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ABSTRACT 
 

A complex-valued self-ordering radix-2 memory-based Fast Fourier Transform (FFT) architecture suitable for low end Field 

Programmable Gate Arrays (FPGA) is presented. Employing a self-ordering algorithm within the data flow, both input and 

output data are kept in normal sequential order, not in digit-reversed-order. This way, with an appropriate scheduling, last stage 

of the FFT and I/O operations are performed in parallel with no wait states. Self-ordering FFT algorithms are generally designed 

for software implementations. We designed and implemented one on FPGA (hardware), showing that considerable number of 

clock cycle savings can be obtained compared to unordered FFT counterparts. The approach is implemented on various FPGAs. 

The results are compared with similar radix-2 architectures in terms of required clock cycles and resource usage, confirming 

the advantage of the approach. 
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1. INTRODUCTION 
 

Discrete Fourier Transform (DFT) is almost always implemented as FFT (Fast Fourier Transform) and 

used in wide range of signal processing applications like high performance communications and image 

processing. Since it is computationally intensive, hardware implementations find a valuable place when 

real-time applications require it. Some researchers prefer pipeline FFT architectures to perform 

continuous data flow and high speed [1,3-5,15]. Other researchers employ memory-based FFT 

architectures because of the lower resource requirements and lesser occupied chip area [6,12,14,19]. 

Low resource and low power usage is especially important for hand-held battery powered devices. 

Figure 1 illustrates the recursive structure of the FFT, which enables designers create various software 

and hardware implementations depending on the applications’ requirements and availability of the 

resources.  

 

The term memory-based refers to the hardware design that continuously reads relatively small chunks 

of data from memory for intermediate FFT operations and writes the results back to the memory, 

repeating this until the complete FFT result appears in the memory. This is similar to software approach 

but done with hardware with higher parallelism and speed. Many researchers use memories with a 

capacity of 2𝑁 [8,18] or greater 2𝑁+ [14] for 𝑁-point FFT, in order to improve speed and/or to avoid 

memory conflicts. It should be noted that aiming minimum memory (size 𝑁) gains importance when 𝑁 

is large and posing problems in small FPGAs. However, it is possible to reduce memory down to 𝑁 with 

the efficient addressing algorithms [6,10,12]. 

 

Researchers try to improve performance by improving parallelism (reading/writing larger chunks, 

higher radix FFT) by proposing various memory addressing schemas, by efficient data feed-in/out 

to/from this structure and/or by reducing the resource (memory, chip area etc.) requirements [11,17,19]. 

The studies of Xiao et al. [20,21] improved the address generation logic that has critical path 

independent of the transform size, hence suggested for large transforms by the authors. In the study of 

Ma et al. [12], researchers used two processing elements (PEs) working in parallel for radix-2 FFT on 
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real-valued input data. Garrido et al. [6] proposed a radix-4 algorithm on 4 blocks of memory of size 

N/4 each. FFT results are inherently in bit-reversed order and may require reordering at the end. 

However, using high-radix FFT increase the amount of the hardware and parallel PEs complicates the 

addressing algorithm. In our study, we achieve radix-2 FFT with self-ordering addressing algorithm 

without any conflict by using simple counters and one PE, in order to show that obtaining already-

ordered output reduces both the total number of required clock cycles and memory.  
 

 

Figure 1. Radix-2 N=32 DIF FFT process tree showing actual memory addresses in binary to expose the self-

ordering process 
 

Memory addressing schemes are available for general memory-based FFT architectures which facilitate 

normal ordered FFT outputs [7,14,16]. There exist normal ordered input/output designs [7] implemented 
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in ASIC for special high throughput requirements. The radix-16 512-point FFT chip in the work of 

Huang and Chen  [7] uses 16 blocks of memory and is not customized for FPGA implementations for 

different needs. Each memory block has only 32 locations, hardly holding the “memory-based FFT” 

title. It requires 16 complex floating-point multipliers, not suitable for small FPGAs. 

 

Two methods for self-sorting FFT algorithm are presented in the works of Chu and George [2] and 

Johnson and Burrus [9]. The work of Chu and George [2] requires in-place swapping of data after each 

stage, whereas swapping in the latter [9] is performed on the write-addresses. However, both methods 

are designed for software implementations and is not restricted by resource count limitations faced by 

hardware implementations. For example, there can never be a memory access conflict in a software 

implementation. 

