Research Article
BibTex RIS Cite

Vulnerability-Preventing Structures in Disaster Management: Polyurea Coating on Building Structural Elements

Year 2023, Volume: 12 Issue: 4, 1768 - 1781, 26.12.2023
https://doi.org/10.37989/gumussagbil.1323932

Abstract

Numerous disasters occur due to the inability to manage risks arising from natural, technological, and human-induced hazards. As a result of these disasters, the magnification of incurred damages underscores the significance of the concept of risk management, an integral step in disaster management. Consequently, efforts to mitigate the adverse effects of earthquakes and other disasters are progressively increasing. However, endeavors aimed at reducing the damages inflicted by earthquakes and other disasters on structures, particularly earthquakes, are not yet at an adequate level. Presently, the importance of alternative solution models to counteract the forces exerted on structures during disasters like earthquakes is on the rise.In this study, unreinforced concrete blocks were coated with flexible polyurea, a state-of-the-art cladding material extensively used in various fields, at different thicknesses. Three-point bending tests were performed on the coated specimens. The data obtained from these tests were analyzed and evaluated. It was concluded that specimens coated with polyurea exhibited higher strengths compared to uncoated specimens. This study introduces the utilization of polyurea flexible composite material in structural elements as an alternative method within the spectrum of precautions taken to enhance the safety of structures against various disasters, primarily earthquakes.

Thanks

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) 2209-A University Students Research Projects Support Program. Project application number: 1919b011901241.

