0(𝑢, 𝑡) + 𝐻0(𝑤)]}, 
𝑝2: 𝑤2(𝑢, 𝑡) = −𝐸−1{𝑣2𝐸[𝑅𝑤1(𝑢, 𝑡) + 𝐻1(𝑤)]}, 
𝑝3: 𝑤3(𝑢, 𝑡) = −𝐸−1{𝑣2𝐸[𝑅𝑤2(𝑢, 𝑡) + 𝐻2(𝑤)]} 

⋮ 
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Thus, the series solution of (7) is given as [25] 

 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑖(𝑥, 𝑡)

∞

𝑖=0

.                                                                                                                                               (15) 

 

4. NUMERICAL EXPERIMENTS 

 

Example 4.1. Consider the RNPDE, 

 

{
𝑤𝑡(𝑢, 𝑡) + 𝑤(𝑢, 𝑡)𝑤𝑢(𝑢, 𝑡) = −𝐵𝑢 + 2𝐴2𝑢3 − 3𝐴𝐵𝑢2 + 𝐵2𝑢𝑡2,

𝑢(𝑥, 0) = 𝐴𝑢2.
                                                                (16) 

 

where 𝐴 is random variable which has Normal distribution by parameters α = 3 and 𝛽 = 2 and 𝐵 is random 

variable which has uniform distribution by parameters α = 2, 𝛽 = 1, i.e. 𝐴~𝑁(α = 3, 𝛽 = 2), 𝐵~𝑈(α =
2, 𝛽 = 1). 
  

If ET is implemented to (16) and the differential property of ET is used, then (17) is obtained as  

 

𝐸[𝑤(𝑢, 𝑡)] = 𝐴𝑢2𝑣2 − 𝐵𝑢𝑣3 + 2𝐴2𝑢3𝑣3 − 3𝐴𝐵𝑢2𝑣4 + 2𝐵2𝑢𝑣5 − 𝑣𝐸[𝑤(𝑢, 𝑡)𝑤𝑢(𝑢, 𝑡)]                    (17) 

 

If the inverse ET is applied to (17), then (18) is obtained as 

 

𝑤(𝑢, 𝑡) = 𝐴𝑢2 − 𝐵𝑢𝑡 + 2𝐴2𝑢3𝑡 −
3𝐴𝐵𝑢2𝑡2

2
+

𝐵2𝑢𝑡3

3
− 𝐸−1{𝑣𝐸[𝑤(𝑢, 𝑡)𝑤𝑢(𝑢, 𝑡)]}.                             (18) 

 

Now, the HPM is applied, then it is obtained as  

 

∑ 𝑝𝑛𝑤𝑛(𝑢, 𝑡)

∞

𝑛=0

= 𝑢2 − 𝐵𝑢𝑡 + 2𝐴2𝑢3𝑡 −
3𝐴𝐵𝑢2𝑡2

2
+

𝐵2𝑢𝑡3

3
− 𝑝 [𝐸−1 {𝑣𝐸 [∑ 𝑝𝑛𝐻𝑛(𝑤)

∞

𝑛=0

]}]             (19) 

  

where 𝐻𝑛(𝑤) are He’s polynomials which show nonlinear terms. 

 

Some components of 𝐻𝑛(𝑢) are as follows: 

 

𝐻0(𝑤) = 𝑤0𝑤0𝑢, 
𝐻1(𝑤) = 𝑤0𝑤1𝑢 + 𝑤1𝑤0𝑢 , 
𝐻2(𝑤) = 𝑤0𝑤2𝑢 + 𝑤1𝑤1𝑢 + 𝑤2𝑤0𝑢, 
⋮ 
. 

If the same powers of 𝑝 are compared, then they are obtained as  

 

𝑝0: 𝑤0(𝑢, 𝑡) = 𝐴𝑢2 − 𝐵𝑢𝑡 + 2𝐴2𝑢3𝑡 −
3𝐴𝐵𝑢2𝑡2

2
+

𝐵2𝑢𝑡3

3
, 

 

𝐻0(𝑤) = (𝐴𝑢2 − 𝐵𝑢𝑡 + 2𝐴2𝑢3𝑡 −
3𝐴𝐵𝑢2𝑡2

2
+

𝐵2𝑢𝑡3

3
) (2𝐴𝑢 − 𝐵𝑡 + 6𝐴2𝑢2𝑡 − 3𝐴𝐵𝑢𝑡2 +

𝐵2𝑡3

3
), 

 

