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Abstract. The two-dimensional (2D) steady, incompressible, Stokes flow is considered in a T-shaped cavity 

which has the upper-lid moving in horizontal directions. A Galerkin finite element method is used to investigate 

a new eddy generation and flow bifurcation. The flow in a cavity is controlled by two parameters 1h  and 2h  

which are associated with the heights of the T-shaped domain. By varying 1h  and 2h , the second eddy 

formation mechanism and the 1 2,h h  control space diagram are obtained.  

Keywords: A T-shaped cavity, Stokes flow, eddy generation 

Tek Kapağı Sürgülü T-Şeklindeki Kaviti İçerisindeki Girdap Oluşum 

Mekanizması 

Özet. Üst kapağı yatay yönde hareket eden T şeklindeki kaviti içerisindeki iki boyutlu (2D) durağan, 

sıkıştırılamaz, Stokes akış ele alındı. Yeni girdap oluşumunu ve akış çatallanmasını araştırmak için Galerkin 

sonlu elemanlar yöntemi kullanıldı. Kaviti içersindeki akış, T-şeklindeki bölgenin 1h  ve 2h  yükseklik 

parametreleri tarafından kotrol edilir. 1h  ve 2h  yüksekliklerinin değişmesiyle meydana gelen girdap oluşum 

mekanizması ve 1 2,h h  kontrol uzay diyagramı elde edildi. 

Anahtar Kelimeler: T-şekilli kaviti, Stokes akış, girdap oluşumu 

 

1. INTRODUCTION  

Stokes flow within the closed domain has always been an interesting area of study in computational fluid 

dynamics. Thanks to the simplicity of the geometric shapes and the easy installation of the related 

boundary value problem, a lot of work has been done about the driven cavity [1- 8]. In addition, cavity 

problems are considered as an application of theoretical studies on the investigation of the qualitative 

properties of streamlines, which is a subject of fluid dynamics [9-12]. 

 

In the literature, there are many studies on the flow of square lid-driven cavity flow both numerically and 

theoretically [13-18]. Gürcan [19] investigated the flow problem of the rectangular cavity with both a 

single lid-driven and a double lid-driven and examined the vortex formation mechanism in the cavity. He 

used the analytical solution of the streamfunction expanded about any critical point in the cavity. The 

control space diagram (S, A) including the aspect ratio A and the velocity ratio S was obtained and 

investigated the effect of the changes in the ratio of A on vortex formation. 
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In addition to the square and rectangular domain commonly used in cavity flow problems, different closed 

domain are also studied. To investigate the effect of cavity geometry on the flow structure, McQuain [20] 

studied steady, viscous flow within the square, trapezoidal and triangular cavity. Gaskell [21] considered 

Stokes flow within the half-filled annulus between rotating coaxial cylinders and showed that changes in 

flow structure arose directly from stagnation point where a saddle point transformed into a centre and vice 

versa. The 2-D steady, incompressible flow inside a triangular driven cavity is considered numerically in 

papers of [6, 22, 23]. Gürcan and Bilgil [24] have obtained the vortex formation mechanism in the sectoral 

cavity as the A aspect ratio decreases for different lid speed ratio. They formed control space diagram 

with controller parameters A ∈ (1.6,1.65) and S ∈ [−1,0] which is consisted of the curves representing the 

flow bifurcation at critical points. Finally, they [25] investigated the effect of Reynolds number on the 

flow bifurcation and vortex formation on the same domain. 

 

Recently, Deliceoğlu and Aydın [26] have considered the flow problem in a L-shaped cavity which has 

the lids moving in the opposite direction using the numerical method. They have obtained solutions of the 

Stokes and the Navier-Stokes equations that govern the flow inside the domain using the Galerkin finite 

element method. Further, they obtained 1 2,h h  control space diagram for the L-shaped cavity with the 

height of the lower part 1h  and of the upper part 2h . It was determined how this diagram changed when 

the Reynolds number was 500. In the continuation of their study [7], they have obtained analytical 

solutions for the Stokes equation for the steady, viscous and single lid-driven flow on the same region. 

The flow patterns obtained within the region depending on the heights of 1h  and 2h . 

To our knowledge, there is no study on the lid-driven cavity flow inside the T-shaped closed domain in 

the literature. Unlike other regions, the T-shaped cavity has two symmetrical re-entrant corner points. In 

this paper, we assume that the flow inside the domain is steady, viscous and incompressible. By changing 

the heights of the lower and of the upper part of the cavity, flow patterns within the region are obtained 

and the vortex formation mechanism in the parameter space 1 2,h h  is presented. 

