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Abstract 

In this paper, permutation flow shop scheduling problems (PFSS) are investigated with a genetic 

algorithm.   PFSS problem is a special type of flow shop scheduling problem. In a PFSS problem, 

there are n jobs to be processed on m machines in series. Each job has to follow the same machine 

order and each machine must process jobs in the same job order. The most common performance 

criterion in the literature is the makespan for permutation scheduling problems. In this paper, a 

genetic algorithm is applied to minimize the makespan. Taillard’s instances including 20, 50, and 

100 jobs with 5, 10, and 20 machines are used to define the efficiency of the proposed GA by 

considering lower bounds or optimal makespan values of instances. Furthermore, a sensitivity 

analysis is made for the parameters of the proposed GA and the sensitivity analysis shows that 

crossover probability does not affect solution quality and elapsed time. Supplementary to the 

parameter tuning of the proposed GA, we compare our GA with an existing GA in the literature 

for PFSS problems and our experimental study reveals that our proposed and well-tuned GA 

outperforms the existing GA for PFSS problems when the objective is to minimize the makespan.   
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1. INTRODUCTION AND LITERATURE REVIEW  

 

Permutation flow shop scheduling (PFSS) is the consideration of the permutation order of jobs in the 

classical flow shop scheduling problem.  In a PFSS problem, there are n jobs to be processed at m machines 

by following the same machine order and each machine must process jobs with the same job order.  The 

total number of possible sequences is n! for a PFSS problem. The problem is classified as Np-Hard. By 

using the triple scheduling notations (α/β/γ), the problem is classified as Fm|perm|Cmax.  Non-

approximate solution methods such as branch-and-bound take plenty of solution times to find the optimum 

sequence for any objective function while the problem size increases.  Therefore, effective algorithms such 

as NEH algorithm [1] or metaheuristic algorithms such as genetic algorithm (GA), tabu search, or particle 

swarm optimization can be used to find a near-optimal solution in an endurable solution time. The parameter 

quality of proposed solution approaches of heuristics or metaheuristics for combinatorial optimization 

problems is so significant to obtain a near-optimal solution in a bearable time period.  In this paper, a GA 

is proposed for PFSS problems to minimize the makespan (the maximum completion time). The parameters 

of the proposed GA such as crossover probability, mutation probability, and population size are analyzed 

with ANOVA. In order to evaluate the proposed GA’s optimality and speed, Taillard’s [2] flow shop 

instances including 20, 50, and 100 jobs with 5, 10, and 20 machines and their best-known solutions are 

used in this paper. 
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Researchers have proposed exact or heuristic methods for the problem for more than 40 years in the 

literature. Some researchers conducted literature surveys for the problem in the literature. Some of these 

are conducted by Yenisey and Yagmahan  [3], Reza et al.  [4], Framinan et al. [5] and Framinan et al. [6]. 

Because of the computational complexity of the problem, PFSS problem is one of the most investigated 

problems in the scheduling literature. Table 1 presents a detailed literature review about PFSS problems 

with the makespan (𝐶𝑚𝑎𝑥). As a summary for readers, we can say that the most effective algorithms for 

the problem are iterated greedy algorithms with accelerations schemas, tie-breaking mechanism, insertion-

based local search operators for the complete solution, and partial solution.    

Table 1. Literature review for PFSS problems with makespan criterion  

Authors  Method  Objectives and 

Constrains  

Summary  

Tasgetiren et al. 

[7] 

Particle swarm 

optimization (PSO) 
𝐶𝑚𝑎𝑥 and the total 

flowtime  

New best solutions were 

found.  

Wang and Tang 

[8] 

PSO 𝐶𝑚𝑎𝑥 with the blocking 

constrain  

New best solutions were 

found. 

Chen et al. [9] PSO 𝐶𝑚𝑎𝑥 Their revised discrete PSO 

outperforms all the existing 

PSO algorithms for the 

problem.  

Li and Deng 

[10] 

PSO 𝐶𝑚𝑎𝑥  

Rajendran and 

Zieger [11] 

Ant-colony optimization 

(ACO) 
𝐶𝑚𝑎𝑥 and the total 

flowtime 

New best solutions were 

found. 

Ahmadizar [12] ACO 𝐶𝑚𝑎𝑥 His proposed ACO 

outperforms well-known 

ACO algorithms in the 

literature for the problem. 

Ruiz and Stützle 

[13] 

Iterated Greedy (IG) 𝐶𝑚𝑎𝑥 Their IG outperforms all 

existing solution methods so 

far in the literature.  

Ruiz and Stützle 

[14] 

IG 𝐶𝑚𝑎𝑥 and total 

weighted tardiness 

 

Ribas et al. [15] IG 𝐶𝑚𝑎𝑥 with the blocking 

constrain 

 

Minella et al. 