 

Currently, all practical FFT implementations on hardware platforms reorder the output data after FFT 

processing is finished, either by transferring the unordered data to the ordering circuit or performing the 

sorting in place and preventing the new data loading during the sort. Since the output data is in bit-

reversed order, it is not possible to start a new in-place FFT cycle during these operations. 

 

In this study, we aim for re-configurable low-capacity FPGA needs and ordered input/output capability. 

For ordered input/output, we implemented the methods of [2,9] in hardware by performing stage 

operations in a special order that prevents memory access conflicts while doing one PE calculation per 

clock cycle. We took the advantage of ordered i/o and used it for further parallelism by parallelizing 

input, output and last stage processing. 

 

In the following subsections, basics of memory based FFT and self-sorting algorithm are given briefly. 

Section 2 details the implemented FFT hardware where each subsection describes a specific part 

(problems in and solutions developed for) of the circuit. Since the rotator (twiddle factors) generation 

can be handled as a separate part of the problem, we did not spare a specific section for that as the 

purpose of this paper is to develop an addressing method for self-ordering and scheduling. However, in 

implementations we used a quarter cycle look-up table for providing real and imaginary parts of the 

twiddle factors. Clock cycle comparisons are given with similar FFT hardware implementations in 

Section 3.  

 

1.1. Memory-Based FFT 

 

Assuming that the data to be processed is already loaded into memory of size-𝑁 where 𝑁 is an integer 

power of 𝑟, radix-𝑟 memory based FFT algorithm with single processing element reads 𝑟 memory 

locations, performs radix-𝑟 FFT on them, and writes the 𝑟 sub-results back into the memory. Data flow 

from/to memory for 𝑁 = 25=32 radix-2 FFT is given in Figure 1, as an example. Connections within 

stages show the memory locations read (from left) and written (to right). When radix-2 FFT results are 

written back to the locations originally occupied by the two-input data of the elementary 2in-2out 

computation, the final FFT results are normally in bit-reversed order and can be ordered with additional 

processing and possibly with additional hardware resources. With the implementation of self-sorting, 

the memory addresses are swapped at each stage as shown in binary in Figure 1. Note that, although the 

FFT tree shown in Figure 1 remains the same, the output data memory locations are in the same order 

with the output data index (normal ordered data indexes). 

 

We claim that, in this paper, by applying a self-ordering algorithm within stage processing to obtain the 

results in normal order, reading the final results out and writing in new data for the next round of FFT 

can also be done in parallel. That is, data from the last stage calculations need not be written back into 

memory, instead the ordered data can be sent to output. Simultaneously, since the intermediate data in 

these memory locations will no longer be needed, new data can be loaded. This means, clock cycles 

required for data read-in/read-out are completely eliminated from the total clock count. Therefore, we 
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claim that the benefits of applying a self-ordering algorithm are; ordered data at the output, considerable 

savings on total clock cycles. It should be noted that, without self-ordered outputs, reading in new input 

data could not have been performed simultaneously with reading out FFT data as the memory locations 

to write would have been busy until the end of read-out. 

 

Clock cycle savings can be seen by comparing Figure 2a and Figure 2d. The total clock cycles required 

for radix-2 𝑁-point FFT is 𝑁/2 𝑙𝑜𝑔2( 𝑁). In the usual approach, it would have been 𝑁/2 𝑙𝑜𝑔2( 𝑁) +
𝑁𝑙𝑜𝑎𝑑 + 𝑁𝑢𝑛𝑙𝑜𝑎𝑑 + 𝑁𝑠𝑜𝑟𝑡, where 𝑁𝑙𝑜𝑎𝑑 and 𝑁𝑢𝑛𝑙𝑜𝑎𝑑 are clock cycles required to load in unprocessed 

data and unload processed data respectively. 𝑁𝑙𝑜𝑎𝑑 and 𝑁𝑢𝑛𝑙𝑜𝑎𝑑 are usually equal to the the number of 

input samples, 𝑁. However, by parallelizing flows to/from memory blocks, they can be made equal to 

𝑁/𝑁𝐵 where 𝑁𝐵 is the number of independently accessible memory blocks. 𝑁𝑠𝑜𝑟𝑡 is the number of clock 

cycles to order the output data when the application requires. 