𝑝1: 𝑤1(𝑢, 𝑡) = −2𝐴2𝑢3𝑡 +
𝐴𝐵𝑢2𝑡2

2
− 3𝐴3𝑢𝑡2 + 3𝐴2𝐵𝑢3𝑡3 −

10𝐴𝐵2𝑢2𝑡4

3
+ 𝐴𝐵𝑢2𝑡2 −

𝐵2𝑢𝑡3

3
 

+
𝐵3𝑢𝑡5

15
− 2𝐴3𝑢4𝑡2 + 𝐴2𝐵𝑢3𝑡3 − 4𝐴4𝑢5𝑡3 +

13𝐴3𝐵𝑢4𝑡4

2
−

2𝐴2𝐵2𝑢3𝑡5

15
−

𝐴𝐵2𝑢2𝑡4

8
+

3𝐴3𝐵𝑢4𝑡4

4
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−
4𝐴2𝐵2𝑢3𝑡5

5
+

𝐴𝐵3𝑢2𝑡6

12
+

2𝐴2𝐵𝑢3𝑡3

3
−

5𝐴𝐵2𝑢2𝑡4

12
+

3𝐴3𝐵𝑢4𝑡4

2
−

𝐴2𝐵2𝑢2𝑡5

5
+

𝐵3𝑢𝑡5

3
−

2𝐴2𝐵2𝑢3𝑡5

5
 

 

+
𝐴𝐵3𝑢2𝑡6

18
+ 80𝐴𝐵3𝑢2𝑡6 − 80𝐵4𝑢𝑡7. 

 

Therefore, the series solution of (16) has been obtained as 

 

𝑤(𝑢, 𝑡) = 𝑤0(𝑢, 𝑡) + 𝑤1(𝑢, 𝑡) = 𝐴𝑢2 − 𝐵𝑢𝑡 + 2𝐴2𝑢3𝑡 −
3𝐴𝐵𝑢2𝑡2

2
+

𝐵2𝑢𝑡3

3
− 2𝐴2𝑢3𝑡 +

𝐴𝐵𝑢2𝑡2

2
 

 

−3𝐴3𝑢𝑡2 + 3𝐴2𝐵𝑢3𝑡3 −
10𝐴𝐵2𝑢2𝑡4

3
+ 𝐴𝐵𝑢2𝑡2 −

𝐵2𝑢𝑡3

3
+

𝐵3𝑢𝑡5

15
− 2𝐴3𝑢4𝑡2 + 𝐴2𝐵𝑢3𝑡3 − 4𝐴4𝑢5𝑡3 

 

+
13𝐴3𝐵𝑢4𝑡4

2
−

2𝐴2𝐵2𝑢3𝑡5

15
−

𝐴𝐵2𝑢2𝑡4

8
+

3𝐴3𝐵𝑢4𝑡4

4
−

4𝐴2𝐵2𝑢3𝑡5

5
+

𝐴𝐵3𝑢2𝑡6

12
+

2𝐴2𝐵𝑢3𝑡3

3
 

 

−
5𝐴𝐵2𝑢2𝑡4

12
+

3𝐴3𝐵𝑢4𝑡4

2
−

𝐴2𝐵2𝑢2𝑡5

5
+

𝐵3𝑢𝑡5

3
−

2𝐴2𝐵2𝑢3𝑡5

5
+

𝐴𝐵3𝑢2𝑡6

18
 

+80𝐴𝐵3𝑢2𝑡6 − 80𝐵4𝑢𝑡7.                                                                                                                      (20) 

 

Let 𝐴~𝑁(α = 3, 𝛽 = 2) and 𝐵~𝑈(α = 2, 𝛽 = 1). 
  

So the approximated values of 𝐴, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6, 𝐴7, 𝐴8, 𝐵, 𝐵2, 𝐵3, 𝐵4 are obtained as follows. 

 

𝐸(𝐴) = 3, 𝐸(𝐴2) = 13, 𝐸(𝐴3) = 63, 𝐸(𝐴4) = 345, 𝐸(𝐴5) = 1323, 𝐸(𝐴6) = 13029, 
 

𝐸(𝐴7) = 88119, 𝐸(𝐴8) = 622608, 𝐸(𝐵) =
3

2
, 𝐸(𝐵2) =

7

3
, 𝐸(𝐵3) =

15

4
, 𝐸(𝐵4) =

31

5
. 

 

The first moment of (20) has been obtained as 

 

𝐸[𝑤(𝑢, 𝑡)] = 3𝑢2 −
3𝑢𝑡

2
+ 26𝑢3𝑡 −

9𝑢2𝑡2

4
− 189𝑢𝑡2 −

39𝑢3𝑡3

2
−

147𝑢2𝑡4

6
+

𝑢𝑡5

2
− 126𝑢4𝑡2 

 

+
65

2
𝑢3𝑡3 − 1380𝑢5𝑡3 +

189𝑢4𝑡4

4
+ 567𝑢4𝑡4 −

728𝑢3𝑡5

45
−

7𝑢2𝑡4

8
+

1701𝑢4𝑡4

8
+

5𝑢2𝑡6

16
−

7𝑢2𝑡4

4
 

 

−
91𝑢2𝑡5

15
−

182𝑢3𝑡5

15
+

5𝑢2𝑡6

4
+ 900𝑢2𝑡6 − 496𝑢𝑡7. 

