Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22 (3), 915-921, 2018

	SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DERGİSİ SAKARYA UNIVERSITY JOURNAL OF SCIENCE			Сернаниях
SAU	e-ISSN: 2147-835X Dergi sayfası: http://dergipark.gov.tr/saufenbilder			SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ
	<u>Geliş/Received</u> 10.07.2017 <u>Kabul/Accepted</u> 19.02.2018	<u>Doi</u> 10.16984/saufenbilder.327593	: Namusi di Tanzi	DERGISI

Ara yüzey seviyelerinin ve seri direncin Sc₂O₃ MOS kapasitörünün elektriksel karakteristiği üzerine etkisi

Ayşegül Kahraman^{*1}, Ercan Yılmaz

ÖZ

Bu çalışmanın amacı, ara yüzey seviyelerinin ve seri direcin (R_s) Sc₂O₃ (Skandiyum oksit) MOS (Metal Oksit Yarıiletken) kapasitörünün elektriksel karakteristiği üzerine etkisini frekansa bağlı olarak incelemektir. Sc₂O₃ MOS kapasitörü RF magnetron saçtırma sistemi ile p tipi Si (100) üzerine üretilmiştir. Kapasitörün kapasitans-voltaj (C-V) ve iletkenlik-voltaj (G/ω -V) değişimleri, 50 kHz ile 1 MHz arasında değişen altı farklı frekansta ölçülmüştür. Elde edilen sonuçlar, C-V eğrisinin yığılım bölgesinde kapasitans değerlerinin R_s etkisi nedeniyle beklenenden daha düşük olduğunu göstermiştir. G/ ω -V karakteristiklerinde ise bu etki nedeniyle pikler belirgin bir şekilde oluşmamıştır. Bu nedenle, ölçüm sonuçlarına R_s düzeltmesi yapıldıktan sonra, Sc₂O₃/Si ara yüzeyinde oluşan tuzak yüklerinin elektriksel karakteristik üzerine etkisi incelenmiştir. Frekansın azalmasıyla birlikte ara yüzey tuzak yükleri, AC voltaj sinyalini takip ederek ölçülen kapasitansa katkı sağlamışlardır. Düzeltilmiş C-V ve G/ ω -V ölçümlerinden yararlanılarak p tipi Si için taşıyıcı konsantrasyonu (N_a), bariyer yüksekliği (Φ_B) ve Fermi seviyesi - değerlik bandı arasındaki enerji farkı (E_F) değerleri hesaplanmıştır.

Anahtar Kelimeler: yüksek-k, MOS, Sc₂O₃, seri direnç, ara yüzey seviyeleri

Effects of interface states and series resistance on the electrical characteristic of Sc₂O₃ MOS capacitor

ABSTRACT

The purpose of this study is to examine the effects of interface states and series resistance (R_s) on the electrical characteristic of Sc_2O_3 (Scandium oxide) MOS (Metal Oixde Semiconductor) capacitor depending on frequency. Sc_2O_3 MOS capacitor was produced on p type Si (100) with RF magnetron sputtering. Capacitance-voltage (C-V) and Conductance-voltage (G/ω -V) variations of the capacitor were measured in six different frequencies ranging from 50 kHz to 1 MHz. The obtained results showed that the capacitance values in the accumulation region of the C-V curve were lower than expected due to the R_s effect. The peaks were not clearly formed due to this effect in the G/ω -V characteristics. For this reason, the effect of trap charges on the electrical characteristics of the Sc₂O₃/Si interface was investigated after R_s correction applied to the experimental results. The interface trap-charges contributed to the measured capacitance with decreasing frequency by following the AC voltage signal. The carrier concentration for p

^{*} Ayşegül Kahraman

¹ Uludağ Üniversitesi Fen Edebiyat Fakültesi Fizik Bölümü, aysegulk@uludag.edu.tr

Kahraman veYılmaz / Ara yüzey seviyelerinin ve seri direncin Sc2O3 MOS kapasitörünün elektriksel karakteristi i üzerine etkisi

type Si (N_a), barrier height (Φ_B), and energy difference between the bulk Fermi level and valance band edge (E_F) values were calculated by using corrected C-V and G/ ω -V measurements.

