Research Article
BibTex RIS Cite

FARKLI B+ İMPLANTASYON KOŞULLARI İÇİN RADFET’LERİN ELEKTRİKSEL KARAKTERİZASYONUNUN TCAD BENZETİM PROGRAMI İLE İNCELENMESİ

Year 2017, Volume: 22 Issue: 2, 53 - 64, 20.08.2017
https://doi.org/10.17482/uumfd.335425

Abstract

Bu çalışmada, RadFET’lerin kapı oksit tabakasına
implante edilmiş B+ iyonlarının Vth üzerine etkisi,
Silvaco TCAD benzetim programı ile incelenmiştir. 300 nm ve 400 nm
kalınlıklarında kapı oksite sahip RadFET’ler, tüm üretim adımları TCAD’e
tanıtılarak tasarlanmıştır. İmplantasyon öncesi ve sonrası Vth
değerleri, RadFET’lerin akım-gerilim (Id-Vg) karakteristiklerinden
elde edilmiştir. Artan implantasyon enerjisi, Vth değerlerinin
düşmesine neden olmuştur.
Vth değerinin sıfır olması, daha geniş
ölçülebilir doz aralığına sahip RadFET’lerin üretilmesi için önemlidir. Ancak,
implantasyon enerjisindeki sürekli artışla birlikte Vth, p-kanalı
oluşumu nedeniyle negatif voltaj değerlerinde gözlenmemiştir. 300 nm-RadFET
için en düşük Vth değeri,
6.5×1011 iyon/cm2 bor dozu
ve
72 keV’de, -1.082 V olarak bulunmuştur. 400 nm-RadFET için bu değer, 2.3×1011
iyon/cm2 bor dozu ve
106 keV’de, -1.139 V olarak elde edilmiştir.