[16] 

A new algorithm based 

on an IG algorithm  
𝐶𝑚𝑎𝑥, tardiness, and 

flow time 

 

Grabowski and 

Wodecki [17] 

Tabu search (TS) 𝐶𝑚𝑎𝑥  

Varadharajan 

and Rajendran 

[18] 

Simulated Annealing 

(SA)  
𝐶𝑚𝑎𝑥 and the total 

flowtime 

 

Grabowski and 

Pempera [19] 

TS  𝐶𝑚𝑎𝑥 with blocking 

constrain 

They proposed a specific 

neighborhood of algorithms 

that allows multi moves in an 

iteration. 

Zobolas et al.  

[20] 

GA and variable 

neighborhood search 

(VNS) 

𝐶𝑚𝑎𝑥  

Tseng and Lin 

[21] 

GA and local search  𝐶𝑚𝑎𝑥 and the total 

flowtime 

 

Pasupathy et al. 

[22] 

GA  𝐶𝑚𝑎𝑥 and the total 

flowtime 
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Chen et al. [23] GA 𝐶𝑚𝑎𝑥 New strategy for combining 

global statistical information 

from population and local 

location information from 

each individual in the 

population. 

Haq et al. [24] GA and artificial neural 

network 
𝐶𝑚𝑎𝑥  

Nagano et al. 

[25] 

GA  𝐶𝑚𝑎𝑥  

Rad et al. [26] New initial solution 

heuristic  
𝐶𝑚𝑎𝑥 They introduced five new 

methods that outperform the 

NEH algorithm.  

Dong et al. [27] An improved NEH 

algorithm with the tie-

breaking mechanism  

𝐶𝑚𝑎𝑥  

Kalczynski and 

Kamburowski 

[28] 

An improved NEH 

algorithm with the tie-

breaking mechanism  

𝐶𝑚𝑎𝑥  

Vázquez-

Rodríguez and 

Ochoa [29] 

GA  𝐶𝑚𝑎𝑥, the sum of 

tardiness, the sum of 

weighted tardiness, the 

sum of completion 

times, and the sum of 

weighted completion 

times 

They obtained new NEH 

heuristic variants by using 

genetic programming.  

Dubois-Lacoste 

et al. [30] 

An algorithm consisted 

of two-phases local 

search and Pareto local 

search 

𝐶𝑚𝑎𝑥, the sum of 

completion times and 

both of the weighted and 

no-weighted total 

tardiness 

 

Chiang et al. 

[31] 

Memetic algortihm with 

NSGA-II 
𝐶𝑚𝑎𝑥 and the total 

flowtime 

 

Zheng and 

Yamashiro [32] 

Quantum differential 

evolutionary algorithm 
𝐶𝑚𝑎𝑥,   total flow time,  

and  the maximum 

lateness of jobs 

 

Vallada and 

Ruiz [33] 

New cooperative 

metaheuristic methods 

Total tardiness and 

𝐶𝑚𝑎𝑥 

 

Lin and Ying 

[34] 

SA 𝐶𝑚𝑎𝑥 and the total 

flowtime 

 

Ribas et al. [35] A three-step heuristic 

algorithm 
𝐶𝑚𝑎𝑥  

Laha and 

Chakraborty 

[36] 

SA and NEH  𝐶𝑚𝑎𝑥  

Saravanan et al. 

[37] 

Scatter search 𝐶𝑚𝑎𝑥  

Tzeng and Chen 

[38] 

Distribution algorithm 

with ACO 
𝐶𝑚𝑎𝑥  

Dasgupta and 

Das [39] 

Cuckoo Search 𝐶𝑚𝑎𝑥 and mean flow 

time 

 

Chen et al. [40] Heuristic  𝐶𝑚𝑎𝑥  
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Moslehi and 

Khorasanian 

[41] 

VNS algorithm with SA  𝐶𝑚𝑎𝑥 with limited 

buffer  

New best solutions were 

found.  

 

Rajendran et al. 

[42] 

Heuristic rules for tie-

breaking mechanism 

within NEH algorithm   

𝐶𝑚𝑎𝑥 They reported their heuristic 

as the best-known heuristic 

rule in the literature. 

Fernandez-

Viagas and  

Framinan [43] 

A new tie-breaking 

mechanism for heuristic 

and metaheuristic 

algorithms  

𝐶𝑚𝑎𝑥 They reported their heuristic 

as the best-known heuristic 

rule in the literature. 

Dubois-Lacoste 

et al. [44] 

New local search 

mechanism for partial 

solutions in current 

metaheuristics  

𝐶𝑚𝑎𝑥 They reported their heuristic 

as the best-known heuristic 

rule in the literature. 

Abdel-Basset et 

al. [45] 

A hybrid whale 

optimization algorithm 
𝐶𝑚𝑎𝑥  

Benavides and 

Ritt [46] 

Heuristics  𝐶𝑚𝑎𝑥 They stated that their new 

heuristics are more 

successful than the NEH 

algorithm as initial solution 

algorithms.   

Chen et al. [47] Quantum-inspired ACO 𝐶𝑚𝑎𝑥  

Kizilay et al. 

[48] 

Variable block insertion 

heuristic 
𝐶𝑚𝑎𝑥 They used their new heuristic 

within well-known 

metaheuristics and stated that 

their new heuristic is well 

fitted with well-known 

metaheuristics.  