 

 
 

Figure 2. Possible timing diagrams of  Memory-Based FFTs, (a) Conceptual timing for basic Load-process-Unload case, (b) 

Unloading is performed in parallel with the last stage, (c) Loading is performed in parallel with the first stage, (d) 

Loading, Unloading and the last stages are performed in parallel 

 

1.2. Self-Ordering Algorithm 

 

The method proposed in this paper adapts the “self-sorting in-place” algorithm, described for software 

FFT implementations [2,9] like Stockham FFT, to limited FPGA (hardware) resources. A 

difficulty/confusion arouses when the word "cycle" in software implementations is tried to be mapped 

to "clock cycle" in hardware. In a software cycle, both memory access count and number of calculations 

are virtually unlimited, whereas FPGA counterpart is limited by the design of the memory component 

and other resources. For dual-port block memory components in FPGAs, only two addresses can be 

accessed for reading and/or writing on a single clock pulse. 

 

In this self-sorting schema, 𝑆 = 𝑙𝑜𝑔2(𝑁) being the number of address bits and the number of stages in 

a radix-2 FFT at the same time, two inputs of the radix-2 PE are read from 

 

𝑅0 = 𝑎𝑆−1𝑎𝑆−2 ⋯ 𝑎1𝑎0

𝑅1 = 𝑏𝑆−1𝑏𝑆−2 ⋯ 𝑏1𝑏0
 (1) 

addresses where 𝑅0 and 𝑅1 differs only in one bit whose position is determined by the stage number 

𝑠 = 0 … 𝑆 − 1. For example, in first stage of a DIF (Decimation in Frequency) FFT implementation 
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these addresses would be 0𝑎𝑆−2 ⋯ 𝑎1𝑎0 and 1𝑎𝑆−2 ⋯ 𝑎1𝑎0. In the second stage the addresses would be 

𝑎𝑆−10 ⋯ 𝑎1𝑎0 and 𝑎𝑆−11 ⋯ 𝑎1𝑎0, and so on. However, while writing the PE results back into memory, 

this differing bit is swapped with its symmetric LSB bit in both 𝑅0 and 𝑅1. For example, the write 

addresses for the first stage would be 𝑎0𝑎𝑆−2 ⋯ 𝑎10 and 𝑎0𝑎𝑆−2 ⋯ 𝑎11. In the second stage, they would 

be 𝑎𝑆−1𝑎1 ⋯ 0𝑎0 and 𝑎𝑆−1𝑎1 ⋯ 1𝑎0 and so on for stages up to 𝑆ℎ = 𝑖𝑛𝑡(𝑆/2). After stage 𝑆ℎ, since all 

permutations/relocations are completed, the rest of the stages can be performed by “write where it is 

read from” approach. 

 

When a complete PE cycle per clock pulse is aimed for radix-𝑟 FFT, 2𝑟 memory accesses are required 

in a single clock cycle; 𝑟 reads and 𝑟 writes. For a radix-2 in-place algorithm, this minimally calls for 

two dual port memory blocks in which a total of 4 ports can be independently read or written provided 

that no more than two accesses are required for each. Self-ordering introduces additional addressing 

problems, on the other hand. We have proven that, with a simple example in appendix A, “self-sorting 

in-place” algorithm as given by [2,9] for radix-2 FFT aiming one PE per clock cycle cannot be 

generalized efficiently for hardware implementations with less than four dual port memory-blocks. This 

is because, at some points of the algorithm, it becomes necessary to access 3 address locations of a dual 

port memory at the same time, which is not possible. We have discussed this in section "Multi-Block 

Memory Access". 

 

The following sections describe the proposed solutions to problems in hardware (FPGA) 

implementation of self-sorting radix-2 FFT. 

