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Abstract 

 

It was found that Microwave (MW) assisted wood preservative (WP) treatments affects further lowering swelling 

and water absortion values for selected hardwoods and softwood species in this study. It is clear that the post MW 

treated woods effects further reaction or bonding to hydroxyl group (–C-OH) of cell wall constituents to create 

further water repellent (hyrophobic) surfaces with WP applications. However, the water absorptiveness was found 

to be lowered extensively on all WP treated samples. The further lowering water absortiveness values calculated 

for all post MW treated samples.  The calculated values have indicated approximately further reducing of 14.9% 

for Eucalyptus, 6.9% for Poplar, 6.8% Chestnut samples, 7.9% for Cedrus and 18.1% for Pine samples respectively. 

It has also found that MW treated samples are a clear evidence on increasing bonding strength for all post MW 

treated wood species. The MW treatments increased bonding strengths of wood in the range of 6.5-20.2% for 

hardwoods and 5.5-10.4% for softwood species. 
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Ahşabın Hidrofilikliği ve Yapışma Direnci Üzerine Mikrodalga 
Muamelesinin Etkisi 
 
Öz 

 

Bu çalışmanın amacı ahşap materyalin hidrofilikliği ve yapışma direnci üzerinde mikrodalga muamelesinin 

etkilerini araştırmaktır. Elde edilen sonuçlar mikrodalga (MW) yardımıyla odun koruyucu (WP) muamelelerin 

seçilen iğne yapraklı ve yapraklı türler için daha düşük su alma ve şişme değerleri göstermiştir. MW muameleli 

ahşaplar, WP uygulamalarında su itici (hidrofobik) yüzeylerin oluşumunda hüçre duvarı bileşenlerinin hidroksil 

gruplarına (–C-OH) bağlanması ya da reaksiyon oluşumunu etkilediği açıktır. Fakat su emiciliği tüm MP 

muameleli örnekler üzerinde önemli ölçüde düşürdüğü bulundu buna karşın çok daha fazla su su emiciliğindeki 

azalma MW muameleli örnekler için elde edilmiştir. Hesaplanan değerler Ekaliptus için 14.9%, Kavak için 6.9%, 

Kestane için 6.8%, Sedir için 7.9% ve Çam için 18.1% oranında azalma göstermiştir. MW muameleli örnekler 

yüksek yapışma direnci üzerinde açık bir kanıt gösterdiği bulundu. MW muameleleri yapraklı ağaç odunları için 

%6,5-20 ve yapraklı ağaç türleri için %5,5-10,4 arasında yapışma direncini artırdı. 

 

Anahtar kelimeler: Mikrodalga, iğne yapraklı agaç, yapraklı ağaç, fiziksel özellikler, yapışma direnci. 
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1. Introduction 
 

The development of the cavity magnetron made possible to production of electromagnetic waves of a small 

enough wavelength like microwaves. However, micowave oven is work at non-ionizing electromagnetic radiation 

with a frequency in one of the Industrial Scientific Medical (ISM) bands in order to prevent with other frequencies 

(radio services) (Hansson, 2007). 

 

However, the primary heating effect at microwave frequencies occurs via the dielectric heating, as polarized 

molecules are affected by a rapidly alternating electric field (Appleton, et al.2005). It has proposed that depending 

on water content of substrates, the depth of initial heat deposition may be several centimetres or more with 

microwaves, in contrast to convection heating methods which deposit heat outer most level at the surfaces 

(Appleton, et al.2005; Hansson, 2007; Ohlsson & Bengtsson 2001).  Moreover, it should be noted that 2.45 GHz 

microwaves could be penetrate approximately 1.0 cm into most substrates (i.e. foods) (Anon 1). 