Keywords: high-k, MOS, Sc₂O₃, series resistance, interface states

1. GİRİŞ (INTRODUCTION)

Metal Oksit Yarıiletken (MOS) tabanlı cihazların elektriksel karakteristikleri, kapı oksit tabakası kullanılan dielektriğin özelliklerine, olarak oksit/alt taş ara yüzey kalitesine bağlı olarak [1-2]. değişmektedir Si alt taş üzerine oluşturulmuş bir RadFET (Radyasyona Duyarlı Alan Etkili Transistör) radyasyon sensörü veya CMOS (Bütünleyici metal oksit yarıiletken) yapısında SiO₂ (Silikon dioksit), genellikle dielektrik (kapı oksit tabakası) malzeme olarak seçilir. Bu tercihin en önemli nedeni, SiO2'nin termal oksidasyon metoduyla kolayca büyütülmesi ve mükemmel bir ara yüzey kalitesinin elde edilmesidir [3]. Ancak gelişen teknoloji ile birlikte her geçen gün daha ince kapı oksit tabakalı MOS yapılarına ihtiyaç duyulmuş ve bunun sonucunda SiO2'li mikroelektronik aygıtlar artan sızıntı akımı istenilen elektriksel nedeniyle özellikleri gösterememişlerdir [4]. Diğer yandan SiO₂ kapı oksit tabakalı RadFET'lerin radyasyon cevapları (pMOS dozimetreleri), 10 mGy'den daha düşük dozlarda kötüleşmektedir [5]. Yüksek-k'lı (yüksek dielektrik katsayılı) oksitler ise son yıllarda yapılan birçok çalışmada bu sorunlara çözüm olarak gösterilmektedir [6-8].

Şu ana kadar HfO₂ [9], Al₂O₃ [10], ZrO₂ [11] gibi birçok yüksek-k'lı oksit üzerinde durulmuş ve bu dielektrikler yeni nesil MOS yapıları için önerilmiş olmasına rağmen, ara yüzey kalitesi ve ara yüzey tuzak yük yoğunluğu (Nit) hala bu yapılarda önemli bir problem olarak karşımıza çıkmaktadır [12-13]. Yüksek-k'lı malzeme ile Si arasındaki kafes uyuşmazlığı özellikle ara yüzeyde ve bu bölgeye yakın alanlarda elektron tuzak merkezlerinin oluşmasına neden olur [14]. Ara yüzeyde ve oksitte elektronların tuzaklanması sonucunda p tipi Si alt taş üzerine üretilmiş bir MOS kapasitörün C-V eğrisi veya düz bant voltajı (V_{fb}), ideal duruma göre sağa doğru kayabilir. Diğer yandan oksit büyütme veya tavlama süreçleri nedeniyle dielektrik ile Si arasında düşük-k'lı SiOx tabakası oluşabilir [15]. Bunun sonucunda, C-V eğrisinin yığılım bölgesindeki kapasitans değerlerinde azalma gözlenir ve oksit için hesaplanan dielektrik sabiti, teorik değerin altında kalır [2].

Bir MOS kapasitörünün elektriksel karakteristiği (C-V veya G/ω-V) ara yüzey tuzak yüklerinden (frekansa bağlı yükler) ve seri dirençten (R_s) oldukça fazla etkilenir [16]. Bu nedenle bir MOS tabanlı aygıtın herhangi bir amaçla kullanımı öncesi frekansa bağlı elektriksel karakteristiğinin ayrıntılı olarak incelenmesi oldukça önemlidir. Bu çalışmada skandiyum oksit (Sc2O3) yüksek-k (~14) [17] dielektriği, MOS kapasitörde kapı oksit tabakası olarak kullanılmıştır. RF magnetron sistemi ile üretilen Sc₂O₃ MOS sactırma kapasitörünün C-V ve G/ω-V karakteristiği altı farklı frekansta ölçülmüştür. Bu verilerden yararlanılarak N_{it} , R_s , bariyer yüksekliği (Φ_B), Fermi seviyesi-değerlik bandı arasındaki enerji farkı (E_F) ve p tipi Si için taşıyıcı konsantrasyonu (N_a) değerleri hesaplanmıştır.