References

  • 1. Zhou, H.J, Wang X. and Wang, J.A. (2016). A Way to Sustainability: Perspective of Resilience and Adaptation to Disaster. Sustainability, 8: 737. Doi:10.3390/su8080737.
  • 2. Eng, C.B. and Tan, W.L. (2019). Disaster Prevention and Recovery. Methods in Molecular Biology,1897:31-41. Doi: 10.1007/978-1-4939-8935-5_4.
  • 3. Global Natural Dısaster Assessment Report, (2021). file:///C:/Users/PC/Downloads/2021-global-disaster-assessment-report--2022.10.13.pdf .
  • 4. Jia, H, Chen, F. and Du, E. (2021). Adaptation to Disaster Risk-An Overview. Int J Environ Res Public Health,18:21. Doi: 10.3390/ijerph182111187.
  • 5. Disaster And Emergency Management Presidency (AFAD), (2021). Disaster Types, About us, Https://Www.Afad.Gov.Tr/Afet-Turleri 08. 25. 2021.
  • 6. Stręk, A.M, Lasowicz, N, Kwiecień, A, Zając, B. and Jankowski, R. (2021). Highly Dissipative Materials for Damage Protection against Earthquake-Induced Structural Pounding. Materials (Basel), 14;12: 3231. Doi: 10.3390/ma14123231.
  • 7. Zhang, R, Huang, W, Lyu, P, Yan, S, Wang, X. and Ju, J. (2022) Polyurea for Blast and Impact Protection: A Review. Polymers (Basel),14;13:2670. Doi: 10.3390/polym14132670.
  • 8. United Nation Office for Disaster Risk Reduction (UNDRR) (2017). Understandıng Dısaster Rısk. Web Sayfası, About us, https://www.preventionweb.net/understanding-disaster-risk/component-risk/hazard 20.02.2022.
  • 9. Gallina, V, Torresan, S, Critto, A, Sperotto, A, Glade, T. and Marcomini, A. ( 2016). A Review of Multi-Risk Methodologies for Natural Hazards: Consequences and Challenges for A Climate Change İmpact Assessment. J Environ Manage, 1;168:123-32. Doi: 10.1016/j.jenvman.2015.11.011.
  • 10. Ji, H. and Lee, D. (2021). Disaster Risk Reduction, Community Resilience, and Policy Effectiveness: The Case of the Hazard Mitigation Grant Program in the United States. Disasters, 45;2:378-402. Doi: 10.1111/disa.12424.
  • 11. Johnson, D.R. (2021).Integrated Risk Assessment and Management Methods Are Necessary for Effective Implementation of Natural Hazards Policy. Risk Analysis 2021; 41;7:1240-1247. Doi: 10.1111/risa.13268.
  • 12. Uenishi, K. (2017). Rupture, Waves and Earthquakes. Proceedings of the Japan Academy Series B, 93;1:28-49. Doi: 10.2183/pjab.93.003.
  • 13. Okada, T. (2021). Development and Present Status of Seismic Evaluation and Seismic Retrofit of Existing Reinforced Concrete Buildings in Japan. Proceedings of the Japan Academy Series B, 97;7:402-422. Doi: 10.2183/pjab.97.021.
  • 14. Bommer, J.J, Crowley, H. and Pinho, R. (2015). A Risk-Mitigation Approach to the Management of Induced Seismicity. Journal of Seismology, 19;2:623-646. Doi: 10.1007/s10950-015-9478-z.
  • 15. Wei, Y, Jin, L, Xu, M, Pan, S, Xu, Y. and Zhang, Y. (2020). Instructions for Planning Emergency Shelters and Open Spaces in China: Lessons From Global Experiences and Expertise. International Journal of Disaster Risk Reduction, 51:101813. Doi: 10.1016/j.ijdrr.2020.101813.
  • 16. Wada, A. (2018). Strength, Functionality and Beauty of University Buildings in Earthquake-Prone Countries. Proceedings of the Japan Academy Series B, 94;2:129-138. Doi: 10.2183/pjab.94.009.
  • 17. Necolau, M.I, Damian, C.M, Fierăscu, R.C, Chiriac, A.L, Vlăsceanu, G.M, Vasile, E. and Lovu, H. (2021). Layered Clay-Graphene Oxide Nanohybrids for the Reinforcement and Fire-Retardant Properties of Polyurea Matrix. Polymers (Basel), 14;1:66. Doi: 10.3390/polym14010066.
  • 18. Shojaei, B, Najafi, M, Yazdanbakhsh, A, Abtahi, M. and Zhang, C.(2021). A Review on the Applications of Polyurea in the Construction Industry. Polymers for Advanced Technologies, 32:8. Doi: https://doi.org/10.1002/pat.5277.
  • 19. Feaga, M.K. (2007). The Effect of Projectile Strike Velocity on the Performance of Polyurea Coated Rha Plates Under Ballistic İmpact. Yüksek Lisans Tezi, Lehigh University. Pennsylvania,https://preserve.lib.lehigh.edu/islandora/object/preserve%3Abp-3101539.
  • 20. He, Y.X. (2014). The Structure, Microphase-Separated Morphology and Property Of Polyurethanes And Polyureas. Journal Of Materials Science, 49:21: 7339-7352. https://link.springer.com/article/10.1007/s10853-014-8458-y.
  • 21. Marissen, R. (2011). Design With Ultra Strong Polyethylene Fibers, Materials Sciences and Applications, 2;5: 319-330. 10.4236/msa.2011.25042.
  • 22. Grujicic, A, LaBerge, M, Grujicic, M, Pandurangan, B, Runt, J, Tarter J. and Dillon, G. (2012). Potential Improvements in Shock-Mitigation Efficacy of A Polyurea-Augmented Advanced Combat Helmet. J Mater Eng Perform, 21:1562–1579. https://link.springer.com/article/10.1007/s11665-011-0065-3.