 

Kržan and Žagar (2009) utilized microwave to wood liquefaction in glycols. They proposed that microwaves 

offers very rapid heating throughout the volume of the reaction mixture, and has been shown to cause reaction 

acceleration in many cases. Mekhtiev and Torgovnikov (2004) has developwed a method to analysis of 

microwave (MW)-modified Radiata pine and Eucalyptus timbers. Their approaches are based on filling the checks 

in timber with stain solution and analysing the wood surface. It has reported that microwave (MW) wood 

modification effects on wood’s some elements and forms cavities of various sizes. Oloyede and Groombridge, 

(2000) suggested that due to wood contains high amount of water, which makes it suitable for microwave heating 

in very short drying times, very effective penetration into the depth of the wood is possible after microwave oven 

treatments. But the penetration depth is dependent on substrate and the frequency, with lower microwave 

frequencies (longer wavelengths) penetrating further. 

 

Moreover, it is important to note that for preventing deterious effects of microwave treatment of substrates like 

wood, the heating cycles should be used by small time intervals. A detailed study on microwave modification of 

wood material was conducted by Torgovnikov and Vinden (2005). They claimed that microwave (MW) wood 

modification provides an increase in wood permeability for liquids and gases while reduces internal stresses in 

timber. They have hypothesized that the MW conditions could generates steam pressure (internal pressure) within 

the wood cells resulting in the formation of narrow voids in the radial-longitudinal planes. But, under high internal 

pressure, the weak ray cells are ruptured to form pathways for easy transportation of liquids and vapours in the 

radial direction. In addition, MW could also effects some physical properties of woods that could be improved; 

permeability, acoustic properties, impregnation/liquid uptake, drying while could be reduced; heat conductivity, 

shrinkage and swelling (Torgovnikov and Vinden 2005). 

 

It has proposed that the 60 kW, 2.45 GHz MW generator could be supply an intensity of 5.3 kW/cm2 to the wood. 

Such MW intensity effects for wood modification.  It has also suggested that the high levels of MW intensity 

provide a high level of energy release in the wood. However, the energy release required for MW wood 

modification must be in the range of 300-2000 J/cm3 (or MJ/m3) (Torgovnikov and Vinden 2005). 

 

Sun and his groups (2009) found that microwave plasma (MWP) technique could be used to improve of wood 

surface wettability and bonding properties on teak wood. It was reported that the modification effect improved 

when the sample was located 120 mm from the resonance cavity, rather than at 80 mm. However, over a short 

span of time is useful to lower the contact angles and improve the surface wettability considerably. 

 

A detailed study on the impact of microwave treatment on wood properties was conducted by Hansson (2007). 

He speculated that increasing densities and moisture contents result in decreased power penetration depth while 

the MW penetration depth is correlated by the dielectric properties of wood.  However, it was proposed that the 

uneven internal wood temperature is caused by the electromagnetic field distribution and the power penetration 

depth in which the higher the moisture content, the less is the power penetration. In addition, the temperature has 

not much impact on the power penetration depth in to wood structure.  For an example for that is the microwave 

energy penetrates deeper into frozen wood than into wood at room temperature Hansson (2007). 

 

The primary objective of this study was to determine the swelling, water absorption and glue bonding of 

Microwave asisted and wood preservative treated of five different wood species that three hardwood (Eucalyptus, 

Poplar and Chestnut) and two softwood (Cedrus and Pine) species. Knowledge of these properties and relation 

with MW conditions may be essential for establishing new wood modification tecqnique. 
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2. Material and Methods 
 
Eucalyptus (Eucalyptus camaldulensis Dehn), Poplar (Populus canadensis), Chestnut (Castanea sativa Mill), 

Black pine (Pinus nigra, Arnold) and Cedar (Cedrus libani, A. Rich) woods were selected for surface treatment 

agent (Wood Preservative; WP) and Microwave (MW) treatments.  The samples were cut in the dimesnions of 

50×50×10 mm for shear bonding experiments, 20×20×15 mm mm for swelling and water intake determinations.  

Only distilled water was used in all conditions. The wood samples were oven-dried for 48 hours at 50 °C prior to 

experiments. The oven-dry density of woods was calculated as 0.39, 0.48, 0.56, 0.58, and 0.60 gr/cm3 for poplar, 

eucalyptus, chestnut, pine and cedar, respectively. 

 

A commercially available oil-modified solvent-type alkyd resins of wood preservative (WP), were supplied from 

retail stores. The wood samples were subjected to treatment by soaking in WP solution for 1.0 min. 