 

2. HARDWARE DESIGN OF PROPOSED APPROACH 

 
Widely used illustration of a memory-based FFT architecture diagram that uses dual-port memory 

blocks is shown in Figure 3. Address generator circuit is the main controller of the operation flow. It 

generates the physical access addresses for the memory blocks, physical memory block 

selection/activation signals, multiplexer selection signals to route the appropriate memory output data 

to PE and proper signals for the twiddle factor generation. It is also necessary to generate input-ready 

(Ird) and data-ready (Ord) signals to indicate the circuit is ready to receive new input data and ready to 

spit out the calculated FFT data respectively. 

 

 
 

Figure 3. General block diagram of a memory-based FFT circuit. d represents an appropriate delay for feeding write addresses 

to memory blocks after read addresses 
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The following subsections describe in detail how these signals are generated for the proposed method. 

We skipped the description of twiddle factor generation as it is optimization-goal dependent. However, 

in the actual tests, we employed quarter wave look-up table method for practical reasons. That is, sine 

samples for 1/4th of a full period are stored in a memory look-up table, and the real and imaginary parts 

of the twiddle factors are generated using symmetry of sine wave. 

 

2.1. Address Generation 

 

The earliest time the PE results can be written back into the memory is the next clock cycle that follows 

the read operation of its input data. That is, when the memory read and write addresses are (𝑅0
𝑡 , 𝑅1

𝑡) and 

(𝑊0
𝑡 , 𝑊1

𝑡) where 𝑡 = 0,1,2 … indicating clock cycle number, (𝑊0
𝑡 , 𝑊1

𝑡) are the write addresses of the 

PE data calculated using the data obtained by reading addresses (𝑅0
𝑡−1, 𝑅1

𝑡−1). It is obvious that the data 

in the (𝑊0
𝑡 , 𝑊1

𝑡) must have already been read, otherwise they will be overwritten and lost. Since we 

opted to use a set of data pipeline registers between the complex adders and the multiplier within PE 

circuit, as shown in Figure 4, a delay of two clock cycles on PE outputs is obtained.  

 

 

 
 
Figure 4. General design of radix-2 PE circuit. 𝑊𝑖

𝑡+2 addresses are generated two clocks after 𝑅𝑖
𝑡 addresses 

 

 

Consequently, write addresses are also delayed by two clock cycles using address pipeline registers. 

Let us now analyze the first stage read/write addresses; 

 

𝑅0
𝑡 = 0𝑎𝑆−2 ⋯ 𝑎1𝑎0, 𝑅1

𝑡 = 1𝑎𝑆−2 ⋯ 𝑎1𝑎0,

𝑊0
𝑡 = 𝑎0𝑎𝑆−2 ⋯ 𝑎10, 𝑊1

𝑡 = 𝑎0𝑎𝑆−2 ⋯ 𝑎11
 (2) 

Since the only differing bits are lsb and msb bits (𝑎0), consecutively performing PE pairs for which only 

the values of these bits differ, such that; 

𝑅0
𝑡 = 0𝑎𝑆−2 ⋯ 𝑎10, 𝑅1

𝑡 = 1𝑎𝑆−2 ⋯ 𝑎10,

𝑊0
𝑡 = 0𝑎𝑆−2 ⋯ 𝑎10, 𝑊1

𝑡 = 0𝑎𝑆−2 ⋯ 𝑎11,

𝑅0
𝑡+1 = 0𝑎𝑆−2 ⋯ 𝑎10, 𝑅1

𝑡+1 = 1𝑎𝑆−2 ⋯ 𝑎11,

𝑊0
𝑡+1 = 1𝑎𝑆−2 ⋯ 𝑎10, 𝑊1

𝑡+1 = 1𝑎𝑆−2 ⋯ 𝑎11

 (3) 

 

completes the access requirements for these four addresses for the current stage. For the first PE pair in 

the first stage of 𝑁=32 for example, these addresses would be 00000, 10000, 00001 and 10001. By 

pairwise processing of PEs, entire first stage can be completed without any need for additional large 

temporary storage and the stage can be completed in-place.  