 

The first moment of (20) is shown in Figure 1. 
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Figure 1. Time-dependent variation of first moment of (20) 

 

Let 𝐴~𝑁(α = 3, 𝛽 = 2) and 𝐵~𝑈(α = 2, 𝛽 = 1). Then the variance of (20) is calculated by MAPLE 

software. 

 

The second moment of (20) is shown in Figure 2. 

 

 
Figure 2. Time-dependent change of second moment for (20) 

 

Example 4.2. Consider the RNPDE, 

 

{
𝑤𝑡(𝑢, 𝑡) + 𝑤(𝑢, 𝑡)𝑤𝑢(𝑢, 𝑡) = 𝐴𝐵𝑡3 + 𝐵2𝑢𝑡2 + 2𝐴𝑡 + 𝐵𝑢,

𝑤(𝑢, 0) = −𝐵𝑢
                                                                          (21) 

 

where 𝐴 is random variable which has Normal distribution by parameters α = 2 and 𝛽 = 1 and 𝐵 is random 

variable which has uniform distribution by parameters α = 2, 𝛽 = 3, i.e. 𝐴~𝑁(α = 2, 𝛽 = 1), 𝐵~𝑈(α =
2, 𝛽 = 3). 
 

If ET is implemented to (21) and the differential property of ET is used, then (22) is obtained as  

 

𝐸[𝑤(𝑢, 𝑡)] = 6𝐴𝐵𝑣6 + 2𝐵2𝑢𝑣5 + 2𝐴𝑣4 + 𝐵𝑢𝑣3 − 𝐵𝑢𝑣2 − 𝑣𝐸[𝑤(𝑢, 𝑡)𝑤𝑢(𝑢, 𝑡)].                                (22) 

 

If the inverse ET is applied to (22), then (23) is obtained as 

 

𝑤(𝑢, 𝑡) =
𝐴𝐵𝑡4

4
+

𝐵2𝑢𝑡3

3
+ 𝐴𝑡2 + 𝐵𝑢𝑡 − 𝐵𝑢 − 𝐸−1{𝑣𝐸[𝑤𝑤(𝑢, 𝑡)𝑤𝑢(𝑢, 𝑡)]}.                                          (23) 

 

Also, HPM is applied, it is obtained as  

 



1057  Halil ANAC, Mehmet MERDAN, Tulay KESEMEN/ GUJ Sci, 35(3): 1051-1060 (2022) 

 
 

∑ 𝑝𝑛𝑤𝑛(𝑢, 𝑡)

∞

𝑛=0

=
𝐴𝐵𝑡4

4
+

𝐵2𝑢𝑡3

3
+ 𝐴𝑡2 + 𝐵𝑢𝑡 − 𝐵𝑢 − 𝑝 [𝐸−1 {𝑣𝐸 [∑ 𝑝𝑛𝐻𝑛(𝑤)

∞

𝑛=0

]}]                          (24) 

 

where 𝐻𝑛(𝑤) are He’s polynomials which show nonlinear terms. 

 

Some components of 𝐻𝑛(𝑤) are as follows: 

 

𝐻0(𝑤) = 𝑤0𝑤0𝑢, 
𝐻1(𝑤) = 𝑤0𝑤1𝑢 + 𝑤1𝑤0𝑢 , 
𝐻2(𝑤) = 𝑤0𝑤2𝑢 + 𝑤1𝑤1𝑢 + 𝑤2𝑤0𝑢, 
⋮ 
. 

If the same powers of 𝑝 are compared, then they are obtained as  

 

𝑝0: 𝑤0(𝑢, 𝑡) =
𝐴𝐵𝑡4

4
+

𝐵2𝑢𝑡3

3
+ 𝐴𝑡2 + 𝐵𝑢𝑡 − 𝐵𝑢, 

 

𝐻0(𝑤) = (
𝐴𝐵𝑡4

4
+

𝐵2𝑢𝑡3

3
+ 𝐴𝑡2 + 𝐵𝑢𝑡 − 𝐵𝑢) (

𝐵2𝑡3

3
+ 𝐵𝑡 −  𝐵), 

 

𝑝1: 𝑤1(𝑢, 𝑡) =
𝐴𝐵3𝑡8

96
+

7𝐴𝐵2𝑡6

72
−

𝐴𝐵2𝑡5

20
+

𝐵4𝑢𝑡7

63
+

2𝐵3𝑢𝑡5

15
−

𝐵3𝑢𝑡4

6
+

𝐴𝐵𝑡4

4
−

𝐴𝐵𝑡3

3
+

𝐵2𝑢𝑡3

3
 

 

−𝐵2𝑢𝑡2 + 𝐵2𝑢𝑡. 
 

