The ability of E and S values to predict experimental thermal fading rates
The ability of E and S values to predict experimental thermal fading rates

M. Halimi [1] , D. Kadri [2] , A. Mokeddema [3] , I. Missoum [4]

137 239

Thermal fading (TF) is important in choosing appropriate thermoluminescence (TL) materials for particular applications. TF is the process of reducing the capability of producing the response due to radiation exposure. The fading rate of LiF based thermoluminescent (TL) material depends on many experimental parameters such as storage temperature, readout mechanism, annealing and radiation type or time based on the storage time before or after radiation.

The general  aim of the present work  is to investigate if the activation energy E, frequency factor  s, temperature T and concentration µ0 values evaluated from the experimental thermal fading rates glow–curves through a computerized glow–curve deconvolution analysis (CGCD),  can simulate the thermal fading glow-curves using a phenomenological  model for LiF;Mg,Ti.

Thermal fading (TF) is important in choosing appropriate thermoluminescence (TL) materials for particular applications. TF is the process of reducing the capability of producing the response due to radiation exposure. The fading rate of LiF based thermoluminescent (TL) material depends on many experimental parameters such as storage temperature, readout mechanism, annealing and radiation type or time based on the storage time before or after radiation.

The general  aim of the present work  is to investigate if the activation energy E, frequency factor  s, temperature T and concentration µ0 values evaluated from the experimental thermal fading rates glow–curves through a computerized glow–curve deconvolution analysis (CGCD),  can simulate the thermal fading glow-curves using a phenomenological  model for LiF;Mg,Ti.

  • [1] John A. Harvey, Nathan P. Haverland, Kimberlee J. Kearfott ; Characterization of the glow-peak fading properties of six common thermoluminescent materials ,Applied Radiation and Isotopes 68 (2010) 1988–2000.
  • [2] Horowitz, Y.S., Satinger, D., Brandan, M.E., Avila, O., Rodriguez-Villafuerte, M., 2002a. Supralinearity of peaks 5a, 5 and 5b in TLD-100 following 6.8 MeV and 2.6 MeV He ion irradiation: the extended track interaction model. Radiat. Prot. Dosim. 100, 95–98.
  • [3] Horowitz, Y.S., Oster, L., Satinger, D., Biderman, S., 2002b. The composite structure of peak 5 in the glow curve of LiF:Mg,Ti (TLD-100): confirmation of peak 5a arising from a locally trapped electron–hole configuration. Radiat. Prot. Dosim. 100, 123–126.
  • [4] Moscovitch, M., Szalanczy, A., Bruml, W.W., Velbeck, K.J., Tawil, R.A., 1990. A TLD system based on gas heating with linear time–temperature profile. Radiat. Prot. Dosim. 34, 361–364.
  • [5] Izak-Biran, T., Malchi, S., Shamai, Y., Alfassi, Z.B., 1996. Low pre- and post- irradiation fading of LiF:Mg,Ti (TLD-100, TLD-600, TLD-700) using a preheat technique. Radiat. Prot. Dosim. 64, 269–274
  • [6] D.Yossian and Y.S.Horowitz Rad. Prot. Dosim. 60, 1995 (special issue).
  • [7] A Delgado J L Muniz and J M Gomez Ros Radiat. Measurem. 21 (1994) 693.
  • [8] D. Afouxenidis, G. S. Polymeris, N. C. Tsirliganis and G. Kitis. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program. Radiation Protection Dosimetry (2012), Vol. 149, No. 4, pp. 363–370.
  • [9] Kitis, G., Gomes-Ros, J. M. and Tuyn, J. W. N. Thermoluminescence glow curve deconvolution functions for first, second and general orders of kinetics. J. Phys.D: Appl. Phys. 31 2636–2641 (1998).
  • [10] M. Halimi, D. Kadri, A. Mokeddem , Modern Physics Letters B Vol. 29, No. 34 (2015) 1550226 .
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Articles
Yazarlar

Yazar: M. Halimi
Kurum: Department of Technologic the Materials, Sciences and Technology University of Oran (USTO-MB), Algeria
Ülke: Algeria


Yazar: D. Kadri

Yazar: A. Mokeddema

Yazar: I. Missoum

Bibtex @araştırma makalesi { ankujns303334, journal = {Journal of Nuclear Sciences}, issn = {2147-7736}, eissn = {2148-3981}, address = {Ankara Üniversitesi}, year = {}, volume = {4}, pages = {26 - 30}, doi = {}, title = {The ability of E and S values to predict experimental thermal fading rates}, key = {cite}, author = {Halimi, M. and Missoum, I. and Kadri, D. and Mokeddema, A.} }
APA Halimi, M , Kadri, D , Mokeddema, A , Missoum, I . (). The ability of E and S values to predict experimental thermal fading rates. Journal of Nuclear Sciences, 4 (1), 26-30. Retrieved from http://jns.ankara.edu.tr/issue/31016/303334
MLA Halimi, M , Kadri, D , Mokeddema, A , Missoum, I . "The ability of E and S values to predict experimental thermal fading rates". Journal of Nuclear Sciences 4 (): 26-30 <http://jns.ankara.edu.tr/issue/31016/303334>
Chicago Halimi, M , Kadri, D , Mokeddema, A , Missoum, I . "The ability of E and S values to predict experimental thermal fading rates". Journal of Nuclear Sciences 4 (): 26-30
RIS TY - JOUR T1 - The ability of E and S values to predict experimental thermal fading rates AU - M. Halimi , D. Kadri , A. Mokeddema , I. Missoum Y1 - 2018 PY - 2018 N1 - DO - T2 - Journal of Nuclear Sciences JF - Journal JO - JOR SP - 26 EP - 30 VL - 4 IS - 1 SN - 2147-7736-2148-3981 M3 - UR - Y2 - 2017 ER -
EndNote %0 Journal of Nuclear Sciences The ability of E and S values to predict experimental thermal fading rates %A M. Halimi , D. Kadri , A. Mokeddema , I. Missoum %T The ability of E and S values to predict experimental thermal fading rates %D 2018 %J Journal of Nuclear Sciences %P 2147-7736-2148-3981 %V 4 %N 1 %R %U
ISNAD Halimi, M. , Kadri, D. , Mokeddema, A. , Missoum, I. . "The ability of E and S values to predict experimental thermal fading rates". Journal of Nuclear Sciences 4 / 1 26-30.