 

Logically, we assumed that 𝑎𝑆−2 ⋯ 𝑎1𝑎0 bits are generated by a binary counter with 𝑆 − 1 bits. In that 

case, for the first stage, the 𝑎0 bit automatically handles the consecutive pairing. For other stages up to 

𝑆ℎ, 𝑎0 should be swapped with 𝑠'th bit, so that pairings described above will occur. 
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2.2. Multi-Block Memory Access 

 

One or more of the address bits should be assigned as memory-block-selection bits. For example, in a 4 

block-memory design, 2 address lines are to be used for that purpose.  

 

We are forced to handle pairwise processing of PEs as explained in the previous section. Write addresses 

delayed by two clock cycles will not conflict with the current read addresses when 𝑎1 of the counter 

with the one at the center of address bits. This bit and one of its neighbors (selection is arbitrary) are 

used as two selection signals for 4 memory blocks. For 𝑁=32 for example, 𝑎0 and 𝑎1 are used from 

counter bits 𝑎3𝑎2𝑎1𝑎0. However, when 𝑎1 is one of the swapped bits for self-ordering, it is swapped 

with 𝑎2 first and used as one of the block selection signals. With an additional bit that identifies one of 

𝑅0 or 𝑅1, the final address lines would be 𝑅0 = 0𝑎3𝑎1𝑎2𝑎0 and 𝑅1 = 1𝑎3𝑎1𝑎2𝑎0. The pair 𝑎1𝑎2 will 

be used as block selection signals. Write addresses are then, 𝑊0 = 𝑎0𝑎3𝑎1𝑎20 and 𝑊1 = 𝑎0𝑎3𝑎1𝑎21. 

Since this approach will work only for odd number of address bits, the proposed schema will handle 

FFTs with 𝑁 = 2𝑏 where 𝑏 is odd (N=32,128,512,2048...). But it will handle FFTs with even 𝑏 if 

additional write-only clock cycles are inserted before starting and after finishing the stage 𝑠 = 𝑆ℎ. It 

adds some complexity in the control circuit, hence we kept this option out of this paper. Complete flow 

of the address generation circuit is given Figure 5 with one additional bit inversion which will be 

described in the Section 2.3. 

 

 
 

Figure 5. Generation of read/write addresses. Swap and insert functions are implemented as multiplexers 

(combinatorial logic) 
 

2.3. Address Routing Circuits 

 

With the address bit arrangements described in the previous section, no more than 2 internal address 

locations are required to be accessed for each dual-port memory block. Accesses to each of 8 ports could 

be managed by using 4-to-1 multiplexers on each port. Further circuit simplification can be achieved by 

managing the order of processing at each stage. It is possible to have any single port to see only two of 

�̇�0, �̇�1, �̇�0, �̇�1 at any given cycle, where dotted address notations (�̇�0, �̇�1, �̇�0, �̇�1) indicate the physical 
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addresses (two block selection bits excluded) and necessary delays are applied for write addresses. For 

example, port A of all memory blocks will see either one of �̇�0 or �̇�1, or the port is not used in the 

current cycle. Similarly, the other port (B) will see either �̇�1 or �̇�0. This arrangement suggests the circuit 

illustrated in Figure 6, per memory block. 

 

In Figure 6, Mp is one of the four memory blocks where p is either 0, 1, 2 or 3. A and B indicates the 

two ports of the dual-port memory. 𝑚𝑅0, 𝑚𝑅1, 𝑚𝑊0 and 𝑚𝑊1 are 𝑆ℎ
th and 1st bits of the respective 

addresses. The routers simply multiplexes �̇� or �̇� inputs to the address lines depending on these bits. 

Since, with the described address generation algorithm, only one of them is allowed at any time, the 

routers will allow �̇� to pass if its 𝑚𝑊 bits equal to p (and activate WE -write enable- output), otherwise 

it will let �̇� pass through. The routers will also activate CE (memory enable) signal if any of its address 

inputs point to p. 

 

Stage transitions (when a new stage is started) pose a problem in managing multiplexer-friendly (use of 

2 input mux instead of 4) addressing of block memories. Since consecutive pairings are managed by 𝑎1 

counter bit, pair ordering in consecutive stages is handled by just inverting one of the higher counter 

bits, for example 𝑎2. This is shown in Figure 5 as a first step after generating counter values. These 

inversion and bit swapping are not performed in the last stage since the last stage must be performed in 

normal order. Outputs of the last stage will not be written back to memory anyway, instead new data 

will be loaded in normal order, and no conflict will occur. 