 

2. PROBLEM SPECIFICATION AND FORMULATION 

We will consider the fluid flow in a two-dimensional upper lid-driven T-shaped cavity with rigid walls as 

shown in Figure 1. It is assumed that the fluid is Newtonian and incompressible with density   and 

viscosity . The flow is steady and two dimensional in the (x, y) plane with velocity u = (u, v). In non-

dimensional form, the width of the cavity is fixed (L = 6), the height of the lower part and upper part, 

called h and h , are varying, then the flow topology is determined. 

 

Figure 1: Boundary conditions for the lid-driven T-shaped cavity. 

584 



 

 

Çelik, Deliceoğlu  / Cumhuriyet Sci. J., Vol.40-3 (2019) 583-594 

In this paper, it will be concerned that the fluid is steady, incompressible viscous flow. The 

equation governing the flow field along the cavity is the Stokes equation as the follows:  

 

in ,
Re

in .

p f


  

   

u

u

  (1)  

If we assume that the external force is negligible so f is zero, then the equation can be written in 

terms of stream function as follows, 

 

( , ) ( , ) ,

constant, constant.

x y x y
x x y y

n

  


   

    
        
     



  

  (2) 

The weak formulation of (2) can be written by [27] as follows: find  2

0V H    such that  

 ( , ) ( , )B d      (3) 

for all  2

0H   where 
2

0H  is the class of all 
2H   functions satisfying the boundary condition of (2) 

and   is the Laplacian operator. In this study, the standard Galerkin finite element method is used to 

solve the bi-harmonic problem (2). In this method, approximation of the problem is determined by the 

choice of finite dimensional subspace hV V   defined on a family of regular quadrangular discretizations 

hT  of the domain. A bicubic quadrangular elements  are choosed to apply the finite element method as 

 ( , ) ( , ) ( , ) .h h h h h h hB V      

Since the test function 
2

h H   , it follows that the basis function h  have continuous first partial 

derivatives across the boundaries. These provide a two-dimensional version of Hermite interpolation 

functions as a basis function on a rectangular element. They are constructed by substituting the product 

of a cubic equation in x   by a cubic in y  resulting a collection of 16 monomials  
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For each element, the coefficient of these monomials are calculated using each of the following four 

quantities: 

 , , , ,h h h
h

x y x y
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 

    
  

at each corner of the rectangle. See [27,28] for more information. 
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3. FLOW STRUCTURES IN THE T-SHAPED CAVITY 

 

In this section, we will show a flow structures topologically occurring and describe the vortex formation 

within the T-shaped cavity as the varying of the heights of the lower part h   and the upper part h . By 

changing of these parameters, bifurcation curves are obtained to reveal changes in the flow structure. 

Here, the expression of the change in the flow structure refers to the transformation of the type of 

stationary point from the saddle to the center or vice versa. The  ,h h    parameter space is obtained by 

finding the critical values of h  and h  in which structural changes occur.  

 

We consider  ,h h   parameter space in the interval between . .h       and . .h     , so 

we have obtained a 23 different flow topologies shown by Figure 2, Figure 3 and Figure 4. A set of co-

dimension-one bifurcation curves in the parameter space are obtained by using the numerical methods. 

The co-dimension of a bifurcation is the smallest number of parameters needed to find bifurcation. The 

control-space diagram is formed by fixing h  while changing h  or vice versa. Then, the related 

bifurcation curves are illustrated in Figure 5. 

 

 
Figure 2. Representation of the flow patterns within the domain: (1) h = -0.29, h  = 0.3, (2) h  = -1.75, h  = 0.35, (3) h  

= -3.1, h  = 0.35, (4) h  = -3.4, h  = 0.35, (5) h  = -0.205, h  = 0.42, (6) h  = -1.3, h  = 0.7, 7) h =-0.64, h  = 0.7, 

(8) h  = -3.3, h  = 0.7, (9) h  = -0.6, h  =5.45. 
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Figure 3. Representation of the flow patterns within the domain (continued): (10) h  = -1.1, h  = 4.95, 

(11) h  = ---2.6, h  = 3.45, (12) h  = -3.4, h  = 9.3, (13) h  = -3.47, h  = 9.5, (14) h  = -0.2, h  = 

9.605, (15) h  = -0.23, h  = 9.7, (16) h  = -0.28, h  = 9.75, (17) h  = -1.5, h  = 9.9. 
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Figure 4. Representation of the flow patterns within the domain (continued): (18) h  = -2.57, h  = 9.87,(19) h  = --3.3, h  

= 9.9, (20) h  = -0.23, h  = 10.1, (21) h  = -1.2, h  = 10.4, (22) h  = -1.7, h  = 10.4, (23) h  = -2.8, h  = 10.4. 
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Figure 5.  ,h h   control space diagram for the cavity. The numbers in each region refer to flow  

strustures in Figure 2, Figure 3 and Figure 4. 