  • 23. Raman, S.N, Pham, T, Ngo T. and Mendis, P. (2012). Experimental Investigation on the Behaviour of RC Panels Retrofitted with Polymer Coatings. Under Blast Effects Proceedings of the 2nd International Conference on Sustainable Built Environment (ıcsbe2012). Kandy, Sri Lanka. 14-16 December, 14 pgs, 2012. http://dl.lib.uom.lk/bitstream/handle/123/9047/sbe-12-212.pdf?sequence=1.
  • 24. Somarathna, HMCC, Raman, S.N, Mutalib, A.A. and Badri, K.H. (2015). Elastomeric Polymers For Blast And Ballistic Retrofitting Of Structures. Jurnal Teknoloji, 76:1 1-13. https://doi.org/10.11113/jt.v76.3608.
  • 25. Szafran, J. and Matusiak, A. (2016). Polyurea Coating Systems: Definition, Research, Applications. XXIV Conference On Lightweight Structures in Civil Engineering, 2 December 2016, Olsztyn. https://www.lsce.pl/pub/uploads/do-pobrania/Szafran-Matusiak-Polyurea-Coating-Systems.pdf.
  • 26. Qiao, J, Amirkhizi, A.V, Schaaf, K, Nemat-Nasser, S. and Wu, G. (2011). Dynamic Mechanical and Ultrasonic Properties of Polyurea. Mechanics of Materials, 43:598-607. http://ceam.ucsd.edu/documents/papers/DynamicMechanicalAndUltrasonicPropertiesOfPolyurea.pdf .
  • 27. Broekaert, M.(2003). Polyurea Spray-Applied Systems for Concrete Protection. Paper Presented at: Fourth European Congress on Construction Chemicals; Nurnberg, Germany, https://www.academia.edu/38571499/Polyurea_Spray_Applied_Systems_for_Concrete_Protection.
  • 28. Grujicic, M, Bell, W.C, Pandurangan, B. and He, T. (2010). Blast-Wave Impact-Mitigation Capability of Polyurea When Used as Helmet Suspension-Pad Material. Materials And Design, 31;9: 4050- 4065. https://doi.org/10.1016/j.matdes.2010.05.002.
  • 29. Yadav, R.N. (2016). Body Armour Materials: From Steel to Contemporary Biomimetic System (Cilt 6). The Royal Society Of Chemistry, 6: 115145–115174. https://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra24016j#!divRelatedContent&articles.
  • 30. Mohotti, D, Ngo, T, Raman, S.N, Ali, M. and Mendis, P. (2014). Plastic Deformation Of Polyurea Coated Composite Aluminium Plates Subjected To Low Velocity İmpact. Materials and Design, 56: 696–713. https://doi.org/10.1016/j.matdes.2013.11.063.
  • 31. Liu, Q, Guo, B, Chen, P, Jianjun, S, Arab, A, Ding, G, Yan, G, Jianga, H. and Guo, F. (2021). Investigating Ballistic Resistance of CFRP/polyurea Composite Plates Subjected to Ballistic Impact, Thin-Walled Structures, 166. https://doi.org/10.1016/j.tws.2021.108111.
  • 32. Ackland, K, Anderson, C. and Ngo, T.D. (2013) Deformation of Polyurea-Coated Steel Plates Under Localised Blast Loading. International Journal of Impact Engineering, 51:13–22. https://doi.org/10.1016/j.ijimpeng.2012.08.005.
  • 33. Xue, L, J.r WMW. and Belytschko, T. (2010). Penetration of DH-36 Steel Plates with and without Polyurea Coating. Mech. Mater,42; 11:981-1003. https://doi.org/10.1016/j.mechmat.2010.08.004
  • 34. Amini, M.R, Isaacs, J. and Nemat-Nasser, S. (2010). Investigation Of Effect Ofpolyurea On Response Of Steel Plates To İmpulsive Loads İn Direct Pressurepulse Experiments, Mechanics Of Materials, 42: 628-639. https://doi.org/10.1016/j.mechmat.2009.09.08.
  • 35. Ha, J.H, Yi, N.H, Choi, J.K. and Kim J.H.J. (2011). Experimental Study on Hybrid CFRP-PU Strengthening Effect on RC Panels Under Blast Loading. Composite Structures, 93; 8:2070-2082.https://doi.org/10.1016/j.compstruct.2011.02.014.
  • 36. Toader, G, Rusen, E, Teodorescu, M, Diacon, A, Stanescu, O, Rotariu, T. and Rotariu, T. (2016). Novel Polyurea Polymers With Enhanced Mechanical Properties. Applied Polymer Science, 43967: 1–7. https://doi.org/10.1002/app.43967.
  • 37. Mohotti, D, Ngo, T, Raman, N. And Mendis, P. (2013). Polyurea Coatedcomposite Aluminium Plates Subjected To High Velocity Projectile İmpact. Materials and Design, 52: 1–16. https://doi.org/10.1016/j.matdes.2013.05.060.
  • 38. Mohotti, D, Ngo, T, Raman, N. and Mendis, P.( 2015). Analytical And Numerical İnvestigation Of Polyurea Layered Aluminium Plates Subjected To High Velocity Projectile İmpact. Materials And Design, 82: 1–17. https://doi.org/10.1016/j.matdes.2015.05.036.
  • 39. Parniani, S.H. and Toutanji, H. ( 2015). Monotonic and Fatigue Performance of RC Beams Strengthened with A Polyurea Coating System. Construction and Building Materials 2015; 101:22-29. https://doi.org/10.1016/j.conbuildmat.2015.10.020.
  • 40. Gauch, E, LeBlanca, J. and Shukla, A. (2018) Near Field Underwater Explosion Response of Polyurea Coated Composite Cylinders. Composite Structures, 202: 836-852. https://doi.org/10.1016/j.compstruct.2018.04.048.