Fernandez-

Viagas and  

Framinan [49] 

A best-of-breed IG 

algorithm  
𝐶𝑚𝑎𝑥 It is reported as the best-so-

far approximate method for 

the problem. 

Arık [50] Artificial bee colony  𝐶𝑚𝑎𝑥 The best component of IG 

combined with an artificial 

bee colony algorithm. 

Gyms et al. [51] A new node 

decomposition scheme 

that combines dynamic 

branching and lower 

bound refinement 

strategies 

𝐶𝑚𝑎𝑥  

Arık [52] Population-based TS  𝐶𝑚𝑎𝑥 Hybrid solution method with 

crossover and mutation 

strategies for the problem 

under effects of learning and 

deterioration.  

 

 

In this paper, we propose a GA for PFSS problems with the makespan criterion that is the most common 

performance criterion in the literature. GA drives random search operations within its structure inspiring 

by the evolutionary process. Like any metaheuristic algorithm for a combinatorial optimization problem, 

GA’s strength and applicability depend on its design and parameter tuning to the problem. In this study, we 

tune parameters of GA considering optimality and elapsed time until finding a near-optimal / optimal 

solution for the PFSS problem that has lots of real-life examples. For our proposed GA, we determine the 

best parameter levels and effects of GA parameters on both optimality and elapsed time.  
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2. MATHEMATICAL MODEL 

 

In this section a mixed-integer linear programming model for PFSS is given for the readers as follows:  

Indices  

𝑖: 𝑗𝑜𝑏 𝑖𝑛𝑑𝑒𝑥, 𝑖 = 1 … . 𝑛 

𝑗: 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖𝑛𝑑𝑒𝑥, 𝑗 = 1 … . 𝑚 

𝑟: 𝑐𝑜𝑚𝑚𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑎𝑙𝑙 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 𝑟 = 1 … . 𝑛 

Parameters  

𝑃𝑖,𝑗: 𝑏𝑎𝑠𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑖 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗 

Decision Variables 

𝑋𝑖,𝑟: 𝑖𝑓 𝑗𝑜𝑏 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠, 𝑡ℎ𝑒𝑛  𝑖𝑡′𝑠  1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0   

𝑃[𝑟],𝑗: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑟 𝑖𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗 

𝐶[𝑟],𝑗: 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑟 𝑖𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗 

𝑆[𝑟],𝑗: 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑟 𝑖𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗 

𝐶𝑚𝑎𝑥: 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 

Model  

𝑀𝑖𝑛 𝑧 = 𝐶𝑚𝑎𝑥                     (1) 

𝐬. 𝐭.:  

𝐶𝑚𝑎𝑥 ≥ 𝐶[𝑛],𝑚                     (2) 

∑ 𝑋𝑖,𝑟
𝑛
𝑖 = 1 ∀𝑟                     (3) 

∑ 𝑋𝑖,𝑟
𝑛
𝑟 = 1 ∀𝑖                     (4) 

𝐶[𝑟],𝑗 ≥ 𝑆[𝑟],𝑗 +  𝑃[𝑟],𝑗∀𝑟, 𝑗                   (5) 

𝑆[𝑟],𝑗 ≥ 𝐶[𝑟],𝑗−1  ∀𝑟, 𝑗 = 2, … , 𝑚                  (6) 

𝑆[𝑟],𝑗 ≥ 𝐶[𝑟−1],𝑗  ∀𝑗, 𝑟 = 2, … , 𝑚                  (7) 

𝑃[𝑟],𝑗 = ∑ 𝑋𝑖,𝑟
𝑛
𝑖 ∗ 𝑃𝑖,𝑗 ∀ 𝑟, 𝑗                   (8) 

𝐶[0],1 = 0                     (9) 

𝐶𝑚𝑎𝑥 ≥ 0                               (10) 

𝐶[𝑟],𝑗, 𝑃[𝑟],𝑗, 𝑆[𝑟],𝑗 ≥ 0 ∀𝑟, 𝑗                             (11) 

𝑋𝑖,𝑟 ∈ {0,1} ∀ 𝑖, 𝑟                              (12) 

 

The objective function of model (1) minimizes the maximum completion time of the schedule. Constraint 

(2) is to determine the makespan. Constraints (3) and (4) guarantee that each job must be assigned to only 

one position and each position must be used for only one job. Constraint (5) shows the relationship among 

completion, start, and processing times of the job assigned to the position 𝑟. Constraint (6) shows that a 

job’s starting time in machine 𝑗 must be greater than or equal to the completion time of the same job in 

machine 𝑗 − 1. Constraint (7) shows that starting time of the job in position 𝑟 must be greater than or equal 

to the completion time of the job in position 𝑟 − 1 in the same machine. Constraint (8) determines the 

calculation of the processing time of the job in position 𝑟 in machine 𝑗. Constraint (9) expresses that all jobs 

can be processed at time zero in the first machine. Constraints (10-12) show necessary domains of decision 

variables.  