 

4. THE MECHANISM OF EDDY GENERATION WITHIN THE DOMAIN 

 

Four types of bifurcation are observed in parameter space  ,h h  . The first type of bifurcation appears 

on the wall at which two on-wall saddle points come together to form an off-wall saddle point. The curves 

representing this bifurcation in the diagram are called BM. In the second type of bifurcation, the 

degenerate points are transformed from the saddle into the centre point inside the flow such that it is called 

cusp bifurcation and denoted by CP in the parameter space. These types of degenerate critical points are 

illustrated in Figure 6. In the global bifurcation which is named by GB, there is a change in the flow 

structure but no change in the number of critical points. In the last type, the center point transform into 

saddle and vice versa. This type of bifurcation is named by CB. 
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Figure 6. Streamline topology near a stationary wall (a)-(b) and away from boundary (c). 

 

A mechanism of flow transformation according to varying the heights of the lower part and upper part of 

the cavity is given in Figure 2, Figure 3 and Figure 4. When the upper part of the cavity is small, for 

example . .h     , the discontinuity of the stream lines causes the flow structure not to be fully 

understood. In this case, the bi-section method given by Gaskell [21] is used to understand whether the 

critical point is a saddle or centre. In this study, the vertical velocity decided the type of structures near 

the critical point, depending on the sign exchange in the vector component. A similar approach is used in 

this study in regions 1-8 in Figure 2. 

 

Below the curve of the CP , there is a flow pattern giving rise to a separatrix enclosing the five sub-eddies 

at the upper part of the cavity and two corner eddies at the lower part. In the flow structure illustrated in 

Figure 2(1), the main vortex of separatrix contains 2 separatrices nested within the central section. When 

we cross to the second region by CB curve, the saddle critical point at the central section of the first 

structure is transformed into the centre critical point. When h is constant and the h  is decreased, the 

formation of the second vortex in the lower part of the cavity occurs by the known vortex formation 

mechanism, as shown in Figure 2 (2 → 3 → 4). This mechanism was observed in the square cavity by 

Gürcan [19] and in the L-shaped cavity by Deliceoğlu [26] for the S = 0. There is also a similar flow 

transformation series between the CP  and CP , Figure 2(6 → 7 → 8), or CP  and BM  curve, Figure 

2-Figure3 (9 → 10 → 11). While this series occurs, the separation line that separates the lower cavity and 

the upper cavity moves upward. However, the saddle-node bifurcation, where the corners of the upper 

cavity and the separation line coalesce, occurs at the same value of h .  
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Figure 7.The mechanism of eddy generation via several transformation which is similar with in the rectangular cavity. 
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Figure 8. The series of bifurcation which is previously unseen. 

 

Another vortex formation scenario is seen when the lower cavity height is sufficiently small. The 

corner vortices of the lower cavity coalesce with the corner vortices of the upper cavity before they are 

joined together. Thus, there are two corner vortices containing separatrix inside the cavity. After BM and 

CP   bifurcation, separatrix is formed inside the fluid as in the square cavity and after the CP  bifurcation, 

the second vortex is formed as in Figure 7 (9 → 14 → 15 → 20 → 21). There are a few basic scenarios 

for the new vortex formation, where the separation line crosses the corner point and is coalesced with the 

corner vortices. These different flow transformation scenarios are shown in Figure 8. 

 

5. CONCLUSION 
In this study, we have shown the flow patterns and eddy generation in a T-shaped cavity. The flow is 

generated by the motion of the upper lid of the cavity. The  ,h h   control space diagram have obtained 

for the interval between . .h       and . .h     . It is observed that the bifurcation 

transformation series in order to increase the number of eddies in the lower cavity is the same as in the 

square cavity as h  is constant. Furthermore, when h  was sufficiently small, it is observed for the first 
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time that the vortex formation occurred by joining the corner vortices together. In other cases, the number 

of vortices within the cavity increases as a result of various bifurcations series of the dividing line with 

corner vortices. 
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