 

All swelling measurements were made at room temperature with digital Mitutoyo-500 caliper (± 0.02 mm). Water 

absorption data were obtained by placing the wood samples in 1500 ml flasks containing distilled water. 

Experiments were conducted at 25 oC and for immersion period at about 24 hours. After soaking, the moisture 

content of samples was calculated based on the increase in the sample weight. The samples were rapidly removed 

and superficially dried on a large filter paper to eliminate the surface water. The samples were then weighed to 

determine the moisture uptake.  At least three experiments were conducted for each wood sample and the mean 

results were used for further analysis.  

 

PVA having a polymerization degree of 1200 and solid content of 50% was supplied from retail store. The 

microwave treatments (MW) of wood substrates were conducted using a commerically available general purpose 

microwave oven with 0-600 Watts operationable power level. Only selected wood species treated in MW and 

then the adhesive was applied with a brush at an application rate of 200 g/m2. The samples were pressed for 

overnight at room temperature (23 ± 2°C). The shear tests were conducted for determining bonding strength 

properties of samples using a Zwick–Rowell universal testing machine with 10 kN load cell at a rate of 5 mm/min 

according to EN 392 under room temperatures (23 ± 2°C). The loading were applied on the surfaces of the bonded 

samples in the vertical direction under displacement control. Specimens were loaded until the onset of cracking. 

At least ten specimens were tested for each composition, and the average values of the obtained results are 

presented. The shear strength was calculated by dividing the tension load by the area of overlap. 

 

 
 

Where τ is lap shear strength (LSS), Fmax is the tension load, a is the length of the specimens, and b is the width 

of the specimens. 

 

 

3. Results and Discussion 
 

The comparative tangential swelling (%) properties of three hardwood (Eucalyptus, Poplar, Chestnut) and two 

softwood (Cedrus and Pine) species are shown in Figures 1 and 2, respectively. 

 

The untreated Eucalyptus, Poplar and Chestnut samples show tangential swelling values of 6.54%; 5.65%; and 

7.61%, respectively. However, after WP treatments (surface agent), the swelling values reduced significantly. 

The lowering rate of swelling of treated samples was found to be 28.7% for Eucalyptus, 3.4% for Poplar and 

51.5% for Chestnut samples, respectively. 

 

However, it was realized that the MW treatments before WP application have clear effects on hardwoods 

hydrophilicity (Figure 1). It could be seen that MW assisted WP treatements effects further lowering swelling 

values for Eucalyptus and Chestnut samples while Poplar samples show some variations. Interestingly, 

Eucalyptus has high swelling initially in contrast to Chestnut that lower swelling initially but when MW treatment 

conditions (power and time) increases, both species show more less similar trend as lowering swelling properties. 

The lowest swelling of 4.24% for Eucalyptus and 4.99% for Poplar woods found at 90 Watts and 150 second MW 

contions while a swelling value of 2.83% for Chestnut calculated at 180 Watts and 60 second MW treatment 

level. 

 

 



Şahin and Aydemir                                                                   Journal of Bartin Faculty of Forestry, 2020, 22 (2): 465-471 

 

 468 

 

 
Figure 1. The swelling (%) properties of MW treated hardwoods. 

 

The untreated Cedrus and Pine samples show trangential swelling values of 5.20% and 8.65%, respectively. As a 

result of only WP treatments; the swelling properties lowered 49.1% and 28.3% for Cedrus and Pine samples, 

respectively (Figure 2). However, MW assisted WP treatments have further lowering effects on hydrophilic 

properties of samples that the lowest swelling rate of 1.94% calculated for Cedrus at 180 Watts and 30 second 

while 5.51% for Pine at same power level but 60 second, MW treatment conditions.  

 

When Figure 2 carefully reviewed, it could be seen that Cedrus shows a decreasing swelling property when higher 

MW power level used at short treatment conditions.  In contrast, although MW treatments somehow lowering 

effects on swelling at certain conditions that Pine samples shows a smooth trend that not clear effects realized 

with MW treatmens. These observations are important considering selected wood species and MW conditions 

have improving effects at certain conditions on MW assisted WP applications on Pine and Cedrus woods. 