Afet Yönetiminde Zarar Görebilirliği Önleyici Yapılar: Bina Yapısal Elemanlarında Poliüre Kaplama

Year 2023, Volume: 12 Issue: 4, 1768 - 1781, 26.12.2023
https://doi.org/10.37989/gumussagbil.1323932

Abstract

Doğal, teknolojik ve insan kaynaklı tehlikelerden ortaya çıkan risklerin yönetilememesi sonucunda birçok afet meydana gelmektedir. Yaşanan bu afetler sonucunda; oluşan zararların büyük boyutlara ulaşması, afet yönetiminin bir basamağı olan risk yönetimi kavramını önemli kılmaktadır. Bu nedenle depremler ve diğer afetlerin olumsuz etkilerini önlemeye yönelik çalışmaların sayısı her geçen gün artmaktadır. Depremler başta olmak üzere diğer afetlerin yapılara verdiği zararları azaltmak ve mümkünse bu zararları önlemeye yönelik çalışmalar henüz yeterli düzeyde değildir. Günümüzde deprem gibi afetlerde yapılara etkiyen kuvvetleri karşılamaya yönelik olarak alternatif çözüm modellerinin önemi giderek artmaktadır. Bu çalışmada donatısız beton bloklar, yeni nesil bir kaplama malzemesi olan ve birçok alanda sıkça kullanılan esnek poliüre kaplama malzemesi ile faklı kalınlıklarda kaplanmıştır. Kaplanmış olan numuneler üzerinde 3 noktalı eğilme testi gerçekleştirilmiştir. Bu testlerden elde edilen veriler analiz edilerek değerlendirilmiştir. Poliüre ile kaplı numunelerin, poliüre ile kaplanmamış numunelere göre mukavemetlerinin yüksek çıktığı sonucuna varılmıştır. Bu çalışma yapı elemanlarında poliüre esnek kompozit malzemesinin kullanılması ile deprem başta olmak üzere diğer pek çok afete karşı yapıların güvenliğini artırmaya yönelik olarak alınan önlemler içerisinde alternatif bir yöntem olarak sunulmuştur.