 

 
 
Figure 6. Address routing circuits for pth dual-port memory block. Truth table shows signal routing for port A. All 

routers are identical except that address inputs of B ports receive R1 and W0. p is a two bits value for 

selecting pth memory block. mW and mR are Sh
th and Sh-1th bits of W and R inputs of the router. The 

remaining bits are �̇�1 and �̇�0. '-' indicate don't-care, therefore PE outputs (Dox, Doy) can directly be 

routed to the Din inputs except when new data are being filled into memories 
 

Memory output data (Dixp and Diyp, where p is one of 0, 1, 2 or 3) shall also be multiplexed into PE 

inputs Dix and Diy using 𝑚𝑅0 and 𝑚𝑅1 two bit selectors, respectively. However, since data comes out 

from memories after a clock cycle, 𝑚𝑅0 and 𝑚𝑅1 selectors should also be delayed by 1 clock cycle. 

 

Two additional signals (Ird, Ord) are generated by the address generation circuit given in Figure 5 (these 

signals are not shown) indicating that the FFT operation is in the last stage so that the calculated results 

should be taken out from PE outputs and new data for FFT should be provided. Input data multiplexers 

controlled with this signal are shown in Figure 6.  

 

This completes the general design of the radix-2 self-ordered in-place FFT with the total clock cycles of 

 
𝑁𝑐𝑙𝑘 = 𝑁/2 log2(𝑁) (4) 

and no additional clock cycles are required for re-ordering and data inputs & outputs. 
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3. RESULTS AND COMPARISONS 

 
A general radix-2 complex-valued FFT schema contains 𝑁/2 PE in each of 𝑙𝑜𝑔2𝑁 stages, making 

minimal clock count of 
𝑁

2
𝑙𝑜𝑔2𝑁, assuming that one PE calculation is performed in each clock cycle. 

This excludes clock cycles required for loading new data and unloading calculated FFT output. Since 

our proposed self-ordering method does loading, unloading and the last FFT stage all in parallel, the 

number of overhead clock cycles is zero. That is, requiring no overhead clock cycles, the number of 

clock cycles between new data loadings is 
𝑁

2
𝑙𝑜𝑔2𝑁. Clock cycles given in Table 1 does not include 

overhead clock cycles (but marked as 𝑇𝑙𝑢) as referenced methods do not provide such numbers. 

 

In Table 1, the work of Ma and Wanhammar [13] exhibits the minimum clock cycles, but do not include 

overhead cycles and the output data is in bit-reversed order. The method in [8] has the lowest cycles, 

however again, it does not include additional clock cycles and uses mixed radix. It also uses 2𝑁 memory. 

The method of Ma et al. [12] on the other hand uses 𝑁 memory locations but designed for real-valued 

inputs. It is naturally expected to achieve half the required clock cycles for complex-valued FFTs 

anyway. Our proposed method requires lowest possible clock cycles in its category. It can be easily 

implemented on FPGAs with low resource counts. 

 

Since the main target is low resource small FPGAs, the proposed schema is designed in VHDL for 

𝑁=32, 128, 512 and 2048 and tested on Spartan 3E and Virtex-6 FPGAs, feeding it with stored data 

samples and real-time sampled data and observing the output. Input and output data were 18 bit fixed-

point. This wordlength selection is arbitrary and has no effect on number of clock cycles. In 

tests/experiments on Spartan 3E, design has achieved 115 MHz clock frequency for 𝑁=512 with 116 

FFs, 754 4-input LUTs. On Virtex-6, the clock frequency was 186 MHz for 𝑁=2048 with 174 slice 

registers and 607 LUTs. Obviously, clock speeds are not impressive but accepted as reasonable since 

no clock speed improvement measures (like pipelining combinatorial circuits) were taken in the design 

and the devices are low end. It was notable that 𝑁=2048 fixed-point FFT comfortably fits in a Spartan 

XC3S100E device. Since the initial target was low end FPGAs, the choice of radix-2 was appropriate 

as they have limited number of DSP-slices/multipliers. Therefore, we compared the method with the 

radix-2 methods found in the literature. 