 

 
Figure 2. The swelling (%) properties of MW treated softwoods. 

 

Some wood properties such as; species, structure, moisture content, density and morhology could be affect during 

MW treatments. However, the swelling of wood species usually correlated with wood density and water diffusion 

property. At the beginning of wood-water interactions, capillaries and cavities near the surface are filled up very 

fast with water. However, when WP treatment is occur on wood substrates, the moisture movement is restricted 

to inside the material. Although water moves freely in the large cavities, but in the WP treatments effects trapped 

these cavities that negatively influences the water movement inside the material that resulting lowering swelling 

properties. Moreover, from MW treatment results, it may be suggested that the water movement inside wood 

substrate could be lowered that reflecting a lower water diffusion coefficient that MW asisted WP treatment may 

effects further reaction or bonding to hydroxyl group (–C-OH) of cell Wall constituents to create further water 

repellent (hyrophobic) surfaces. The results found above suggest this hypothesis.  
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Figures 3 and 4 shows water intake (absorption%) of selected hardwood (Fig.3) and softwoods species (Fig. 4) 

with correlation to MW treatment conditions.  

 

As expected, WP treatment could be improved water absortiveness properties some level. It can clearly seen that 

wood types affect the subsequent water intake characteristics. In all cases, the level of water absorptiveness was 

found to be lowered extensively on all WP treated samples (Figure 3). Initially, the water absorptiveness was 

about 62.4% lowered for Eucalyptus, 52.3% for Poplar, and 73.4% for Chestnut, respectively. However, the water 

absorptiveness further decreased with MW treatments. The lowest water absortiveness value of 37.13% and 

47.19% were found at 180 Watts and 150 second MW treatment conditions for Eucalyptus and Chestnut species, 

respectively. Moreover, for Poplar wood, the lowest water absorption value of 70.3% was found at 90 Watts and 

120 second MW treated sample. These calculated absortiveness have indicated approximately further reducing 

of 14.9% for Eucalyptus, 6.9% for Poplar and 6.8% Chestnut samples, respectively.  

 

Plot with MW treatment conditions (power level and time) effects on water absoprtiveness properties of Cedrus 

and Pine wood species are shown in Figure 4.  The MW treatments and their effects show interesting variations 

in the initial and subsequent conditions. It can be confirmed that MW was an effective way, a markedly improving 

dimensional stability was achieved for both woods. Initially, the water absorptiveness was about 101.4% for 

Cedrus and 90.0% for Pine woods. However, WP lowered 71.6% for Poplar, and 166.6% for Pine, respectively. 

However, it further decreased with MW treatments that the lowest water absortiveness value of 26.7% found at 

180 Watts and 90 sec treatment conditions for Cedrus while 27.6% was found at 180 Watts and 30 sec treatment 

conditions for Pine. These calculated absortiveness have indicated approximately further reducing of 7.9% for 

Cedrus and 18.1% for Pine samples, respectively. 

 

 
Figure 3. The water absorption (%) properties of MW treated hardwoods. 

 

 
Figure 4. The water absorption (%) properties of MW treated softwoods. 

 

These comparison between the wood species and the measured results reveals that the water absorptiveness 
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response of selected woods can be quite well predicted. However, the selected samples in this study presented 

characteristic water absorption behaviour that untreated samples exhibited an initial high rate of moisture sorption 

followed by lowering with WP treatments. However, the pattern of water uptake suggests a further lowering with 

MW asisted WP application. This could be explained that the chemical composition and the cell wall organisation 

in the hardwoods differ so much from the softwoods, that they can affect the water intake. However, the density 

of the samples may also affect the diffusion coefficient of the wood samples. But lowering water absorption rate 

of MW treated and WP applied samples can be explained by the diffusion phenomenon. It is clear that MW effects 

modification of cell Wall molecules and creates further reachable surfaces for WP to reacting linkages. 

