Research Article
BibTex RIS Cite

18 MV-Harici Demet ile RadFET Radyasyon Sensörü Performansının Değerlendirilmesi

Year 2019, Volume: 24 Issue: 3, 309 - 318, 31.12.2019
https://doi.org/10.17482/uumfd.558166

Abstract

Lineer hızlandırıcıdan yayılan 18 MV’luk X-ışınları ile ışınlanan RadFET’lerin radyasyon cevapları,
eşik voltaj kaymaları ve tuzak yoğunlukları üzerinden incelenmiştir. Işınlamadan önce ve sonra eşik
voltajları ölçülerek karşılaştırılmıştır. Çeşitli teknikler kullanılarak kapı oksitinde ve oksit/silikon
arayüzeyinde hesaplanan tuzak yoğunlukları değerlendirilmiştir. ΔVth – D grafiği, yaklaşık 2 Gy’e kadar
mükemmel doğrusallık göstermiştir. RadFET’in radyasyon cevabı, elektrik alan perdelemesi tarafından
uyarılan oksit tuzak yüklerinin artmasıyla 2 Gy sonrasında doğrusallıktan sapmaya başlamıştır. Deneysel
sonuçlar, RadFET’ler için verilen fit fonksiyonuyla iyi bir uyum içindedir. Işınlama sonucunda oluşan
sabit ve anahtarlama tuzakları incelenmiştir. Sabit tuzakların yoğunluğu, anahtarlama tuzaklarının
yoğunluğundan önemli bir miktar daha yüksek olarak bulunmuştur. Sıfır kapı voltajı altında ölçülen eşik
voltajlarından yüzde zayıflama aralığı %0.004 – %1.235 olarak hesaplanmıştır.

