BibTex RIS Cite

Present state of the art of a fast neutron dosimeter incorporating RPL detectors

Year 2015, Volume: 2 Issue: 2, 53 - 58, 20.06.2015
https://doi.org/10.1501/nuclear_0000000013

Abstract

The recently introduced radiophotoluminescent (RPL) detectors offer a unique combination of advantages for radiation monitoring that include rapid exploitation, stability to fading, reusability, and insensitivity to light, temperature and humidity. We look at the behavior of an RPL-based fast neutron dosimeter capable of measuring neutrons in an n-g field. The tested dosimeter consists of an ordered assembly of Al foil, RPL detector (I), Al foil, polyethylene converter, RPL detector (II) and Al foil encased in a polyethylene container. The difference between the two RPL configurationsrepresents the (n,p) protons and is related to the fast neutron dose. The dosimeter response is linear and shows an acceptable angular dependence. However the measured detection threshold for this dosimeter is too high for routine monitoring. This threshold could be lowered at to a more practicable value if next generation improvements in RPL detectors and the reader are applied. The main shortcomings we encountered are (i) a 1.7 µm thick dead layer at the front surface of the detectors that render them insensitive to a large fraction of the recoil protons and (ii) an intrinsic detector background that could be reduced if the reader were able to separate individual densely ionized zones created by the recoil protons from the gamma-ray signal.

References

  • “Operational dose equivalent quantities for neutrons”, ICRU report 66 (2001).
  • Chiyoda Techno Glass Corporation, 2008,“User’s manual for reading module FGD-660”,Ref : AS-04-21-0010-R0.
  • S. Croft, D. Weaver,“The application of radiophotoluminescent glass to gamma dosimetry in mixed n-gamma fields”, Radiat. Prot. Dosim. 17, 67-70 (1986).
  • S. Miljanić, M. Ranogajec-Komor, S. Blagus, J.K. Pàlfalvi, T. Pàzmàndi, S. Deme, P. Szàntó,“Response of radiophotoluminescent dosimeters to neutrons”, Radiat. Meas. 43, 1068-1071 (2008).
  • M. Girod, L. Bourgois, G. Cornillaux, L. Andre,“Study and presentation of a fast neutron and photon dosimeter for area and criticality monitoring using radiophotoluminescent glass”, Radiat. Prot. Dosim. 112, 359-370 (2004).
  • International Organisation for Standardisation. Neutron reference radiations – Part 3: “Calibration of area and personal dosimeters and determination of their response as a function of neutron energy and angle of incidence”, ISO 8529-3 (2000).
  • Y. Miyamoto, K. Kinoshita, S. Koyama, Y. Takei, H. Nanto, T. Yamamoto, M. Sakakura, Y. Shimotsuma, K. Miuta, K. Hira,“Emission and excitation mechanism of radiophotoluminescence in Ag+-activated phosphate glass”,Nucl. Instr. Meth. Phys. Res. A 619, 71-74 (2010).
  • “Source pour l’étalonnage des moniteurs de contamination surfacique”, type AM241 ESAL20, N° de série : 0017. Certificat d’étalonnage N°CT/020169/02/0421. LEA Laboratoire Etalons d’Activité, 26701 Pierrelatte Cedex, France.
  • M. Trocmé, S. Higueret, D. Husson, A. Nourreddinne, T.D. Lê,“A new compact device for efficient neutron counting using a CMOS active pixel sensor”, Radiat. Meas. 43, 1100-1103 (2008).
  • J. Biersack, J. Ziegler,
  • http://www.srim.org/SRIM/SRIM2003.htm.
  • K. Becker,“Range and depth dose distribution of low energy charged particles in dosimeter glasses”,1st International Congress of the International Radiation Protection Assn., Rome, in Radiation Protection, Part 1, W. S. Snyder, H. H. Abee, L. K. Burton, R. Maushart, A. Benco, F. Duhamel, B. M. Wheatley, eds., 1968, pp. 135-140.
  • K. Amgarou, M. Trocmé, J.M. Garcìa-Fusté, M. Vanstalle, E. Baussan, A. Nourreddine, C. Domingo,“Characterization of the neutron field from the 241Am-Be isotopic source of the IPHC irradiator”, Radiat. Meas. 50, 61-66 (2013).
  • D.B. Pelowitz,“MCNPX Version 2.6.0 (Los Alamos National Laboratory)”, LA-CP-07-1473 (November 2007).
  • High technology sources LTD. Americium-241/Beryllium.
  • http://www.hightechsource.co.uk/Americium_Beryllium.pdf
  • http://osrp.lanl.gov/Documents/SFCertificates/USA-0631-S.pdf
  • International Organisation for Standardisation. Neutron reference radiations – Part 1: “Characteristics and methods of production”, ISO 8529-1 (2001).
  • International Commission on Radiological Protection,“Conversion coefficients for use in radiological protection against external radiation”, ICRP Publication 74.
  • International Organisation for Standardisation,“Passive personal neutron dosimeters – Performance and test requirements”, ISO-21909 (2005).
Year 2015, Volume: 2 Issue: 2, 53 - 58, 20.06.2015
https://doi.org/10.1501/nuclear_0000000013