 

 
All the methods given in Table 1 have similar/comparable resource utilization [8] uses twice the memory 

that of the others. It should be noted that the proposed method is not intended to reduce number of clock 

cycles spent in performing the actual FFT calculations. However it eliminates the clock cycles required 

Table 1. Comparison with previous radix-2 memory-based methods 
 

method radix, #banks,M #clock cycles #clock cycles for N=2048 

#cycles with parallel 

loading/unloading to 4 

memory blocks 

Ma and Wanhammar 

[13] 2,4,N 
𝑁

2
log (𝑁)+𝑇𝑙𝑢 11264+𝑇𝑙𝑢 12288 

Jo and Sunwoo [8] 1 2-4,4,2N 
𝑁

8
log (𝑁)+𝑇𝑙𝑢 3840+𝑇𝑙𝑢 4864 

Ma et al. [12] 2 2,4,N 
𝑁

4
log(𝑁)−

𝑁

4
+1+𝑇𝑙𝑢 6145+𝑇𝑙𝑢 7169 

proposed3. 2,4,N 
𝑁

2
log (𝑁) 11264 11264 

𝑇𝑙𝑢: clock cycles required for i/o and possible re-ordering 

𝑇𝑙𝑢 = 𝑁/𝑁𝐵, 𝑁𝐵: number of memory blocks 

1: radix-2 and radix-4 mixed (large PE), 2N memory 

2: real-valued inputs 
3: includes i/o clock cycles 
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to load input data and unload the results after FFT. These clock cycles are shown as 𝑇𝑙𝑢 in Table 1. The 

numbers in the rightmost column of Table 1 gives the total number of clock cycles required for loading 

data, processing (FFT) them and reading out the processed data, assuming that all 4 memory blocks are 

loaded and unloaded in parallel. Even the state-of-the-art references do not discuss on these overhead 

cycles and assume that the input data is already loaded. It is generally 𝑇𝑙𝑢 = 2𝑁/𝑁𝐵 where 𝑁𝐵 is the 

number of memory banks that can be read/written in parallel (assuming that no ordering is required). 

Proposed method requires load/unload processes too, but they are done in parallel to FFT calculation 

whereas in other methods parallel load/calculate/unload is not possible due to unordered placement of 

data in the memory. 

 

In section 2.2, it is stated that for cases of 𝑁 = 2𝑏 where b is even, additional clock cycles must be 

inserted between stages. For a particular case of 𝑁 =1024, there are 10 stages and therefore 20 additional 

write-only clock cycles are needed to prevent addressing conflicts. This will make the total number of 

clock cycles 5140, which is 492 clock cycles smaller than the required clock cycles for [13]. This means 

that, inserting additional clock cycles does not really affect the performance but slightly increase the 

chip area usage due to the needed management circuitry for write-only cycles. In our example 

implementation, the increase was less than 1%, not even making into synthesizer statistics. 

 

4. CONCLUSION 

 
A radix-2 memory-based FFT architecture with normal ordered input and output data and a novel 

application of a self-sorting algorithm is presented and experimented. Small FPGAs with low resource 

counts are targeted. With a single complex multiplier, it achieves minimum possible clock cycles 

(𝑁

2
log 2(𝑁)) between FFT cycles by eliminating clock cycles required for data feed-in and read-out. FFT 

processing circuit is never in a wait-for-data state. For comparisons with other memory-based radix-2 

designs with minimum required memory of 𝑁 and minimum number of clock cycles 𝑁
2
log 2(𝑁), it should 

be noted that it is not possible to do data feed-in and read-out simultaneously because of the digit-

reversed ordering nature of the FFT algorithm. This is achieved with our proposed schema by embedding 

a self-ordering algorithm into the design. Although the proposed schema works for only FFTs with 𝑁 =
2𝑏 where 𝑏 is odd, it works for even 𝑏s with a few write cycles inserted between stages. It is obvious 

that this radix-2 FFT architecture with efficient self-sorting addressing method provides savings in total 

required clock cycles and reduction in hardware resources. It is also obvious that radix-2k and quite 

possible that higher radix FFTs can be implemented using the proposed approach, by increasing the 

number of memory blocks accordingly. 
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