References

  • Cho, S.J., Kim, W.T., Ki, Y.G., Kwon, S.I., Lee, S.H., Huh, H.D., Cho, K.H., Kwon, B.H. ve Kim, D.W. (2007) In Vivo Dosimetry with MOSFET Detector during Radiotherapy, World Congress on Medical Physics and Biomedical Engineering 2006, Springer (IFMBE Proceedings), COEX Seoul, 14, 1987-1989.
  • Gavelle, M., Sarrabayrouse, G., Scheid, E., Siskos, E., Fragopoulou, M. ve Zamani, M. (2011) MOSFET with a boron-loaded gate as a low-energy neutron dosimeter, Radiation Physics and Chemistry, 80, 1437-1440. doi:10.1016/j.radphyschem.2011.08.001
  • Holmes-Siedle, A. (1989) The use of RadFETs in radiation dose measurement: Report on three lots prepared for the US army: Final Technical Report, REM-FM-89-2, 1-38.
  • http://ridl.cfd.rit.edu/products/manuals/Silvaco/athena_users1.pdf, Erişim Tarihi: 01.10.2016, Konu: ATHENA User’s Manual.
  • http://www.sdram-technology.info/threshold-voltage-measurement.html, Erişim Tarihi: 05.05.2017, Konu: Threshold voltage for n-FET and p-FET.
  • Jaksic, A., Ristic, G., Pejovic, M., Mohammadzadeh, A. ve Lane, W. (2002) Characterisation of radiation response of 400 nm implanted gate oxide RADFETs, Proc. 23 rd International Conference on Microelectronics (MIEL 2002), IEEE, Nis, 2, 727-730. doi: 10.1109/MIEL.2002.1003360
  • Jornet, N.,Carrasco, P., Jurado, D., Ruiz, A., Eudaldo, T. ve Ribas, M. (2004) Comparison study of MOSFET detectors and diodes for entrance in vivo dosimetry in 18 MV X-ray beams, Medical Physics, 31, 2534-2542. doi: 10.1118/1.1785452
  • Kahraman, A., Yilmaz, E., Kaya, S. ve Aktag, A. (2015) Effects of packaging materials on the sensitivity of RadFET with HfO2 gate dielectric for electron and photon sources, Radiation Effects and Defects in Solids, 170, 832-844. doi: 10.1080/10420150.2015.1118689
  • Kim, S-J., Min, K-W. ve Ko, A. (2006) Use of a MOSFET for radiation monitoring in space and comparison with NASA trapped particle model, Journal of the Korean Physical Society, 48(4), 865-869.
  • Kimoto, Y. ve Jaksic, A. (2004) RADFET utilization for spacecraft dosimetry, Proc. 24 th Internation Conference on Microelectronics (MIEL 2004), IEEE, Nis, 2, 657-659.
  • Lindhard, J., Scharff, M. ve Schiott, H.E. (1963) Range concepts and heavy ion ranges, Matematisk-fysiske Meddelelser, 33, 1-42.
  • Martίnez-Garcίa, M.S., Simancas, F., Palma, A.J., Lallena, A.M., Banqueri, J. ve Carvajal, M.A. (2014) General purpose MOSFETs fort he dosimetry of electron beams used in intra-operative radiotherapy, Sensors and Actuators A: Physical, 210, 175-181. doi: 10.1016/j.sna.2014.02.019
  • Martίnez-Garcίa, M.S., Torres del RίO, J., Palma, A.J., Lallena, A.M. ve Jaksic, A. (2015) Comparative study of MOSFET response to photon and electron beams in reference conditions, Sensors and Actuators A: Physical, 225, 95-102. doi: 10.1016/j.sna.2015.02.006
  • Mekki, J., Laurent, D., Glaser, M., Guatelli, S., Moll, M., Pia, M.G. ve Ravotti, F. (2009) Packaging effects on RadFET sensors for high energy physics experiments, IEEE Transactions on Nuclear Science, 56, 2061-2069. doi: 10.1109/TNS.2009.2014376
  • Pejovic, M.M., Pejovic, M.M. ve Jaksic, A. (2012) Contribution of fixed oxide traps to sensitivity of pMOS dosimeters during gamma ray irradiation and annealing at room and elevated temperature, Sensors and Actuators A: Physical, 174, 85 – 90. doi: :10.1016/j.sna.2011.12.011
  • Pejović, M., Ciraj-Bjelac, O., Kovačević, M., Rajović, Z. ve Ilić, G. (2013) Sensitivity of p-channel MOSFET to X-and Gamma-Ray Irradiation, International Journal of Photoenergy, 2013, 158403-1-6. doi: 10.1155/2013/158403
  • Ramani, R., Russell, O’Breien, S.P. (1997) Clinical dosimetry using mosfets, International Journal of Radiation Oncology. Biology. Physics, 37, 959–964. doi: 10.1016/S0360-3016(96)00600-1
  • Ristić, G., Golubović, S. ve Pejović, M. (1996) Sensitivity and fading of pMOS dosimeters with thick gate oxide, Sensors and Actuators, 51, 153-158. doi: 10.1016/0924-4247(95)01211-7
  • Ristić, G.S., Pejović, M.M. ve Jakšić, A. (2007) Physico-chemical processes in metal-oxide-semiconductor transistors with thick gate oxide during high electric field stress, Journal of Non-Crystalline Solids, 353, 170-179. doi: 10.1016/j.jnoncrysol.2006.09.020
  • Ristić, G.S., Vasović, N.D., Kovačević, M. ve Jakšić, A. (2011) The sensitivity of 100 nm RADFETs with zero gate bias up to dose of 230 Gy(Si), Nuclear Instruments and Methods in Physics Research B, 269, 2703-2708. doi: 10.1016/j.nimb.2011.08.015
  • Rosenfeld, A. (2007) Electronic dosimetry in radiation therapy, Radiation Measurements, 41, S134-S153. doi: 10.1016/j.radmeas.2007.01.005
  • Seon, J., Kim, S-J., Sung, B-I., Marri, S.A. ve Lee, S-H. (2010) A small space radiation monitor capable of measuring multiple ISD-VGS values of MOSFET, Journal of Nuclear Science and Technology, 47, 340-344. doi: 10.1080/18811248.2010.9711963
  • Stanković, S.J., Ilić, R.D., Živanović, M., Janković, K.S. ve Lončar, B. (2012) Monte Carlo analysis of the influence of different packaging on MOSFET energy response to X-rays and gamma radiation, Acta Phys. Pol. A, 122, 655-658. doi: 10.12693/APhysPolA.122.655
  • Wang, S., Liu, P. ve Zhang, J. (2013) Simulation of threshold voltage adjustment by B+ implantation for pMOS-RADFET application, 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), IEEE, Suzhou, 262-265.
  • Wind, M., Beck, P. ve Jaksic, A. (2009) Investigation of the energy response of RadFET for high energy photons, electrons, protons, and neutrons, IEEE Transactions on Nuclear Science, 56, 3387-3392. doi: 10.1109/TNS.2009.2033060