 

It has alreday pointed number of researchers that microwave technology can be applied to the modification of 

wood, making it possible to improve some properties such as; glueabiliy, permeabailitry, dryability, 

swelling/shrinkage so on. (Johansson, 2001; Lundgren, 2007; Torgovnikov and Vinden 2000 and 2005). Because 

wood has appropriate amount of water, which makes it suitable for microwave heating in very short times into 

effective penetration. It has alreday reported that the plauasable explanation of these modification might be 

possible to create further creating surface and or reaction areaa inside wood that could be bonded with other 

substrates (glues, surface agents or water molecules). The experimental results found in this study with post MW 

treated and WP applied wood samples consisted with these literature reports. 

 

The MW assisted adhesive bonding properties of four wood species are presented in Table 1. It can be clear 

evidence that MW treated samples exhibited an initial high bonding strength (at 60 second) followed by lowering 

at 120 second conditions for Poplar, Cedrus and Pine species, respectively. In contrast, Eucalyptus show lower 

bonding strength at 60 second while increased at 120 second treatment conditions.  The highest bonding stregth 

of 1.47 N/mm2 was found for Eucalyptus, 1.07 N/mm2 for Poplar, 1.48 N/mm2 for Cedrus and 1.15 N/mm2 for 

Pine species that these values shows aproximately 6.5% higher for Eucalyptus, 20.2% higher for Poplar, 10.4% 

higher for Cedrus and 5.5% higher for Pine wood samples, respectively. 

 

Table 1. The bonding strength (N/mm2) properties MW treated woods (at 90 watts). 

  Eucalyptus 
Diff.  

(%) 
Poplar 

Diff.  

(%) 
Cedrus 

Diff.  

(%) 
Pine 

Diff.  

(%) 

Control 
1.38  

(0.09) 
- 

0.89 

 (0.06) 
- 

1.34  

(0.1) 
- 

1.09 

 (0.02) 
- 

60 sec. 
1.11  

(0.21) 
-19.6 

1.07  

(0.18) 
20.2 

1.48  

(0.02) 
10.4 

1.15 

 (0.14) 
5.5 

120 sec. 
1.47  

(0.14) 
6.5 

1.0  

(0.17) 
12.4 

1.19 

(0.12) 
-11.2 

1.04 

 (0.03) 
-4.8 

 

Figure 5 show a macroscopic analysis of wood-wood bonding surface chracteristics after shear bonding tests. 

These pictures clearly shows that the MW treatments at various level could be effects in either decrease or increase 

bonding between woods. However, these observations also indicate that certain level bonding strength 

improvements (Fig.5 C, F-I). 

 

 
Figure 5. The effects of MW treatment conditions on bonding surface after shear bonding tests (A and B: typical 
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shear test placements; C, D and E: Typical bonded wood surface after sheap bonding test, F-I: strongly bonded 

wood surfaces after shear test). 

 

The bonding of wood is very complicated process.  However, wood is basically a series of tubular fibers or cells 

cemented (lignified) together. The mechanical properties change with specific conditions (i.e. thermal) can have 

significant effects on the bonding strength of wood. Moreover, adhesive can flow into cavities (pores) to develop 

a mechanical interlocking. 

 

It has suggested that for achieveing suitable degree of wood modification with MW, power level must be high 

enough to boil water within the wood to create high steam pressure in the cells to rupture the elements of the 

wood structure. In this level, it is possible to create further reacting surfaces and potantial areas for fluids (i.e 

adhesive).  The result found in this study support this opinions. Moreover, bond strength is dependent on the 

distribution of internal forces, such as expansion and contraction of the wood in addition to applied forces. 

Therefore bond strength is not limited to bond formation. 

 

 

4. Conclusion 
 

Particularly wood species that (i.e. hardwoods), have a very low permeability causing problems during gluing or 

surface treatments. These include, very long drying times, expensive adhesive uses and difficulty in impregnating 

the wood with resins. But further work is needed to understand the surface modification level (chemically and 

physically) of wood substrates. Although fundamental principles involved in the interaction of MWs with matter 

are still not fully understood. However, MW modification of wood could be established opportunities for 

developing a new industrial applications including effective surface treatment of wood species for rapid and 

strong bonding. 
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