References

  • Andjelkovic, M.S., Ristic, G.S. and Jaksic, A.B. (2015) Using RADFET for the real-time measurement of gamma radiation dose rate, Measurement Science and Technology, 26, 025004. doi: 10.1088/0957-0233/26/2/025004
  • Brugler, J.S. and Jespers, P.G.A. (1969) Charge pumping in MOS devices, IEEE Transactions on Electron Devices, 16, 297-302. doi: 10.1109/T-ED.1969.16744
  • Fröhlich, L., Casarin, K., Quai, E., Holmes-Siedle, A., Severgnini, M. and Vidimari, R. (2013) Online monitoring of absorbed dose in undulator magnets with RADFET dosimeters at FERMI@Elettra, Nuclear Instruments and Methods in Physics Research A, 703, 70-79. doi: 10.1016/j.nima.2012.11.021
  • Groeseneken, G., Maes, H.E., Beltran, N. and De Keersmaecker, R.F. (1984) A reliable approach to charge-pumping measurements in MOS transistors, IEEE Transactions on Electron Devices, 31, 42-53. doi: 10.1109/T-ED.1984.21472
  • Holmes-Siedle, A. and Adams, L. (1986) RADFETs: a review of use of metal/oxide/silicon devices as integrating dosimeters, Radiation Physics and Chemistry, 28, 235-244. doi: 10.1016/1359-0197(86)90134-7
  • Holmes-Siedle, A., Ravotti, F. and Glaser, M. (2007) The dosimetric performance of RadFETs in radiation test beams, IEEE Radiation Effects Data Workshop, 42-57. doi: 10.1109/REDW.2007.4342539
  • Jaksic, A., Ristic, G., Pejovic, M., Mohammadzadeh, A. and Lane, W. (2002) Characterization of radiation response of 400 nm implanted gate oxide RADFETs, 23rd International conference on microelectronics, 727-730. doi: 10.1109/MIEL.2002.1003360
  • Kahraman, A., Kaya, S., Jaksic, A. and Yilmaz, E. (2015) A comprehensive study on the photon energy response of RadFET dosimeters using the PENELOPE Monte Carlo code, Radiation Effects and Defects in Solids, 170:5, 367-376. doi: 10.1080/10420150.2015.1010167
  • Lu, L., Wang, M. and Wong, M. (2011) A new observation of the Elliot curve waveform in charge pumping of poly-Si TFTs, IEEE Electron Device Letter, 32, 506-508. doi: 10.1109/LED.2010.2104311
  • Martinez-Garcia, M.S., Torres del Rio, J., Palma, A.J., Lallena, A.M., Jaksic, A. and Carvajal, M.A. (2015) Comparative study of MOSFET response to photon and electron beams in reference conditions, Sensors and Actuators A, 225, 95-102. doi: 10.1016/j.sna.2015.02.006
  • McWhorter, P.J. and Winokur, P.S. (1986) Simple technique for separating the effects of interface traps trapped-oxide charge in metal-oxide-semiconductor transistors, Applied Physics Letters, 48, 133-135. doi: 10.1063/1.96974
  • O’Connell, B., Kelleher, A., Lane, W. and Adams, L. (1996) Stacked RADFETs for increased radiation sensitivity, IEEE Transactions on Nuclear Science, 43, 985-990. doi: 10.1109/23.510744
  • O’Connell, B., McCarthy, C., Lane, B. and Mohammadzadeh, A. (1999) Optimised stacked RADFETs for micro-gray dose measurement, Fifth European Conference on Radiation and Its Effects on Components and Systems, 101-105. doi: 10.1109/RADECS.1999.858553
  • Paulsen, R.E., White, M.H. (1994) Theory and application of charge pumping for the characterization of Si-SiO2 interface and near interface oxide traps, IEEE Transactions on Electron Devices, 41, 1213-1216. doi: 10.1109/16.293349
  • Pejovic, M.M., Pejovic, M.M. and Jaksic, A.B. (2012) Contribution of fixed oxide traps to sensitivity of pMOS dosimeters during gamma ray irradiation and annealing at room an elevated temperature, Sensors and Actuators A, 174, 85-90. doi: 10.1016/j.sna.2011.12.011
  • Pejovic, M.M. (2017) Process in radiation sensitive MOSFETs during irradiation and post irradiation annealing responsible for threshold voltage shift, Radiation Physics and Chemistry, 130, 221-22. doi: 10.1016/j.radphyschem.2016.08.027
  • Ristic, G., Golubovic, S. and Pejovic, M. (1996) Sensitivity and fading of pMOS dosimeters with thick gate oxide, Sensors and Actuators A, 51, 153-158. doi: 10.1016/0924-4247(95)01211-7
  • Ristic, G.S. (2009) Thermal and UV annealing of irradiated pMOS dosimetric transistors, Journal of Physics D: Applied Physics, 42, 135101. doi: 10.1088/0022-3727/42/13/135101
  • Ristic, G., Vasovic, N.D., Kovacevic, M. and Jaksic, A.B. (2011) The sensitivity of 100 nm RADFETs with zero gate bias up to dose of 230 Gy(Si), Nuclear Instruments and Methods in Physics Research Section B, 269, 2703-2708. doi: 10.1016/j.nimb.2011.08.015
  • Ristic, G.S., Andjelkovic, M. and Jaksic, A.B. (2015) The behavior of fixed and switching oxide traps of RADFETs during irradiation up to high absorbed doses, Applied Radiation and Isotopes, 102, 29-34. doi: 10.1016/j.apradiso.2015.04.009
  • Stamenkovic, Z., Vasovic, N.D. and Ristic, G.S. (2014) Automatic and reliable electrical characterization of MOSFETs, IEEE 17th International Symposium on Design and Diagnostics of Electronic Circuits & Systems. doi:10.1109/DDECS.2014.6868804
  • Vasovic, N.D. and Ristic, G. (2012) A switching system based on microcontroller for successive applying of MGT and CPT on MOSFETs, Measurement, 45, 1922-1926. doi: 10.1016/j.measurement.2012.03.011
  • Yilmaz, E., Kahraman, A., McGarrigle, A.M., Vasovic, N., Yegen, D. and Jaksic, A. (2017) Investigation of RadFET response to X-ray and electron beams, Applied Radiation and Isotopes, 127, 156-160. doi: 10.1016/j.apradiso.2017.06.004

EVALUATION OF THE RadFET RADIATION SENSOR PERFORMANCE IN 18 MV-EXTERNAL BEAM

Year 2019, Volume: 24 Issue: 3, 309 - 318, 31.12.2019
https://doi.org/10.17482/uumfd.558166

Abstract

The radiation response of RadFET irradiated with 18 MV X-rays emitted from a linear
accelerator was examined on threshold voltage shifts and trap densities. The measured threshold voltages
were compared before and after irradiation. Trap densities calculated using various techniques in the gate
oxide and oxide/silicon interface were interpreted. The ΔVth – D graph showed excellent linearity of up to
just about 2 Gy. The RadFETs response to radiation started to deviate from linearity after 2 Gy due to
increasing oxide trapped charges induced by electric field screening. The experimental outcomes are in
good accordance with the fitting function given for RadFETs. Fixed and switching traps formed by
irradiation were investigated. The density of the fixed traps was significantly higher than the density of
the switching traps. From the threshold voltages measured under zero gate voltage in a certain time
interval, the percentage fading range was calculated as 0.004-1.235%.