Investigation of Electrical Characterization of RadFETs For Dİfferent B+ Implantation Conditions With TCAD Simulation Program

Year 2017, Volume: 22 Issue: 2, 53 - 64, 20.08.2017
https://doi.org/10.17482/uumfd.335425

Abstract

In this study, the effect of the B+
ions implanted to gate oxide layer of the RadFETs on Vth was
investigated by Silvaco TCAD simulation program. The RadFETs with the gate
oxide thicknesses of 300 nm and 400 nm were designed by introducing the all of
the RadFETs production steps to TCAD. The Vth values were obtained
from the current-voltage (Id-Vg) characteristics of the RadFETs
before and after implantation. Increasing implantation energy caused the
reduction of the Vth values. The zero Vth value is
important to produce the RadFET with broader measurable dose range. However, Vth
was not observed in the negative voltages with continuous increment in the
implantation energy due to the p-channel formation. For the 300 nm-RadFET, the
lowest Vth value was found as -1.082 V for boron dose with 6.5×1011
ions/cm2 at 72 keV. This value for 400 nm-RadFET was obtained as
-1.139 V for boron dose with 2.3×1011 ions/cm2 at 106
keV.

References

  • Cho, S.J., Kim, W.T., Ki, Y.G., Kwon, S.I., Lee, S.H., Huh, H.D., Cho, K.H., Kwon, B.H. ve Kim, D.W. (2007) In Vivo Dosimetry with MOSFET Detector during Radiotherapy, World Congress on Medical Physics and Biomedical Engineering 2006, Springer (IFMBE Proceedings), COEX Seoul, 14, 1987-1989.
  • Gavelle, M., Sarrabayrouse, G., Scheid, E., Siskos, E., Fragopoulou, M. ve Zamani, M. (2011) MOSFET with a boron-loaded gate as a low-energy neutron dosimeter, Radiation Physics and Chemistry, 80, 1437-1440. doi:10.1016/j.radphyschem.2011.08.001
  • Holmes-Siedle, A. (1989) The use of RadFETs in radiation dose measurement: Report on three lots prepared for the US army: Final Technical Report, REM-FM-89-2, 1-38.
  • http://ridl.cfd.rit.edu/products/manuals/Silvaco/athena_users1.pdf, Erişim Tarihi: 01.10.2016, Konu: ATHENA User’s Manual.
  • http://www.sdram-technology.info/threshold-voltage-measurement.html, Erişim Tarihi: 05.05.2017, Konu: Threshold voltage for n-FET and p-FET.
  • Jaksic, A., Ristic, G., Pejovic, M., Mohammadzadeh, A. ve Lane, W. (2002) Characterisation of radiation response of 400 nm implanted gate oxide RADFETs, Proc. 23 rd International Conference on Microelectronics (MIEL 2002), IEEE, Nis, 2, 727-730. doi: 10.1109/MIEL.2002.1003360
  • Jornet, N.,Carrasco, P., Jurado, D., Ruiz, A., Eudaldo, T. ve Ribas, M. (2004) Comparison study of MOSFET detectors and diodes for entrance in vivo dosimetry in 18 MV X-ray beams, Medical Physics, 31, 2534-2542. doi: 10.1118/1.1785452
  • Kahraman, A., Yilmaz, E., Kaya, S. ve Aktag, A. (2015) Effects of packaging materials on the sensitivity of RadFET with HfO2 gate dielectric for electron and photon sources, Radiation Effects and Defects in Solids, 170, 832-844. doi: 10.1080/10420150.2015.1118689
  • Kim, S-J., Min, K-W. ve Ko, A. (2006) Use of a MOSFET for radiation monitoring in space and comparison with NASA trapped particle model, Journal of the Korean Physical Society, 48(4), 865-869.
  • Kimoto, Y. ve Jaksic, A. (2004) RADFET utilization for spacecraft dosimetry, Proc. 24 th Internation Conference on Microelectronics (MIEL 2004), IEEE, Nis, 2, 657-659.
  • Lindhard, J., Scharff, M. ve Schiott, H.E. (1963) Range concepts and heavy ion ranges, Matematisk-fysiske Meddelelser, 33, 1-42.