3. GENETIC ALGORITHM 

 

There are several existing GA methods in the literature for PFSS problems. Some of these were conducted 

by Pasupathy et al. [22], Chen et al. [23], and Nagano et al. [25]. Pasupathy et al. [22] proposed a multi-

objective GA for scheduling in flow shops to minimize the makespan and total flowtime of jobs. They used 

binary-tournament selection, single-point crossover, and shift mutation mechanisms in their proposed GA. 

They did not tune the parameters of their proposed multi-objective GA. Chen et al. [23] proposed a self-

guided GA for PFSS problems with the makespan criteria. They used a quality determination function for 
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solutions in the solution population and they used quality values of solutions. They used binary selection, 

self-guided two-point crossover, self-guided swap-based mutation mechanism in their proposed GA. 

Considering other GA methods for PFSS problems with the makespan criterion, our proposed GA with its 

components is distinct. We use a roulette wheel selection mechanism, two-point crossover with repair 

function, and inversion-based mutation within our proposed GA. With its distinct features, we tune the 

parameters of our proposed GA to increase its performance for PFSS problems with the makespan criterion.  

In this section, pseudo-codes and details of the proposed GA are given to the readers. GA is one of the most 

known metaheuristics for combinatorial optimization problems.  GA is inspired by the evaluation process 

in nature. GA has abilities such as stochastic best solution search and generating new solutions from best-

known solutions in its solution pool. The general schema or pseudo-code of the proposed GA is illustrated 

in Figure 1.  

The selection operation in this proposed GA is the roulette wheel selection method. The pseudo-codes of 

evaluation and selection operators are shown in Figure 2. The crossover operator is a stochastic solution 

generation method using existing solutions in the matching pool of GA and it takes place after the selection 

operator.  A solution pair is selected from the matching pool considering their fitness values after selection 

operation. Then some substrings of these solutions are exchanged to generate new alternative solutions for 

the next step of GA, if a generated random number is less than or equal to the crossover probability of GA. 

While exchanging substrings between solutions, newly generated solutions may be disrupted and 

unfeasible. Therefore, a repair operator that fixes unfeasible solutions may be needed to have feasible and 

good candidate solutions. The pseudo-code of the crossover operator in this proposed GA is illustrated in 

Figure 3.  

The encoding scheme of this proposed GA is permutation encoding. In this encoding scheme, each 

chromosome (solution) is a string of job indices that are illustrated with numbers between 1 and 𝑛.  The 

repair operator in this GA, simply counts how many times a job is assigned to a solution and then replaces 

unassigned jobs to first places of multiple-times assigned jobs. This process goes on until there are no 

assigned or multiple-times assigned jobs to remain. The pseudo-code of repair operation of the proposed 

GA is illustrated in Figure 4.  

The mutation operator is another step of GA and it assures the diversity of the population. In this paper, the 

mutation operator is a kind of order chancing or inversion mutation. The pseudo-code of mutation is 

illustrated in Figure 5.   

 

Figure 1. The pseudo-code of the proposed genetic algorithm 
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Figure 2. The pseudo-code of evaluation and selection operator 

 

Figure 3. The pseudo-code of crossover operator  

 

Figure 4. The pseudo-code of the repair operator 
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Figure 5. The pseudo-code of the mutation operator 

 

4. PARAMETER ANALYSIS FOR GENETIC ALGORITHM   

 

In this section, a sensitivity analysis is made for obtaining the most suitable GA parameters that effect 

solution quality and elapsed time. The first instance (T001) of Taillard’s [2] flow shop instance is preferred 

to make sensitivity analysis. Different population sizes and mutation/crossover probabilities are used 20 

times to generate a test database for sensitivity analysis. In the sensitivity analysis; search for mutation 

probability 𝑝𝑚 was started from 0.01 and 0.15 with 0.02 increments, for 𝑝𝑐 was started from 0.8 to 0.95 

with 0.05 increments, for population size was started from 30 to 150 with 30 increments. The total number 

of executions with these different parameters is 3200. Test results are analyzed with ANOVA and Tukey 

procedure for makespan values and elapsed times of executions. The ANOVA results for makespan values 

obtaining by using different parameters are given in Table 2.   

Table 2. Anova results of groups’ population sizes, crossover, and mutation probabilities for 𝐶𝑚𝑎𝑥 

 
Source  DF Adj. SS Adj. MS F-Value P-Value  

  Population size 4 32184 8046.1 47.55 0.000 

  Crossover Prob. 3 305 101.8 0.6 0.614 

  Mutation Prob.  7 538955 193323.4 114.19 0.000 

Error 3185 135264 169.2   

  Lack-of-fit 145 384402 264.8 1.61 0.000 

  Pure Error 3040 500553 164.7   

Total 3199 706708    

 

As understood from Table 2, the factor of crossover probability has not a significant difference for 

makespan values by comparing it with the other two factors because the P-value of the factor of crossover 

probability is greater than 0.05. On the other hand, the factors of population size and mutation probability 

have significant differences because these factors’ P-values are less than 0.05. The same induction can be 

made by seeing the main effects plot for makespan values for these factors illustrated in Figure 6.  
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Figure 6. The main effect plot for makespan values of factors  

Figure 6 shows that the most significant effect is made by the factor of mutation probability and the factor 

of crossover probability does not have an effect on makespan values.  Furthermore, there are illustrations 

representing the results of Tukey procedures for these factors as seen in Figure 7.  