2. DENEYSEL METOTLAR (EXPERIMENTAL METHODS)

Skandiyum oksit ince filmi, p tipi Si (100) üzerine 4 inçlik % 99.99 saflıkta Sc₂O₃ hedefi kullanılarak RF magnetron saçtırma sistemi ile büyütülmüştür. Öncelikle Si alt taş, üzerindeki olası kirliliğin giderilmesi amacıyla standart RCA prosedürüne uygun olarak temizlendi. Bu işlemin ardından N₂ gazı ile kurutulan Si alt taş, RF magnetron saçtırma sisteminin vakum odasına verlestirildi ve sistemin basıncı 6×10⁻⁴ Pa'a düşürülerek hedef üzerindeki olası kirlilik, 1 saat süreyle 300 W'ta argon (Ar) plazma (16 sccm akış oranı ve 1.0 Pa basınç) ile ortadan kaldırıldı. Sc₂O₃ filmleri, 300 W'ta 13 dakikada üretildi. Angstrom Sun Spektroskopik reflektometre yardımıyla filmin kalınlığı 122 nm olarak ölçüldü. Kapasitörün ön ve arka metal kontakları, RF magnetron saçtırma sistemi ile büyütülen alüminyumdan oluşmaktadır. Sc2O3 MOS kapasitörünün bütün üretim aşamaları, Abant İzzet Baysal Üniversitesi Nükleer Radyasyon Dedektörleri Uygulama ve Araştırma Merkezi'nde bulunan 10/100 sınıfındaki temiz odalarda gerçekleştirildi. Sc_2O_3 MOS kapasitörünün C-V and G/ω -V elektriksel karakteristikleri, oda sıcaklığında ve altı farklı frekansta HIOKI 3250 LCR metre ile (50, 100, 250, 500, 750 ve 1000 kHz) elde edildi.

3. BULGULAR VE TARTIŞMA (RESULTS AND DISCUSSION)

 Sc_2O_3 MOS kapasitörünün oda sıcaklığında altı farklı frekans için ölçülen kapasitans-voltaj (C-V) ve iletken-voltaj (G/ ω -V) değişimleri Şekil 1'de verilmiştir.

Şekil 1. Sc₂O₃ MOS kapasitörünün frekansa bağlı elektriksel karakteristikleri: a) C-V, b) G/ω-V değişimleri (Frequency dependent electrical characteristics of Sc₂O₃ MOS capacitor a) C-V, b) G/ω-V)

Bir MOS kapasitörde kapı oksit tabakasının dielektrik sabiti 1 MHz C-V ölçümlerinden yararlanılarak aşağıdaki formül ile hesaplanır:

$$C_{ox} = \frac{\varepsilon_o \varepsilon A}{d} \tag{1}$$

Burada ε , dielektrik sabiti, ε_o , boşluğun elektriksel geçirgenliği (8.85×10⁻¹² F/m), *A*, kapasitör alanı (1.76625×10⁻⁶ m²), *d*, dielektrik malzemenin kalınlığı ve C_{ox} , oksit kapasitansıdır (1.325×10⁻⁹ F). Şekil 1a'daki 1 MHz'de elde edilen kapasitans değerlerinden yararlanılarak Sc₂O₃'ün dielektrik sabiti 10.3 olarak bulunmuştur. Ancak bu değer, literatürde daha önce bu oksit için verilen değerden (~14) daha küçüktür [17]. Diğer yandan, Sc₂O₃ MOS kapasitörünün G/ ω -V karakteristiğinden görüldüğü gibi (Şekil 1b), iletkenlik pikleri net bir şekilde oluşmamıştır. Elektriksel karakteristiklerdeki bu davranışlar R_s etkisi ile açıklanabilir [18]. Seri direnç etkisini C-V ve G/ ω -V eğrilerinde elimine etmek için Nicollian and Goetzberger tarafından önerilen metot kullanılmıştır [19]. Seri direnç,

$$R_s = \frac{G_{ma}}{(G_{ma})^2 + (\omega C_{ma})^2} \tag{2}$$

ile verilir. Burada G_{ma} , C_{ma} ve ω sırasıyla, güçlü yığılma bölgesinde ölçülen iletkenlik, kapasitans ve açısal frekanstır. Tablo 1'de görüldüğü gibi artan frekans ile birlikte azalan seri direnç değerleri, 221.1 – 44.8 Ω aralığında değişmiştir. R_s'nin bu davranışının nedeni, farklı frekanslarda uygulanan voltaja bağlı olarak yapıdaki yüklerin yeniden düzenlenmesi olabilir [20]. Hesaplanan R_s değerlerine bağlı olarak ölçülen kapasitans ve iletkenlik değerleri aşağıda verilen ifadelerden yararlanılarak düzeltilmiştir:

$$a = (G_m) - [(G_m)^2 + (\omega C_m)^2]R_s$$
(3)

$$C_{c} = \frac{[(G_{m})^{2} + (\omega C_{m})^{2}]C_{m}}{a^{2} + (\omega C_{m})^{2}}$$
(4)

$$G_{c} = \frac{[(G_{m})^{2} + (\omega C_{m})^{2}]a}{a^{2} + (\omega C_{m})^{2}}$$
(5)

Burada G_m , C_m , G_c ve C_c sırasıyla, ölçülen iletkenlik, ölçülen kapasitans, düzeltilmis iletkenlik ve düzeltmiş kapasitanstır. Sc₂O₃ MOS kapasitörünün düzeltilmiş Cc-V ve Gc/w-V karakteristikleri Şekil 2'de görülmektedir. Şekil 1a ve Şekil 2a'daki veriler kıyaslandığında yığılım bölgesindeki kapasitans değerlerinin seri direnç düzeltmesi sonrası arttığı görülmektedir. Cc-V verilerinden vararlanılarak Sc2O3'ün dielektrik sabiti Eşitlik (1)'den 13.2 olarak hesaplanmıştır. Bu değer, literatür verisiyle uyumludur [17]. Şekil 1b ve Şekil 2b'den görüldüğü gibi iletkenlik-voltaj karakteristiği seri direnç düzeltmesi yapıldıktan sonra oldukça fazla değişmiş ve beklenen pikler gözlenmiştir. Ölçülen G/ ω -V eğrilerinde piklerin maksimum değerleri düşük frekans bölgesinde (≤500 kHz) frekansla birlikte artarken, bu değişim yüksek frekans bölgesinde ters bir davranış Düzeltmis göstermiştir. G/ω -V maksimum karakteristiklerinde ise piklerin değerleri artan frekansla birlikte beklenildiği gibi azalmıştır. 1 MHz'de iletkenliğin çok az bir seviyede yükselmesi, ara yüzey-tuzak yüklerinin frekansa bağlı olarak farklı davranıs göstermesi olabilir [18]. Şekil 1a ve 2a'dan görüldüğü gibi yığılım bölgesindeki kapasitans değerleri artan frekans ile birlikte sürekli olarak azalmaktadır. Bu durum Şekil 3'te verilen eş değer kapasitans

devresi ile açıklanabilir [21]. Düşük frekanslarda ara yüzey seviyeleri uygulanan AC voltaj sinyalini takip etmeye yetecek kadar zaman bulabileceklerinden C_{it} kapasitansının oluşmasına neden olabilirler. C_{it} , uzay yükü kapasitansına (C_{sc}) ve oksit kapasitansa katkı sağlayarak eşdeğer kapasitansın artmasına neden olabilir [2, 18].

Şekil 2. Sc₂O₃ MOS kapasitörünün düzeltmiş frekansa bağlı elektriksel karakteristikleri: a) C_c-V, b) G_c/ω-V (Corrected frequency dependent electrical characteristic of Sc₂O₃ MOS capacitor: a) C_c-V, b) G_c/ω-V)

Artan frekansla birlikte ara yüzey seviyeleri AC voltaj sinyalini takip edebilecek kadar yeterli zamanı bulamadıklarından dolayı kapasitansa daha az katkı sağlayacaklardır. Bu nedenlerle, frekansa bağlı olarak ara yüzey tuzak-yük yoğunluğunun artan frekansla birlikte azalması beklenir ve değeri Eşitlik (6) ile verilen ifadeden yararlanılarak hesaplanır [22]:

Şekil 3. Bir MOS kapasitörün eş değer kapasitansını gösteren devre a) Düşük frekans, b) Yüksek frekans (The circuit showed equivalent capacitance of a MOS capacitor)

$$N_{it} = \frac{2\omega C_{ox}^2 G_{c,max}}{qA(G_{c,max}^2 + \omega^2 (C_{ox} - C_{c,m} G_{c,max})^2)}$$
(6)

Burada q, elektrik yükü, $C_{c,m}$, $G_{c,max}$ 'a karşılık gelen düzeltilmiş kapasitans değeri ve $G_{c,max}$, düzeltilmiş maksimum iletkenlik değeridir. Tablo 1'de farklı frekanslar için hesaplanmış ara yüzey tuzak yük yoğunluğu değerleri görülmektedir. N_{it}, teorik beklentiyi karşılayacak şekilde artan frekansla birlikte azalmıştır.