  • Martίnez-Garcίa, M.S., Simancas, F., Palma, A.J., Lallena, A.M., Banqueri, J. ve Carvajal, M.A. (2014) General purpose MOSFETs fort he dosimetry of electron beams used in intra-operative radiotherapy, Sensors and Actuators A: Physical, 210, 175-181. doi: 10.1016/j.sna.2014.02.019
  • Martίnez-Garcίa, M.S., Torres del RίO, J., Palma, A.J., Lallena, A.M. ve Jaksic, A. (2015) Comparative study of MOSFET response to photon and electron beams in reference conditions, Sensors and Actuators A: Physical, 225, 95-102. doi: 10.1016/j.sna.2015.02.006
  • Mekki, J., Laurent, D., Glaser, M., Guatelli, S., Moll, M., Pia, M.G. ve Ravotti, F. (2009) Packaging effects on RadFET sensors for high energy physics experiments, IEEE Transactions on Nuclear Science, 56, 2061-2069. doi: 10.1109/TNS.2009.2014376
  • Pejovic, M.M., Pejovic, M.M. ve Jaksic, A. (2012) Contribution of fixed oxide traps to sensitivity of pMOS dosimeters during gamma ray irradiation and annealing at room and elevated temperature, Sensors and Actuators A: Physical, 174, 85 – 90. doi: :10.1016/j.sna.2011.12.011
  • Pejović, M., Ciraj-Bjelac, O., Kovačević, M., Rajović, Z. ve Ilić, G. (2013) Sensitivity of p-channel MOSFET to X-and Gamma-Ray Irradiation, International Journal of Photoenergy, 2013, 158403-1-6. doi: 10.1155/2013/158403
  • Ramani, R., Russell, O’Breien, S.P. (1997) Clinical dosimetry using mosfets, International Journal of Radiation Oncology. Biology. Physics, 37, 959–964. doi: 10.1016/S0360-3016(96)00600-1
  • Ristić, G., Golubović, S. ve Pejović, M. (1996) Sensitivity and fading of pMOS dosimeters with thick gate oxide, Sensors and Actuators, 51, 153-158. doi: 10.1016/0924-4247(95)01211-7
  • Ristić, G.S., Pejović, M.M. ve Jakšić, A. (2007) Physico-chemical processes in metal-oxide-semiconductor transistors with thick gate oxide during high electric field stress, Journal of Non-Crystalline Solids, 353, 170-179. doi: 10.1016/j.jnoncrysol.2006.09.020
  • Ristić, G.S., Vasović, N.D., Kovačević, M. ve Jakšić, A. (2011) The sensitivity of 100 nm RADFETs with zero gate bias up to dose of 230 Gy(Si), Nuclear Instruments and Methods in Physics Research B, 269, 2703-2708. doi: 10.1016/j.nimb.2011.08.015
  • Rosenfeld, A. (2007) Electronic dosimetry in radiation therapy, Radiation Measurements, 41, S134-S153. doi: 10.1016/j.radmeas.2007.01.005
  • Seon, J., Kim, S-J., Sung, B-I., Marri, S.A. ve Lee, S-H. (2010) A small space radiation monitor capable of measuring multiple ISD-VGS values of MOSFET, Journal of Nuclear Science and Technology, 47, 340-344. doi: 10.1080/18811248.2010.9711963
  • Stanković, S.J., Ilić, R.D., Živanović, M., Janković, K.S. ve Lončar, B. (2012) Monte Carlo analysis of the influence of different packaging on MOSFET energy response to X-rays and gamma radiation, Acta Phys. Pol. A, 122, 655-658. doi: 10.12693/APhysPolA.122.655
  • Wang, S., Liu, P. ve Zhang, J. (2013) Simulation of threshold voltage adjustment by B+ implantation for pMOS-RADFET application, 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), IEEE, Suzhou, 262-265.
  • Wind, M., Beck, P. ve Jaksic, A. (2009) Investigation of the energy response of RadFET for high energy photons, electrons, protons, and neutrons, IEEE Transactions on Nuclear Science, 56, 3387-3392. doi: 10.1109/TNS.2009.2033060
There are 25 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