 

Figure 7. Results of Tukey Procedures for the factors of (a) crossover probability, (b) mutation 

probability, and (c) population size  

Figure 7 shows that any crossover probability between 0.80 and 0.95 does not affect the makespan. The 

remaining two factors except crossover probability have effects on the makespan value. The interval plot 

of makespan considering different mutation probabilities and population sizes in Figure 8 shows that the 

least average makespan value is found where mutation probability is 0.15 and population size is 150.    

 

Figure 8. Interval plot of makespan values  
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After these analyses for makespan values obtained by using different GA parameters, the factor crossover 

probability may not has a significant difference for makespan. If the same analysis is made for elapsed 

times of the same instance with the same intervals of parameters, the ANOVA results in Table 3 show that 

the factor of crossover probability has not a significant difference for elapsed times of executions.  

Table 3. Annova results of groups’ population sizes, crossover, and mutation probabilities for elapsed 

times 

Source  DF Adj. SS Adj. MS F-Value P-Value  

  Population size 4 12333.3 3083.33 34837.28 0.000 

  Crossover Prob. 3 0.2 0.07 0.75 0.522 

  Mutation Prob.  7 4458.7 636.95 7196.64 0.000 

Error 3185 281.9 0.09   

  Lack-of-fit 145 209.7 1.45 60.95 0.000 

  Pure Error 3040 72.2 0.02   

Total 3199 17074.1    

 

The main effect plot for elapsed times for these factors is given in Figure 9 and it shows that the most 

significant factor for elapsed times is the population size and the factor of crossover probability has no 

effect on elapsed times.  

 

Figure 9. The main effects plot for elapsed time  

The results of Tukey procedures of these factors for elapsed times are given in Figure 10 and they show 

that the factor of crossover probability has no effect on elapsed times.  

 

Figure 10. Results of Tukey Procedures for the factors of (a) mutation probability, (b) crossover 

probability, and (c) population size  
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The interval plot of elapsed times considering different mutation probabilities and population sizes in Figure 

11 shows that the least average elapsed time is found where mutation probability is 0.01 and population 

size is 30.    

 

 

Figure 11. Interval plot of elapsed times  

As a conclusion of these analyses, the factor of crossover probability between 0.80 and 0.95 has no effect 

on elapsed time and makespan value of PFSS problems. The main question still exists. Which parameters 

are good enough to find a near-optimal solution in a reasonable time period?  To find an answer to this 

question, the intervals for mutation probabilities and population size must be considered simultaneously 

because the analyses show that the factor of crossover probability has no effect.  Tables 4 and 5 show 

average makespan values and elapsed times of different mutation probabilities and population sizes. By 

using this data, Figures 12 and 13 show the interaction of these parameters in view of elapsed times and 

makespan values.  

Table 4. Average makespan values and elapsed times obtaining by using different population times 

Population Size  Cmax Avg. Elapsed Time Avg. 

30 1309.917 2.472562 

60 1304.891 4.179554 

90 1303.045 5.768405 

120 1302.677 6.736424 

150 1300.53 8.102433 

 

Table 5. Average makespan values and elapsed times obtaining by using different mutation probabilities 

Mutation Prob. Cmax Avg. Elapsed Time Avg.  

0.01 1318.2825 2.932559 

0.03 1310.445 4.365031151 

0.05 1305.47 5.178598573 

0.07 1301.28 5.69600607 

0.09 1300.49 6.04521352 

0.11 1300.6875 6.301976961 

0.13 1298.7175 6.48636089 

0.15 1298.3535 6.60922855 
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Figure 12. Comparison of population sizes in view of makespan and elapsed time  

 

Figure 13. Comparison of mutation probabilities in view of makespan and elapsed time  

Figure 12 shows the reasonable population size should be less than or equal to 60 and Figure 13 shows that 

the reasonable mutation probability is 0.03. While dealing with combinatorial optimization, the speed and 

optimality of the solution algorithm are so significant. The decision about the tradeoff between speed and 

optimality can be biased in view of a decision-maker. Therefore, this paper suggests that mutation 

probability should be 0.15 and population size should be 60. While the number of solutions (population 

size) in a population increases, the number of searches and other operations such as evaluation, selection, 

crossover, and mutation will be increased and this leads the elapsed time of the algorithm to increase. The 

best elapsed time is found where the population size is 30 but the worst makespan value is found with the 

same population size. In order to make a tradeoff among 30, 60, 90,120, and 150 population sizes for 

elapsed time and makespan, Figure 12 shows interaction among these values, and 60 seems good enough 

to have a near-optimal solution in a reasonable time period. The worst makespan and the best elapsed time 

is found where the mutation probability is 0.01. If a reader considers Figure 13, he/she can say that 0.03 

seems good enough to have a near-optimal solution. However, this paper suggests being biased about 

mutation probability because the best average makespan value is found where mutation probability is 0.15 

for all population sizes. The same approach can be considered for setting population size as 150 but the 

average makespan value where mutation probability is 0.15 is a bit less than the average makespan value 

where population size is 150.  
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4. PERFORMANCE OF THE PROPOSED GENETIC ALGORITHM  

 

In this section, the results of optimality and speed test of proposed GA by using Taillard’s [2] test instances 

including 20, 50, and 100 jobs with 5, 10, and 20 machines are given. The parameters of the proposed GA 

are; mutation probability is 0.15, crossover probability is 0.80 and population size is 60. There are n! 

possible schedules for a PFSS so the number of iterations should be related to n. Also, the number of 

machines m must be considered while solving instances that have the same n value and different m values. 