Alıcı tipi ve verici tipi olarak ikiye ayrılan ara yüzey sevieyeleri, bariyer yüksekliğini de etkilerler [23]. Şekil 4'te verilen Sc₂O₃ MOS kapasitörünün C_c^{-2} -V karakteristiklerinin lineer bölgeleri, bariyer yüksekliği (Φ_B), difüzyon potansiyeli (V_D), imaj kuvveti bariyer düşmesi ($\Delta \Phi_B$) gibi bazı elektriksel parametrelerin hesaplanmasında kullanıldı.

Şekil 4. Sc₂O₃ MOS kapasitörünün frekansa bağlı $C_c^{-2} - V$ karakteristiği (Frequency dependent $C_c^{-2} - V$ characteristic of the Sc₂O₃ MOS capacitor)

Tükenim bölgesi kapasitansı [24],

$$C^{-2} = \frac{2(V_o + V)}{\varepsilon_o \varepsilon q A^2 N_a} \tag{7}$$

ile verilir. Burada V, uygulanan voltaj, N_a , taşıyıcı (alıcı) konsantrasyonu, V_o , şekil 4'teki lineer doğruların voltaj eksenini kestiği noktadır ve aşağıdaki ifade ile verilir:

$$V_o = V_D - \frac{k_B T}{q} \tag{8}$$

Burada k_B , boltzman sabiti ve T, mutlak sıcaklıktır. Bariyer yüksekliği [25],

 $\Phi_B = V_D + E_F - \Delta \Phi_B = V_D + \frac{kT}{q} ln \left(\frac{N_V}{N_a}\right) - \Delta \Phi_B \quad (9)$ ile verilir. Burada N_V , değerlik bandındaki efektif seviye yoğunluğudur. Elektrik alanın maksimum değeri, $E_m = \sqrt{2qN_aV_D\varepsilon_s^{-1}\varepsilon_0^{-1}}$ ile ifade edilir. Tablo 1'de Sc₂O₃ MOS kapasitörü için elde edilen, N_A, E_F ve Φ_B değerleri görülmektedir.

Table 1. Sc₂O₃ MOS kapasitörü için bazı elektriksel parametreler (Some electrical parameters for Sc₂O₃ MOS capacitor)

Frekans (kHz)	R _s (Ω)	$N_{it} \times 10^{11}$ (eV ⁻¹ cm ⁻ ²)	$N_A \times 10^{14}$ (cm ⁻³)	E _F (eV)	$\begin{array}{c} \Phi_B \\ (\text{eV}) \end{array}$
50	221.2	1.76	2.69	0.2810	1.422
100	185.3	1.67	2.71	0.2808	1.415
250	123.0	1.56	2.67	0.2812	1.347
500	77.1	1.53	2.69	0.2811	1.268
750	58.3	1.45	2.63	0.2815	1.236
1000	44.1	1.05	2.51	0.2827	1.917

Bariyer yüksekliğinin değeri, 750 kHz'e kadar artan frekansla birlikte azalırken, bu frekanstan sonra artmıştır. Bu davranışın nedeni alıcı-tipi ve verici-tipi ara yüzey tuzak yüklerinin frekansa bağlı olarak farklı davranış göstermesi olabilir [26].