Ayşegül Kahraman This is me

Ercan Yılmaz

Publication Date August 20, 2017
Submission Date November 1, 2016
Acceptance Date June 5, 2017
Published in Issue Year 2017 Volume: 22 Issue: 2

Cite

APA Kahraman, A., & Yılmaz, E. (2017). FARKLI B+ İMPLANTASYON KOŞULLARI İÇİN RADFET’LERİN ELEKTRİKSEL KARAKTERİZASYONUNUN TCAD BENZETİM PROGRAMI İLE İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(2), 53-64. https://doi.org/10.17482/uumfd.335425
AMA Kahraman A, Yılmaz E. FARKLI B+ İMPLANTASYON KOŞULLARI İÇİN RADFET’LERİN ELEKTRİKSEL KARAKTERİZASYONUNUN TCAD BENZETİM PROGRAMI İLE İNCELENMESİ. UUJFE. August 2017;22(2):53-64. doi:10.17482/uumfd.335425
Chicago Kahraman, Ayşegül, and Ercan Yılmaz. “FARKLI B+ İMPLANTASYON KOŞULLARI İÇİN RADFET’LERİN ELEKTRİKSEL KARAKTERİZASYONUNUN TCAD BENZETİM PROGRAMI İLE İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, no. 2 (August 2017): 53-64. https://doi.org/10.17482/uumfd.335425.
EndNote Kahraman A, Yılmaz E (August 1, 2017) FARKLI B+ İMPLANTASYON KOŞULLARI İÇİN RADFET’LERİN ELEKTRİKSEL KARAKTERİZASYONUNUN TCAD BENZETİM PROGRAMI İLE İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 2 53–64.
IEEE A. Kahraman and E. Yılmaz, “FARKLI B+ İMPLANTASYON KOŞULLARI İÇİN RADFET’LERİN ELEKTRİKSEL KARAKTERİZASYONUNUN TCAD BENZETİM PROGRAMI İLE İNCELENMESİ”, UUJFE, vol. 22, no. 2, pp. 53–64, 2017, doi: 10.17482/uumfd.335425.
ISNAD Kahraman, Ayşegül - Yılmaz, Ercan. “FARKLI B+ İMPLANTASYON KOŞULLARI İÇİN RADFET’LERİN ELEKTRİKSEL KARAKTERİZASYONUNUN TCAD BENZETİM PROGRAMI İLE İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/2 (August 2017), 53-64. https://doi.org/10.17482/uumfd.335425.
JAMA Kahraman A, Yılmaz E. FARKLI B+ İMPLANTASYON KOŞULLARI İÇİN RADFET’LERİN ELEKTRİKSEL KARAKTERİZASYONUNUN TCAD BENZETİM PROGRAMI İLE İNCELENMESİ. UUJFE. 2017;22:53–64.
MLA Kahraman, Ayşegül and Ercan Yılmaz. “FARKLI B+ İMPLANTASYON KOŞULLARI İÇİN RADFET’LERİN ELEKTRİKSEL KARAKTERİZASYONUNUN TCAD BENZETİM PROGRAMI İLE İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 22, no. 2, 2017, pp. 53-64, doi:10.17482/uumfd.335425.
Vancouver Kahraman A, Yılmaz E. FARKLI B+ İMPLANTASYON KOŞULLARI İÇİN RADFET’LERİN ELEKTRİKSEL KARAKTERİZASYONUNUN TCAD BENZETİM PROGRAMI İLE İNCELENMESİ. UUJFE. 2017;22(2):53-64.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.