References

  • 1. Zhou, H.J, Wang X. and Wang, J.A. (2016). A Way to Sustainability: Perspective of Resilience and Adaptation to Disaster. Sustainability, 8: 737. Doi:10.3390/su8080737.
  • 2. Eng, C.B. and Tan, W.L. (2019). Disaster Prevention and Recovery. Methods in Molecular Biology,1897:31-41. Doi: 10.1007/978-1-4939-8935-5_4.
  • 3. Global Natural Dısaster Assessment Report, (2021). file:///C:/Users/PC/Downloads/2021-global-disaster-assessment-report--2022.10.13.pdf .
  • 4. Jia, H, Chen, F. and Du, E. (2021). Adaptation to Disaster Risk-An Overview. Int J Environ Res Public Health,18:21. Doi: 10.3390/ijerph182111187.
  • 5. Disaster And Emergency Management Presidency (AFAD), (2021). Disaster Types, About us, Https://Www.Afad.Gov.Tr/Afet-Turleri 08. 25. 2021.
  • 6. Stręk, A.M, Lasowicz, N, Kwiecień, A, Zając, B. and Jankowski, R. (2021). Highly Dissipative Materials for Damage Protection against Earthquake-Induced Structural Pounding. Materials (Basel), 14;12: 3231. Doi: 10.3390/ma14123231.
  • 7. Zhang, R, Huang, W, Lyu, P, Yan, S, Wang, X. and Ju, J. (2022) Polyurea for Blast and Impact Protection: A Review. Polymers (Basel),14;13:2670. Doi: 10.3390/polym14132670.
  • 8. United Nation Office for Disaster Risk Reduction (UNDRR) (2017). Understandıng Dısaster Rısk. Web Sayfası, About us, https://www.preventionweb.net/understanding-disaster-risk/component-risk/hazard 20.02.2022.
  • 9. Gallina, V, Torresan, S, Critto, A, Sperotto, A, Glade, T. and Marcomini, A. ( 2016). A Review of Multi-Risk Methodologies for Natural Hazards: Consequences and Challenges for A Climate Change İmpact Assessment. J Environ Manage, 1;168:123-32. Doi: 10.1016/j.jenvman.2015.11.011.
  • 10. Ji, H. and Lee, D. (2021). Disaster Risk Reduction, Community Resilience, and Policy Effectiveness: The Case of the Hazard Mitigation Grant Program in the United States. Disasters, 45;2:378-402. Doi: 10.1111/disa.12424.
  • 11. Johnson, D.R. (2021).Integrated Risk Assessment and Management Methods Are Necessary for Effective Implementation of Natural Hazards Policy. Risk Analysis 2021; 41;7:1240-1247. Doi: 10.1111/risa.13268.
  • 12. Uenishi, K. (2017). Rupture, Waves and Earthquakes. Proceedings of the Japan Academy Series B, 93;1:28-49. Doi: 10.2183/pjab.93.003.
  • 13. Okada, T. (2021). Development and Present Status of Seismic Evaluation and Seismic Retrofit of Existing Reinforced Concrete Buildings in Japan. Proceedings of the Japan Academy Series B, 97;7:402-422. Doi: 10.2183/pjab.97.021.
  • 14. Bommer, J.J, Crowley, H. and Pinho, R. (2015). A Risk-Mitigation Approach to the Management of Induced Seismicity. Journal of Seismology, 19;2:623-646. Doi: 10.1007/s10950-015-9478-z.
  • 15. Wei, Y, Jin, L, Xu, M, Pan, S, Xu, Y. and Zhang, Y. (2020). Instructions for Planning Emergency Shelters and Open Spaces in China: Lessons From Global Experiences and Expertise. International Journal of Disaster Risk Reduction, 51:101813. Doi: 10.1016/j.ijdrr.2020.101813.
  • 16. Wada, A. (2018). Strength, Functionality and Beauty of University Buildings in Earthquake-Prone Countries. Proceedings of the Japan Academy Series B, 94;2:129-138. Doi: 10.2183/pjab.94.009.
  • 17. Necolau, M.I, Damian, C.M, Fierăscu, R.C, Chiriac, A.L, Vlăsceanu, G.M, Vasile, E. and Lovu, H. (2021). Layered Clay-Graphene Oxide Nanohybrids for the Reinforcement and Fire-Retardant Properties of Polyurea Matrix. Polymers (Basel), 14;1:66. Doi: 10.3390/polym14010066.
  • 18. Shojaei, B, Najafi, M, Yazdanbakhsh, A, Abtahi, M. and Zhang, C.(2021). A Review on the Applications of Polyurea in the Construction Industry. Polymers for Advanced Technologies, 32:8. Doi: https://doi.org/10.1002/pat.5277.
  • 19. Feaga, M.K. (2007). The Effect of Projectile Strike Velocity on the Performance of Polyurea Coated Rha Plates Under Ballistic İmpact. Yüksek Lisans Tezi, Lehigh University. Pennsylvania,https://preserve.lib.lehigh.edu/islandora/object/preserve%3Abp-3101539.
  • 20. He, Y.X. (2014). The Structure, Microphase-Separated Morphology and Property Of Polyurethanes And Polyureas. Journal Of Materials Science, 49:21: 7339-7352. https://link.springer.com/article/10.1007/s10853-014-8458-y.
  • 21. Marissen, R. (2011). Design With Ultra Strong Polyethylene Fibers, Materials Sciences and Applications, 2;5: 319-330. 10.4236/msa.2011.25042.
  • 22. Grujicic, A, LaBerge, M, Grujicic, M, Pandurangan, B, Runt, J, Tarter J. and Dillon, G. (2012). Potential Improvements in Shock-Mitigation Efficacy of A Polyurea-Augmented Advanced Combat Helmet. J Mater Eng Perform, 21:1562–1579. https://link.springer.com/article/10.1007/s11665-011-0065-3.