4. SONUÇ (CONCLUSION)

Bu çalışmada Sc_2O_3 MOS kapasitörünün elektriksel özellikleri frekansa bağlı olarak incelenmiştir. Seri direnç etkisi nedeniyle, kapasitans-voltaj karakteristiklerinde yığılım bölgesindeki kapasitans değerleri beklenenden daha düsük olarak bulunurken, iletkenlik-voltaj karakteristikleri istenilen değisimi gösterememiştir. Bu nedenle deneysel sonuçlara direnc düzeltmesi vapılarak seri gercek karakteristik eğriler elde edilmiştir. Düzeltilmiş kapasitans-voltaj değişimlerinde artan frekansla birlikte kapasitans değerleri, ara yüzey tuzak yüklerinin AC voltaj sinyalini takip edememesi nedeniyle azalmıştır. Cc-V karakteristiğinden yararlanılarak Sc2O3'ün dielektrik sabiti 13.2 olarak bulunmuştur ve bu değer literatür verisiyle

uyumludur. 750 kHz'e kadar azalan bariyer yüksekliği, bu frekanstan sonra artmıştır. Bunun önemli nedeni, farklı ara yüzey tuzak yük tiplerinin frekansa bağlı olarak farklı davranış göstermesidir.

ACKNOWLEDGMENTS

Bu çalışma, Türkiye Cumhuriyeti Kalkınma Bakanlığı (Proje No: 2016K121110) ve Abant İzzet Baysal Üniversitesi Bilimsel Araştırma Projeleri (Proje No: BAP.2014.03.02.765) tarafından desteklenmiştir. Araştırma, TÜBİTAK Bilim İnsanı Destekleme Daire Başkanlığı (BİDEB) 2218-Yurt içi Doktora Sonrası Araştırma Burs Programı kapsamında yapılmıştır. Katkı sağlayan tüm kurumlara teşekkür ederiz.

REFERENCES

- A. Laha, H.J. Osten ve A. Fissel, "Influence of interface layer composition on the electrical properties of epitaxial Gd₂O₃ thin films for high-k application," *Applied Physics Letters*, vol. 90, no. 25, 252101 pp. 1–3, 2007.
- [2] A. Kahraman, E. Yilmaz, S. Kaya ve A. Aktag, "Effects of post deposition annealing, interface states and and series resistance on electrical characteristics of HfO₂ MOS capacitors," *Journal of Materials Science: Materials in Electronics*, vol. 26, no. 11, pp. 8277–8284, 2015.
- G. Niu, B. Vilquin, N. Baboux, C. Plossu, L. Becerra, G. Saint-Grions ve G. Hollinger, "Growth temperature dependence of epitaxial Gd₂O₃ films on Si (111)," *Microelectronic Engineering*, vol. 86, no. 7-9, pp. 1700–1702, 2009.
- [4] P.M. Tirmali, A.G. Khairnar, B.N. Joshi ve A.M. Mahajan, "Structural and electrical characteristics of RF-sputtered HfO₂ high-k based MOS capacitors," *Solid State Electronics*, vol. 62, no. 1, pp. 44–47, 2011.
- [5] M.M. Pejovic, M.M. Pejovic ve A.B. Jaksic, "Contribution of fixed oxide traps to sensitivity of pMOS dosimeters during gamma ray irradiation and annealing at room an elevated temperature," *Sensors and Actuators A: Physical*, vol. 174, pp. 85–90, 2012.