Abstract

References

  • “Operational dose equivalent quantities for neutrons”, ICRU report 66 (2001).
  • Chiyoda Techno Glass Corporation, 2008,“User’s manual for reading module FGD-660”,Ref : AS-04-21-0010-R0.
  • S. Croft, D. Weaver,“The application of radiophotoluminescent glass to gamma dosimetry in mixed n-gamma fields”, Radiat. Prot. Dosim. 17, 67-70 (1986).
  • S. Miljanić, M. Ranogajec-Komor, S. Blagus, J.K. Pàlfalvi, T. Pàzmàndi, S. Deme, P. Szàntó,“Response of radiophotoluminescent dosimeters to neutrons”, Radiat. Meas. 43, 1068-1071 (2008).
  • M. Girod, L. Bourgois, G. Cornillaux, L. Andre,“Study and presentation of a fast neutron and photon dosimeter for area and criticality monitoring using radiophotoluminescent glass”, Radiat. Prot. Dosim. 112, 359-370 (2004).
  • International Organisation for Standardisation. Neutron reference radiations – Part 3: “Calibration of area and personal dosimeters and determination of their response as a function of neutron energy and angle of incidence”, ISO 8529-3 (2000).
  • Y. Miyamoto, K. Kinoshita, S. Koyama, Y. Takei, H. Nanto, T. Yamamoto, M. Sakakura, Y. Shimotsuma, K. Miuta, K. Hira,“Emission and excitation mechanism of radiophotoluminescence in Ag+-activated phosphate glass”,Nucl. Instr. Meth. Phys. Res. A 619, 71-74 (2010).
  • “Source pour l’étalonnage des moniteurs de contamination surfacique”, type AM241 ESAL20, N° de série : 0017. Certificat d’étalonnage N°CT/020169/02/0421. LEA Laboratoire Etalons d’Activité, 26701 Pierrelatte Cedex, France.
  • M. Trocmé, S. Higueret, D. Husson, A. Nourreddinne, T.D. Lê,“A new compact device for efficient neutron counting using a CMOS active pixel sensor”, Radiat. Meas. 43, 1100-1103 (2008).
  • J. Biersack, J. Ziegler,
  • http://www.srim.org/SRIM/SRIM2003.htm.
  • K. Becker,“Range and depth dose distribution of low energy charged particles in dosimeter glasses”,1st International Congress of the International Radiation Protection Assn., Rome, in Radiation Protection, Part 1, W. S. Snyder, H. H. Abee, L. K. Burton, R. Maushart, A. Benco, F. Duhamel, B. M. Wheatley, eds., 1968, pp. 135-140.
  • K. Amgarou, M. Trocmé, J.M. Garcìa-Fusté, M. Vanstalle, E. Baussan, A. Nourreddine, C. Domingo,“Characterization of the neutron field from the 241Am-Be isotopic source of the IPHC irradiator”, Radiat. Meas. 50, 61-66 (2013).
  • D.B. Pelowitz,“MCNPX Version 2.6.0 (Los Alamos National Laboratory)”, LA-CP-07-1473 (November 2007).
  • High technology sources LTD. Americium-241/Beryllium.
  • http://www.hightechsource.co.uk/Americium_Beryllium.pdf
  • http://osrp.lanl.gov/Documents/SFCertificates/USA-0631-S.pdf
  • International Organisation for Standardisation. Neutron reference radiations – Part 1: “Characteristics and methods of production”, ISO 8529-1 (2001).
  • International Commission on Radiological Protection,“Conversion coefficients for use in radiological protection against external radiation”, ICRP Publication 74.
  • International Organisation for Standardisation,“Passive personal neutron dosimeters – Performance and test requirements”, ISO-21909 (2005).
There are 20 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Y. Salem

A. Nourreddine

A. Nachab

C. Roy

A. Pape

Publication Date June 20, 2015
Submission Date September 23, 2014
Published in Issue Year 2015Volume: 2 Issue: 2

Cite

APA Salem, Y., Nourreddine, A., Nachab, A., Roy, C., et al. (2015). Present state of the art of a fast neutron dosimeter incorporating RPL detectors. Journal of Nuclear Sciences, 2(2), 53-58. https://doi.org/10.1501/nuclear_0000000013
AMA Salem Y, Nourreddine A, Nachab A, Roy C, Pape A. Present state of the art of a fast neutron dosimeter incorporating RPL detectors. Journal of Nuclear Sciences. June 2015;2(2):53-58. doi:10.1501/nuclear_0000000013
Chicago Salem, Y., A. Nourreddine, A. Nachab, C. Roy, and A. Pape. “Present State of the Art of a Fast Neutron Dosimeter Incorporating RPL Detectors”. Journal of Nuclear Sciences 2, no. 2 (June 2015): 53-58. https://doi.org/10.1501/nuclear_0000000013.
EndNote Salem Y, Nourreddine A, Nachab A, Roy C, Pape A (June 1, 2015) Present state of the art of a fast neutron dosimeter incorporating RPL detectors. Journal of Nuclear Sciences 2 2 53–58.
IEEE Y. Salem, A. Nourreddine, A. Nachab, C. Roy, and A. Pape, “Present state of the art of a fast neutron dosimeter incorporating RPL detectors”, Journal of Nuclear Sciences, vol. 2, no. 2, pp. 53–58, 2015, doi: 10.1501/nuclear_0000000013.
ISNAD Salem, Y. et al. “Present State of the Art of a Fast Neutron Dosimeter Incorporating RPL Detectors”. Journal of Nuclear Sciences 2/2 (June 2015), 53-58. https://doi.org/10.1501/nuclear_0000000013.
JAMA Salem Y, Nourreddine A, Nachab A, Roy C, Pape A. Present state of the art of a fast neutron dosimeter incorporating RPL detectors. Journal of Nuclear Sciences. 2015;2:53–58.
MLA Salem, Y. et al. “Present State of the Art of a Fast Neutron Dosimeter Incorporating RPL Detectors”. Journal of Nuclear Sciences, vol. 2, no. 2, 2015, pp. 53-58, doi:10.1501/nuclear_0000000013.
Vancouver Salem Y, Nourreddine A, Nachab A, Roy C, Pape A. Present state of the art of a fast neutron dosimeter incorporating RPL detectors. Journal of Nuclear Sciences. 2015;2(2):53-8.