  • 23. Raman, S.N, Pham, T, Ngo T. and Mendis, P. (2012). Experimental Investigation on the Behaviour of RC Panels Retrofitted with Polymer Coatings. Under Blast Effects Proceedings of the 2nd International Conference on Sustainable Built Environment (ıcsbe2012). Kandy, Sri Lanka. 14-16 December, 14 pgs, 2012. http://dl.lib.uom.lk/bitstream/handle/123/9047/sbe-12-212.pdf?sequence=1.
  • 24. Somarathna, HMCC, Raman, S.N, Mutalib, A.A. and Badri, K.H. (2015). Elastomeric Polymers For Blast And Ballistic Retrofitting Of Structures. Jurnal Teknoloji, 76:1 1-13. https://doi.org/10.11113/jt.v76.3608.
  • 25. Szafran, J. and Matusiak, A. (2016). Polyurea Coating Systems: Definition, Research, Applications. XXIV Conference On Lightweight Structures in Civil Engineering, 2 December 2016, Olsztyn. https://www.lsce.pl/pub/uploads/do-pobrania/Szafran-Matusiak-Polyurea-Coating-Systems.pdf.
  • 26. Qiao, J, Amirkhizi, A.V, Schaaf, K, Nemat-Nasser, S. and Wu, G. (2011). Dynamic Mechanical and Ultrasonic Properties of Polyurea. Mechanics of Materials, 43:598-607. http://ceam.ucsd.edu/documents/papers/DynamicMechanicalAndUltrasonicPropertiesOfPolyurea.pdf .
  • 27. Broekaert, M.(2003). Polyurea Spray-Applied Systems for Concrete Protection. Paper Presented at: Fourth European Congress on Construction Chemicals; Nurnberg, Germany, https://www.academia.edu/38571499/Polyurea_Spray_Applied_Systems_for_Concrete_Protection.
  • 28. Grujicic, M, Bell, W.C, Pandurangan, B. and He, T. (2010). Blast-Wave Impact-Mitigation Capability of Polyurea When Used as Helmet Suspension-Pad Material. Materials And Design, 31;9: 4050- 4065. https://doi.org/10.1016/j.matdes.2010.05.002.
  • 29. Yadav, R.N. (2016). Body Armour Materials: From Steel to Contemporary Biomimetic System (Cilt 6). The Royal Society Of Chemistry, 6: 115145–115174. https://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra24016j#!divRelatedContent&articles.
  • 30. Mohotti, D, Ngo, T, Raman, S.N, Ali, M. and Mendis, P. (2014). Plastic Deformation Of Polyurea Coated Composite Aluminium Plates Subjected To Low Velocity İmpact. Materials and Design, 56: 696–713. https://doi.org/10.1016/j.matdes.2013.11.063.
  • 31. Liu, Q, Guo, B, Chen, P, Jianjun, S, Arab, A, Ding, G, Yan, G, Jianga, H. and Guo, F. (2021). Investigating Ballistic Resistance of CFRP/polyurea Composite Plates Subjected to Ballistic Impact, Thin-Walled Structures, 166. https://doi.org/10.1016/j.tws.2021.108111.
  • 32. Ackland, K, Anderson, C. and Ngo, T.D. (2013) Deformation of Polyurea-Coated Steel Plates Under Localised Blast Loading. International Journal of Impact Engineering, 51:13–22. https://doi.org/10.1016/j.ijimpeng.2012.08.005.
  • 33. Xue, L, J.r WMW. and Belytschko, T. (2010). Penetration of DH-36 Steel Plates with and without Polyurea Coating. Mech. Mater,42; 11:981-1003. https://doi.org/10.1016/j.mechmat.2010.08.004
  • 34. Amini, M.R, Isaacs, J. and Nemat-Nasser, S. (2010). Investigation Of Effect Ofpolyurea On Response Of Steel Plates To İmpulsive Loads İn Direct Pressurepulse Experiments, Mechanics Of Materials, 42: 628-639. https://doi.org/10.1016/j.mechmat.2009.09.08.
  • 35. Ha, J.H, Yi, N.H, Choi, J.K. and Kim J.H.J. (2011). Experimental Study on Hybrid CFRP-PU Strengthening Effect on RC Panels Under Blast Loading. Composite Structures, 93; 8:2070-2082.https://doi.org/10.1016/j.compstruct.2011.02.014.
  • 36. Toader, G, Rusen, E, Teodorescu, M, Diacon, A, Stanescu, O, Rotariu, T. and Rotariu, T. (2016). Novel Polyurea Polymers With Enhanced Mechanical Properties. Applied Polymer Science, 43967: 1–7. https://doi.org/10.1002/app.43967.
  • 37. Mohotti, D, Ngo, T, Raman, N. And Mendis, P. (2013). Polyurea Coatedcomposite Aluminium Plates Subjected To High Velocity Projectile İmpact. Materials and Design, 52: 1–16. https://doi.org/10.1016/j.matdes.2013.05.060.
  • 38. Mohotti, D, Ngo, T, Raman, N. and Mendis, P.( 2015). Analytical And Numerical İnvestigation Of Polyurea Layered Aluminium Plates Subjected To High Velocity Projectile İmpact. Materials And Design, 82: 1–17. https://doi.org/10.1016/j.matdes.2015.05.036.
  • 39. Parniani, S.H. and Toutanji, H. ( 2015). Monotonic and Fatigue Performance of RC Beams Strengthened with A Polyurea Coating System. Construction and Building Materials 2015; 101:22-29. https://doi.org/10.1016/j.conbuildmat.2015.10.020.
  • 40. Gauch, E, LeBlanca, J. and Shukla, A. (2018) Near Field Underwater Explosion Response of Polyurea Coated Composite Cylinders. Composite Structures, 202: 836-852. https://doi.org/10.1016/j.compstruct.2018.04.048.
There are 40 citations in total.