References

  • Andjelkovic, M.S., Ristic, G.S. and Jaksic, A.B. (2015) Using RADFET for the real-time measurement of gamma radiation dose rate, Measurement Science and Technology, 26, 025004. doi: 10.1088/0957-0233/26/2/025004
  • Brugler, J.S. and Jespers, P.G.A. (1969) Charge pumping in MOS devices, IEEE Transactions on Electron Devices, 16, 297-302. doi: 10.1109/T-ED.1969.16744
  • Fröhlich, L., Casarin, K., Quai, E., Holmes-Siedle, A., Severgnini, M. and Vidimari, R. (2013) Online monitoring of absorbed dose in undulator magnets with RADFET dosimeters at FERMI@Elettra, Nuclear Instruments and Methods in Physics Research A, 703, 70-79. doi: 10.1016/j.nima.2012.11.021
  • Groeseneken, G., Maes, H.E., Beltran, N. and De Keersmaecker, R.F. (1984) A reliable approach to charge-pumping measurements in MOS transistors, IEEE Transactions on Electron Devices, 31, 42-53. doi: 10.1109/T-ED.1984.21472
  • Holmes-Siedle, A. and Adams, L. (1986) RADFETs: a review of use of metal/oxide/silicon devices as integrating dosimeters, Radiation Physics and Chemistry, 28, 235-244. doi: 10.1016/1359-0197(86)90134-7
  • Holmes-Siedle, A., Ravotti, F. and Glaser, M. (2007) The dosimetric performance of RadFETs in radiation test beams, IEEE Radiation Effects Data Workshop, 42-57. doi: 10.1109/REDW.2007.4342539
  • Jaksic, A., Ristic, G., Pejovic, M., Mohammadzadeh, A. and Lane, W. (2002) Characterization of radiation response of 400 nm implanted gate oxide RADFETs, 23rd International conference on microelectronics, 727-730. doi: 10.1109/MIEL.2002.1003360
  • Kahraman, A., Kaya, S., Jaksic, A. and Yilmaz, E. (2015) A comprehensive study on the photon energy response of RadFET dosimeters using the PENELOPE Monte Carlo code, Radiation Effects and Defects in Solids, 170:5, 367-376. doi: 10.1080/10420150.2015.1010167
  • Lu, L., Wang, M. and Wong, M. (2011) A new observation of the Elliot curve waveform in charge pumping of poly-Si TFTs, IEEE Electron Device Letter, 32, 506-508. doi: 10.1109/LED.2010.2104311
  • Martinez-Garcia, M.S., Torres del Rio, J., Palma, A.J., Lallena, A.M., Jaksic, A. and Carvajal, M.A. (2015) Comparative study of MOSFET response to photon and electron beams in reference conditions, Sensors and Actuators A, 225, 95-102. doi: 10.1016/j.sna.2015.02.006
  • McWhorter, P.J. and Winokur, P.S. (1986) Simple technique for separating the effects of interface traps trapped-oxide charge in metal-oxide-semiconductor transistors, Applied Physics Letters, 48, 133-135. doi: 10.1063/1.96974
  • O’Connell, B., Kelleher, A., Lane, W. and Adams, L. (1996) Stacked RADFETs for increased radiation sensitivity, IEEE Transactions on Nuclear Science, 43, 985-990. doi: 10.1109/23.510744
  • O’Connell, B., McCarthy, C., Lane, B. and Mohammadzadeh, A. (1999) Optimised stacked RADFETs for micro-gray dose measurement, Fifth European Conference on Radiation and Its Effects on Components and Systems, 101-105. doi: 10.1109/RADECS.1999.858553
  • Paulsen, R.E., White, M.H. (1994) Theory and application of charge pumping for the characterization of Si-SiO2 interface and near interface oxide traps, IEEE Transactions on Electron Devices, 41, 1213-1216. doi: 10.1109/16.293349
  • Pejovic, M.M., Pejovic, M.M. and Jaksic, A.B. (2012) Contribution of fixed oxide traps to sensitivity of pMOS dosimeters during gamma ray irradiation and annealing at room an elevated temperature, Sensors and Actuators A, 174, 85-90. doi: 10.1016/j.sna.2011.12.011
  • Pejovic, M.M. (2017) Process in radiation sensitive MOSFETs during irradiation and post irradiation annealing responsible for threshold voltage shift, Radiation Physics and Chemistry, 130, 221-22. doi: 10.1016/j.radphyschem.2016.08.027
  • Ristic, G., Golubovic, S. and Pejovic, M. (1996) Sensitivity and fading of pMOS dosimeters with thick gate oxide, Sensors and Actuators A, 51, 153-158. doi: 10.1016/0924-4247(95)01211-7
  • Ristic, G.S. (2009) Thermal and UV annealing of irradiated pMOS dosimetric transistors, Journal of Physics D: Applied Physics, 42, 135101. doi: 10.1088/0022-3727/42/13/135101
  • Ristic, G., Vasovic, N.D., Kovacevic, M. and Jaksic, A.B. (2011) The sensitivity of 100 nm RADFETs with zero gate bias up to dose of 230 Gy(Si), Nuclear Instruments and Methods in Physics Research Section B, 269, 2703-2708. doi: 10.1016/j.nimb.2011.08.015
  • Ristic, G.S., Andjelkovic, M. and Jaksic, A.B. (2015) The behavior of fixed and switching oxide traps of RADFETs during irradiation up to high absorbed doses, Applied Radiation and Isotopes, 102, 29-34. doi: 10.1016/j.apradiso.2015.04.009
  • Stamenkovic, Z., Vasovic, N.D. and Ristic, G.S. (2014) Automatic and reliable electrical characterization of MOSFETs, IEEE 17th International Symposium on Design and Diagnostics of Electronic Circuits & Systems. doi:10.1109/DDECS.2014.6868804
  • Vasovic, N.D. and Ristic, G. (2012) A switching system based on microcontroller for successive applying of MGT and CPT on MOSFETs, Measurement, 45, 1922-1926. doi: 10.1016/j.measurement.2012.03.011
  • Yilmaz, E., Kahraman, A., McGarrigle, A.M., Vasovic, N., Yegen, D. and Jaksic, A. (2017) Investigation of RadFET response to X-ray and electron beams, Applied Radiation and Isotopes, 127, 156-160. doi: 10.1016/j.apradiso.2017.06.004
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Berk Morkoç This is me