Therefore, this paper suggests the number of iterations can be set as 50(n+m). All test instances were 

successively solved fifty times on the same computer. Each time while solving an instance, the proposed 

GA used only one core of the CPU. The proposed GA was coded by using the VB.NET programming 

language and MS Access database. Also, all test instances were solved and the sensitivity analyses were 

made on a standard desktop with i5-7500 CPU and 8GB RAM.   Tables 6, 7, and 8 give average makespan 

values, best makespan values, the average elapsed times, and optimality of the proposed GA considering 

both best and average makespans for all test instances including 20, 50, and 100 jobs, respectively. The 

optimality value can be calculated as follows:  

𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 = 1 − 
𝐶𝑚𝑎𝑥−𝑏𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

𝑏𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
  .               (13) 

Equation (13) uses the best-known makespan values in the literature. In each of Tables 6,7 and 8, if the 

problem has an optimal makespan value, it is marked with an asterisk. If the problem has not an optimal 

makespan so far, then the lower bound [53] of that problem is used to calculate the optimality of the 

proposed GA.   

Table 6. Results of test instances including 20 jobs and different machine numbers 

n/m Problem  Opt*/ LB  Avg. Sol. Best Sol.  Avr. elapsed time Avg. Optimality Optimality  

20/5 TL001 1278* 1297.4 1278 2.282 0.9848 1.0000 

 TL002 1359* 1371.22 1360 2.227 0.9910 0.9993 

 TL003 1081* 1104.92 1088 2.150 0.9779 0.9935 

 TL004 1293* 1323.84 1305 2.229 0.9761 0.9907 

 TL005 1235* 1262.6 1244 2.253 0.9777 0.9927 

 TL006 1195* 1222.68 1195 2.240 0.9768 1.0000 

 TL007 1234* 1252.08 1239 2.224 0.9853 0.9959 

 TL008 1206* 1229.74 1206 2.244 0.9803 1.0000 

 TL009 1230* 1261.58 1233 2.245 0.9743 0.9976 

 TL010 1108* 1134.46 1111 2.239 0.9761 0.9973 

          Avr. 0.9800 0.9967 

20/10 TL011 1582* 1649.16 1609 4.504 0.9575 0.9829 

 TL012 1659* 1735.78 1684 4.553 0.9537 0.9849 

 TL013 1496* 1568.18 1528 4.384 0.9518 0.9786 

 TL014 1377* 1449.96 1390 4.569 0.9470 0.9906 

 TL015 1419* 1501.72 1441 4.565 0.9417 0.9845 

 TL016 1397* 1451.56 1416 4.596 0.9609 0.9864 

 TL017 1484* 1540.48 1510 4.544 0.9619 0.9825 

 TL018 1538* 1619.2 1574 4.582 0.9472 0.9766 

 TL019 1593* 1648.66 1612 4.569 0.9651 0.9881 

 TL020 1591* 1647.32 1619 4.532 0.9646 0.9824 

          Avr. 0.9551 0.9837 

20/20 TL021 2297* 2396.38 2318 10.666 0.9567 0.9909 
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 TL022 2099* 2179.54 2135 10.671 0.9616 0.9828 

 TL023 2326* 2411.32 2365 10.302 0.9633 0.9832 

 TL024 2223* 2315.38 2254 10.689 0.9584 0.9861 

 TL025 2291* 2377.96 2328 10.653 0.9620 0.9838 

 TL026 2226* 2302.8 2247 10.633 0.9655 0.9906 

 TL027 2273* 2357.38 2317 10.188 0.9629 0.9806 

 TL028 2200* 2285.78 2228 10.675 0.9610 0.9873 

 TL029 2237* 2340.7 2288 10.656 0.9536 0.9772 

 TL030 2178* 2287.48 2216 10.615 0.9497 0.9826 

          Avr. 0.9595 0.9845 

Table 7. Results of test instances including 50 jobs and different machine numbers 

n/m Problem  Opt*/ LB Avg. Sol. Best Sol.  Avr. elapsed time Avg. Optimality Optimality  