Details

Primary Language English
Subjects Disaster and Emergency Management
Journal Section Original Article
Authors

Öznur Akduman 0000-0003-0258-2959

Yavuz Selim Aksüt 0000-0002-4568-3605

Afşin Ahmet Kaya 0000-0003-2082-6478

Publication Date December 26, 2023
Published in Issue Year 2023 Volume: 12 Issue: 4

Cite

APA Akduman, Ö., Aksüt, Y. S., & Kaya, A. A. (2023). Vulnerability-Preventing Structures in Disaster Management: Polyurea Coating on Building Structural Elements. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, 12(4), 1768-1781. https://doi.org/10.37989/gumussagbil.1323932
AMA Akduman Ö, Aksüt YS, Kaya AA. Vulnerability-Preventing Structures in Disaster Management: Polyurea Coating on Building Structural Elements. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi. December 2023;12(4):1768-1781. doi:10.37989/gumussagbil.1323932
Chicago Akduman, Öznur, Yavuz Selim Aksüt, and Afşin Ahmet Kaya. “Vulnerability-Preventing Structures in Disaster Management: Polyurea Coating on Building Structural Elements”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 12, no. 4 (December 2023): 1768-81. https://doi.org/10.37989/gumussagbil.1323932.
EndNote Akduman Ö, Aksüt YS, Kaya AA (December 1, 2023) Vulnerability-Preventing Structures in Disaster Management: Polyurea Coating on Building Structural Elements. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 12 4 1768–1781.
IEEE Ö. Akduman, Y. S. Aksüt, and A. A. Kaya, “Vulnerability-Preventing Structures in Disaster Management: Polyurea Coating on Building Structural Elements”, Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, vol. 12, no. 4, pp. 1768–1781, 2023, doi: 10.37989/gumussagbil.1323932.
ISNAD Akduman, Öznur et al. “Vulnerability-Preventing Structures in Disaster Management: Polyurea Coating on Building Structural Elements”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 12/4 (December 2023), 1768-1781. https://doi.org/10.37989/gumussagbil.1323932.
JAMA Akduman Ö, Aksüt YS, Kaya AA. Vulnerability-Preventing Structures in Disaster Management: Polyurea Coating on Building Structural Elements. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi. 2023;12:1768–1781.
MLA Akduman, Öznur et al. “Vulnerability-Preventing Structures in Disaster Management: Polyurea Coating on Building Structural Elements”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, vol. 12, no. 4, 2023, pp. 1768-81, doi:10.37989/gumussagbil.1323932.
Vancouver Akduman Ö, Aksüt YS, Kaya AA. Vulnerability-Preventing Structures in Disaster Management: Polyurea Coating on Building Structural Elements. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi. 2023;12(4):1768-81.