- [6] T-M. Pan, ve W-S.Huang, "Effects of oxygen content on the structural and electrical properties of thin Yb₂O₃ gate dielectrics," *Journal of the Electrochemical Society*, vol. 156, no. 1, pp. G6-G11, 2009.
- [7] A. Kahraman, E. Yilmaz, A. Aktag ve S. Kaya, "Evaluation of radiation sensor aspects of Er₂O₃ MOS capacitors under zero gate bias," *IEEE Transactions on Nuclear Science*, vol. 63, no. 2, pp. 1284–1293, 2016.
- [8] A.G. Khairnar ve A.M. Mahajan, "Effect of post-deposition annealing temperature on RF-sputtered HfO₂ thin film for advanced CMOS technology," *Solid State Sciences*, vol. 15, pp. 24–28, 2013.
- [9] W.J. Choi, E.J. Lee, K.S. Yoon, J.Y. Yang, J.H. Lee, C.O. Kim ve J.P. Hong, "Annealing effects of HfO₂ gate thin films formed by inductively coupled sputtering technique at room temperature," *Journal of the Korean Physical Society*, vol. 45, pp. S716–S719, 2004.
- [10] E. Yilmaz, İ. Doğan ve R. Turan, "Use of Al₂O₃ layer as a dielectric in MOS based radiation sensors fabricated on a Si substrate," *Nuclear Instruments and Methods in Physics Research B*, vol. 266, no. 22, pp. 4896–4898, 2008.
- [11] A.M. Mahajan, A.G. Khairnar ve B.J. Thibeault, "High dielectric constant ZrO₂ films by atomic layer deposition technique on germanium substrates," *Silicon*, vol. 8, no. 3, pp. 345–350, 2016.
- [12] S. Yue, F. Wei, Y. Wang, Z. Yang, H. Tu ve J. Du, "Phase control of magnetron sputtering deposited Gd₂O₃ thin films as high-k gate dielectrics," *Journal of Rare Earths*, vol. 26, no. 3, pp. 371–374, 2008.
- [13] A. Kahraman ve E. Yilmaz, "Irradiation response of radio-frequency sputtered Al/Gd₂O₃/p-Si MOS capacitors," *Radiation Physics and Chemistry*, vol. 139, pp. 114– 119, 2017.
- [14] J. Wang, J. Hao, Y. Zhang, H. Wei ve J. Mu, "Molecular beam epitaxy deposition of Gd₂O₃ thin films on SrTiO₃ (100) substrate," *Physica E-Low-Dimensional Systems&Nanostructures*, vol. 80, pp. 185– 190, 2016.

- [15] M.A. Pampillón, P.C. Feijoo, ve E.S. Andrés, "Electrical characterization of gadolinium oxide deposited by high pressure sputtering with in situ plasma oxidation," *Microelectronic Engineering*, vol. 109, pp. 236-239 (2013).
- [16] A. Tataroğlu, "Metal-Oksit-Yarıiletken (MOS) dielektrik parametrelerinin frekans ve sıcaklık bağımlılığı," *Gazi University Journal of Science*, vol. 4, no. 2, pp. 65–70, 2016.
- [17] X. Wang, O.I. Saadat, B. Xi, X. Lou, R.J. Molnar, T. Palacios ve R.G. Gordon, "Atomic layer deposition of Sc₂O₃ for passivating AlGanN/GaN high electron mobility transistor devices," *Applied Physics Letters*, vol. 101, 232109 pp. 1–4, 2012.
- [18] S. Kaya ve E. Yilmaz, "A comprehensive study on the frequency-dependent electrical characteristics of Sm₂O₃ MOS capacitors," *IEEE Transactions on Electron Device*, vol. 62, no. 3, pp. 980-987, 2015.
- [19] E.H. Nicollian ve J.R. Brews, "MOS (Metal Oxide Semiconductor) Physics and Technology," Wiley, London, 1982.
- [20] M. Siva Pratap Reddy, J.-H. Lee ve J.-S. Jang, "Frequency dependent series resistance and interface states in Au/bioorganic/n-GaN Schottky structures based on DNA biopolymer," *Synthetic Metals*, vol. 185–186, pp. 167–171, 2013.
- [21] H. Xiao ve S. Huang, "Frequency and voltage dependency of interface states and series resistance in Al/SiO₂/p-Si MOS structure," *Materials Science in Semiconductor Processing*, vol. 13, pp. 395– 399, 2010.
- [22] W. A. Hill ve C. C. Coleman, "A singlefrequency approximation for interface-state density determination," *Solid State Electronics*, vol. 23, no. 9, pp. 987–993, 1980.
- [23] S. M. Sze, Semiconductor Devices: Physcis and Technology, New York, NY, USA: Wiley, pp. 162, 1985.
- [24] S. Bengi ve M. M. Bülbül, "Electrical and dielectric properties of Al/HfO₂/p-Si MOS device at high temperatures," Current

Applied Physics, vol. 13, no. 8, pp. 1819–1825, 2013.

- [25] J.-P. Colinge ve C. A. Colinge, *Physics of Semiconductor Devices*, New York, NY, USA: Springer, 2005.
- [26] A. Turut, A. Karabulut, K. Ejderha ve N. Bıyıklı, "Capacitance-conductance-current-

voltage characteristics of atomic latyer deposited Au/Ti/Al₂O₃/n-GaAs MIS structures," *Materials Science in Semiconductor Processing*, 39, pp. 400-407, (2015).