50/5 TL031 2724* 2745.5 2729 22.111 0,9921 0.9982 

 TL032 2834* 2874.32 2838 22.097 0.9858 0.9986 

 TL033 2621* 2658.66 2629 21.928 0.9856 0.9969 

 TL034 2751* 2797.7 2762 21.855 0.9830 0.9960 

 TL035 2863* 2893.5 2864 21.813 0.9893 0.9997 

 TL036 2829* 2851.54 2832 21.738 0.9920 0.9989 

 TL037 2725* 2762.38 2735 21.808 0.9863 0.9963 

 TL038 2683* 2716.66 2694 21.752 0.9875 0.9959 

 TL039 2552* 2592.06 2565 21.777 0.9843 0.9949 

 TL040 2782* 2795.16 2782 21.733 0.9953 1.0000 

          Avr. 0.9881 0.9975 

50/10 TL041 2991* 3184.8 3126 40.176 0.9352 0.9549 

 TL042 2867* 3069.2 3003 39.829 0.9295 0.9526 

 TL043 2839* 3067.18 2976 39.563 0.9196 0.9517 

 TL044 3063* 3205.72 3133 39.503 0.9534 0.9771 

 TL045 2976* 3184.12 3104 39.487 0.9301 0.9570 

 TL046 3006* 3182.16 3082 39.317 0.9414 0.9747 

 TL047 3093* 3277.68 3201 39.490 0.9403 0.9651 

 TL048 3037* 3182.48 3124 39.487 0.9521 0.9714 

 TL049 2897* 3071.58 3008 39.204 0.9397 0.9617 

 TL050 3065* 3251.2 3185 39.238 0.9392 0.9608 

          Avr. 0.9381 0.9627 

50/20 TL051 3771 4164.56 4070 82.418 0.8956 0.9207 

 TL052 3668 4029.56 3937 81.903 0.9014 0.9267 

 TL053 3591 3982.3 3897 82.065 0.8910 0.9148 

 TL054 3635 4038.9 3906 85.700 0.8889 0.9254 

 TL055 3553 3997.12 3875 82.392 0.8750 0.9094 

 TL056 3667 4009.52 3875 82.203 0.9066 0.9433 

 TL057 3672 4033.62 3936 82.496 0.9015 0.9281 

 TL058 3627 4040.82 3908 81.571 0.8859 0.9225 

 TL059 3645 4073.66 3975 81.818 0.8824 0.9095 

 TL060 3696 4071.94 3946 81.682 0.8983 0.9324 

          Avr. 0.8927 0.9233 
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Table 8. Results of test instances including 100 jobs and different machine numbers 

n/m Problem  Opt*/ LB Avg. Sol. Best Sol.  Avr. elapsed time Avg. Optimality Optimality  

100/5 TL061 5493* 5511.78 5495 146,138 0.9966 0.9996 

 TL062 5268* 5299.48 5284 145.800 0.9940 0.9970 

 TL063 5175* 5222.92 5200 145.037 0.9907 0.9952 

 TL064 5014* 5040.3 5029 144.737 0.9948 0.9970 

 TL065 5250* 5285.12 5255 142.779 0.9933 0.9990 

 TL066 5135* 5162.1 5137 144.586 0.9947 0.9996 

 TL067 5246* 5309.34 5264 145.902 0.9879 0.9966 

 TL068 5094* 5141.06 5105 145.078 0.9908 0.9978 

 TL069 5448* 5508.06 5473 145.368 0.9890 0.9954 

 TL070 5322* 5369.84 5342 145.746 0.9910 0.9962 

          Avr. 0.9923 0.9973 

100/10 TL071 5770* 5990.32 5891 250.429 0.9618 0.9790 

 TL072 5349* 5550.42 5456 248.158 0.9623 0.9800 

 TL073 5676* 5850.38 5761 246.338 0.9693 0.9850 

 TL074 5781* 6037.88 5942 250.578 0.9556 0.9722 

 TL075 5467* 5741.7 5614 250.805 0.9498 0.9731 

 TL076 5303* 5486.2 5412 248.455 0.9655 0.9794 

 TL077 5595* 5774.4 5715 249.876 0.9679 0.9786 

 TL078 5617* 5837.6 5777 247.177 0.9607 0.9715 

 TL079 5871* 6035.18 5967 250.288 0.9720 0.9836 

 TL080 5845* 6036.5 5954 250.179 0.9672 0.9814 

          Avr. 0.9632 0.9784 

100/20 TL081 6106 6790.18 6636 486.289 0.8879 0.9132 

 TL082 6183* 6783.66 6654 485.826 0.9029 0.9238 

 TL083 6252 6850.46 6745 481.684 0.9043 0.9211 

 TL084 6254 6817.54 6689 482.572 0.9099 0.9304 

 TL085 6262 6871.62 6741 477.946 0.9026 0.9235 

 TL086 6302 6917.22 6787 498.876 0.9024 0.9230 

 TL087 6184 6894.78 6763 475.453 0.8851 0.9064 

 TL088 6315 7012.7 6895 483.238 0.8895 0.9082 

 TL089 6204 6884.08 6758 484.152 0.8904 0.9107 

 TL090 6404 6971.6 6830 476.228 0.9114 0.9335 

          Avr. 0.8986 0.9194 

 

In order to be sure about which value is the best between 0.03 and 0.15 mutation probabilities,    the same 

set of GA parameters except for mutation probability where it is 0.03  are used and the average optimality 

of average makespan values was found as 0.9467 and the average optimality of best solutions was found as 

0.9646. After sensitivity analyses, the average optimality of average makespan values is 0.9567 and the 

average optimality for best solutions is 0.9715. Therefore, setting mutation probability as 0.15 is better than 

the number of 0.03.  