Therefore, the series solution of (21) is acquired as 

 

𝑤(𝑢, 𝑡) = 𝑤0(𝑢, 𝑡) + 𝑤1(𝑢, 𝑡) =
𝐴𝐵𝑡4

2
+

2𝐵2𝑢𝑡3

3
+ 𝐴𝑡2 + 𝐵𝑢𝑡 − 𝐵𝑢 +

𝐴𝐵3𝑡8

96
+

7𝐴𝐵2𝑡6

72
−

𝐴𝐵2𝑡5

20
 

 

 +
𝐵4𝑢𝑡7

63
+

2𝐵3𝑢𝑡5

15
−

𝐵3𝑢𝑡4

6
−

𝐴𝐵𝑡3

3
− 𝐵2𝑢𝑡2 + 𝐵2𝑢𝑡.                                                                                (25) 

 

Let 𝐴~𝑁(α = 2, 𝛽 = 1) and 𝐵~𝑈(α = 2, 𝛽 = 3). 
  

So the approximated values of 𝐴, 𝐴2, 𝐵, 𝐵2, 𝐵3, 𝐵4, 𝐵5, 𝐵6, 𝐵7, 𝐵8 are obtained as follows. 

 

𝐸(𝐴) = 2, 𝐸(𝐴2) = 5, 𝐸(𝐵) =
5

2
, 𝐸(𝐵2) =

19

3
, 𝐸(𝐵3) =

65

4
, 𝐸(𝐵4) =

211

5
, 𝐸(𝐵5) =

665

6
, 

 

𝐸(𝐵6) =
2059

7
, 𝐸(𝐵7) =

6305

8
, 𝐸(𝐵8) =

19171

9
. 

 

The first moment of (25) is calculated as  

 

𝐸[𝑤(𝑢, 𝑡)] =
5𝑡4

2
+

38𝑢𝑡3

9
+ 2𝑡2 +

53𝑢𝑡

6
−

5𝑢

2
+

65𝑡8

192
+

133𝑡6

108
−

19𝑡5

30
+

211𝑢𝑡7

315
+

13𝑢𝑡5

6
−

65𝑢𝑡4

24
 

 

−
5𝑡3

3
−

19𝑢𝑡2

3
. 

 

The first moment of (25) is shown in Figure 3. 
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Figure 3. Time-dependent variation of first moment of (25) 

 

For 𝐴~𝑁(α = 2, 𝛽 = 1) and 𝐵~𝑈(α = 2, 𝛽 = 3) the variance of (25) is calculated by MAPLE software. 

 

The second moment of (25) is shown in Figure 4. 

 

 
Figure 4. Time-dependent variation of second moment of (25) 

 

5. RESULTS AND DISCUSSIONS  

 

We plotted the graphs of the first and second moments of the temperature 𝑤(𝑢, 𝑡) of HPETM solutions for 

examples 4.1 and 4.2. Figure 1 shows the first moment results obtained by using HPETM for example 4.1. 

Besides, Figure 2 shows the second moment results obtained by using HPETM for example 4.1. It is 

observed from Figures 1-2 that these moments of the temperature 𝑤(𝑢, 𝑡) decreases when the values of 

space variable 𝑢 increases and time 𝑡 is constant. Also, we have inferred from Figures 1-2 that these 

moments of the temperature 𝑤(𝑢, 𝑡)  decreases when the values of space variable 𝑢 is constant and time 𝑡 

increases.  Figure 3 shows the first moment results obtained by using HPETM for example 4.2. Figure 4 

shows the second moment results obtained by using HPETM for example 4.2. It is observed from Figures 

3-4 that these moments of the temperature 𝑤(𝑢, 𝑡)  increases when the values of space variable 𝑢 and time 

𝑡 increase.  
 

6. CONCLUSION 

 

In this paper, RNPDEs are analyzed by HPETM. Besides, the functions for the first and second moments 

of the approximate analytical solutions of the RNPDEs have been acquired by using both normal and 

uniform distributions. We have observed that the whole structures of the surface graphs that are acquired 

in Maple software differ for Example 4.1. In the same way, we have deduced that the whole structures of 

the surface graphs that are acquired in Maple software differ for Example 4.2. Also, the approximate 
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analytical solutions of the RNPDEs have been quickly and successfully obtained by HPETM. Therefore, 

HPETM is quickly, efficient and superior in obtaining the approximate analytical solutions of RNPDEs. 
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