Ayşegül Kahraman 0000-0002-1836-7033

Dinçer Yeğen 0000-0003-3180-600X

Ercan Yılmaz 0000-0002-6652-4662

Publication Date December 31, 2019
Submission Date April 26, 2019
Acceptance Date November 18, 2019
Published in Issue Year 2019 Volume: 24 Issue: 3

Cite

APA Morkoç, B., Kahraman, A., Yeğen, D., Yılmaz, E. (2019). EVALUATION OF THE RadFET RADIATION SENSOR PERFORMANCE IN 18 MV-EXTERNAL BEAM. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(3), 309-318. https://doi.org/10.17482/uumfd.558166
AMA Morkoç B, Kahraman A, Yeğen D, Yılmaz E. EVALUATION OF THE RadFET RADIATION SENSOR PERFORMANCE IN 18 MV-EXTERNAL BEAM. UUJFE. December 2019;24(3):309-318. doi:10.17482/uumfd.558166
Chicago Morkoç, Berk, Ayşegül Kahraman, Dinçer Yeğen, and Ercan Yılmaz. “EVALUATION OF THE RadFET RADIATION SENSOR PERFORMANCE IN 18 MV-EXTERNAL BEAM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, no. 3 (December 2019): 309-18. https://doi.org/10.17482/uumfd.558166.
EndNote Morkoç B, Kahraman A, Yeğen D, Yılmaz E (December 1, 2019) EVALUATION OF THE RadFET RADIATION SENSOR PERFORMANCE IN 18 MV-EXTERNAL BEAM. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 3 309–318.
IEEE B. Morkoç, A. Kahraman, D. Yeğen, and E. Yılmaz, “EVALUATION OF THE RadFET RADIATION SENSOR PERFORMANCE IN 18 MV-EXTERNAL BEAM”, UUJFE, vol. 24, no. 3, pp. 309–318, 2019, doi: 10.17482/uumfd.558166.
ISNAD Morkoç, Berk et al. “EVALUATION OF THE RadFET RADIATION SENSOR PERFORMANCE IN 18 MV-EXTERNAL BEAM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/3 (December 2019), 309-318. https://doi.org/10.17482/uumfd.558166.
JAMA Morkoç B, Kahraman A, Yeğen D, Yılmaz E. EVALUATION OF THE RadFET RADIATION SENSOR PERFORMANCE IN 18 MV-EXTERNAL BEAM. UUJFE. 2019;24:309–318.
MLA Morkoç, Berk et al. “EVALUATION OF THE RadFET RADIATION SENSOR PERFORMANCE IN 18 MV-EXTERNAL BEAM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 3, 2019, pp. 309-18, doi:10.17482/uumfd.558166.
Vancouver Morkoç B, Kahraman A, Yeğen D, Yılmaz E. EVALUATION OF THE RadFET RADIATION SENSOR PERFORMANCE IN 18 MV-EXTERNAL BEAM. UUJFE. 2019;24(3):309-18.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.