GA has been one of the strongest metaheuristics for optimization problems. GA has an easily-appliable 

structure to optimization problems and three basic parameters. These parameters are population size, 
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crossover probability, and mutation probability. Since its performance for any problem depends on the 

parameter settings. Therefore, we tuned the parameters of our proposed GA. While the problem’s size (the 

numbers of jobs and machines) increases the optimality of the proposed GA decrease gradually because of 

the termination criterion. The termination criterion is the number of iterations having a formula of 50(n+m). 

As understood from Tables 6,7 and 8, the number of machines in the problem dramatically effects the 

optimality. We selected this criterion in the parameter tuning because we wanted a well-tuned parameter 

set that can be used in a short running time for the problem.   

In order to test the performance of our proposed GA against an existing GA for PFSS problems, we coded 

the GA of  Pasupathy et al. [22] that was originally coded for a multi-objective PFSS problem. In their GA, 

they used binary tournament selection, single-point crossover, and shift mutation mechanisms in their 

proposed GA. They suggested crossover probability as 1.0 and mutation probability as 0.1.  They did not 

state the population size so we use 60 as population size in our version of the GA of Pasupathy et al. [22]. 

We coded the GA of Pasupathy et al. [22] by using the VB.NET programming language and MS Access 

database. And this performance comparison between two algorithms was made on a standard desktop with 

i5-7500 CPU and 8GB RAM. For performance evaluation, we selected Taillard’s [2] test instances 

including 20, 50, and 100 jobs with 5, 10, and 20 machines. There are 90 instances in our experiment. We 

executed each GA five times for each instance. For the termination criterion, we used a well-known elapsed 

time calculation formula (𝑡. 𝑛. 𝑚/2) for FPSS problems. In that formula,  𝑡 is a constant for elapsed time 

calculation in milliseconds. For performance indicator, we use the formula called average relative 

derivation (ARD) from the best known makespan value as follows:   

1

90
∑

𝐶𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ 𝑘−𝑏𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑘

𝑏𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑘
90
𝑘=1                (14) 

where 𝐶𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅
𝑖 is the average makespan of instance 𝑘 (𝑘 ∈ {1,2,3, … ,90}) after 5 executions of any GA 

method. As understood from Equation (14), the GA method having the lowest ARD score must be better 

than the other because it devives less from the best makespan values of instance than the other does.We 

used three 𝑡 values (𝑡 ∈ {30, 60,90})) for performance comparison between our proposed GA and GA of 

Pasupathy et al. [22]. The ARD values of the two compared algorithms are given in Table 9. As seen from 

this experiment, our proposed GA outperforms the other GA proposed by Pasupathy et al. [22]. There was 

no parameter setting in the study of Pasupathy et al. [22] for their proposed GA. They just suggested 

crossover and mutation probabilities for their proposed GA. Since we tuned GA parameters such as 

population size, crossover probability, and mutation probability to our proposed GA, our GA’s performance 

was expected to be satisfactory by comparing with another GA without parameter tuning.  

 

Table 9. The ARD values of compared algorithms 

Running time  Our proposed GA  The GA of Pasupathy et al. [22] 

30. 𝑛. 𝑚/2 ms  0.0645 0.1400 

60. 𝑛. 𝑚/2 ms  0.0583 0.1368 

90. 𝑛. 𝑚/2 ms  0.0547 0.1347 

 

5. CONCLUSION 

 

In this paper, a genetic algorithm for permutation flow shop scheduling problems where the objective is to 

minimize makespan is proposed and the parameter quality of the proposed GA is tried to increase with 

sensitivity analyses. Using the right combinations of parameters in which each of them has different effects 

on optimality and elapsed time of the proposed algorithm is so significant for any solution approach 

proposed for combinatorial optimization problems. The sensitivity analyses show surprisingly that the 

factor of crossover probability does not have an effect on makespan values or elapsed times of the proposed 
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GA. Furthermore, the analyses show that the factor of mutation probability has a more significant effect on 

the makespan values than others and the factor of population size has a more significant effect on elapsed 

times of the proposed algorithm than others. As a conclusion of the discussion after sensitivity analyses, 

mutation probability, crossover probability, and population size are suggested as 0.15, 0.80, and 60, 

respectively. Using this parameter set in the proposed GA, well-known 90 instances are solved in order to 

evaluate the proposed GA’s performance in view of optimality and speed. As a result of this performance 

test, the proposed GA has an averagely %97.15 optimality. Furthermore, we compared our proposed GA 

with another existing GA for PFSS problems and the experimental results revealed that our GA outperforms 

the existing GA in the literature. For future researches, these parameters can be used in the performance 

evaluation of other future genetic algorithm approaches. Furthermore, this proposed GA can be investigated 

with its suggested parameters for fuzzy flow shop scheduling or other flow shop scheduling problems with 

external effects such as learning and deterioration.            
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