
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
BİTLİS EREN UNIVERSITY JOURNAL OF SCIENCE

ISSN: 2147-3129/e-ISSN: 2147-3188

VOLUME: 12 NO: 3 PAGE: 783-796 YEAR: 2023

DOI:10.17798/bitlisfen.1301546

783

Single and Binary Performance Comparison of Data Compression

Algorithms for Text Files

Serkan KESKİN1*, Onur SEVLİ2, Ersan OKATAN3

1 Burdur Mehmet Akif Ersoy University, Institute of Science and Technology,

Department of Computer Engineering, Burdur
2 Burdur Mehmet Akif Ersoy University, Faculty of Engineering and Architecture,

Department of Computer Engineering, Burdur
3 Burdur Mehmet Akif Ersoy University, Gölhisar School of Applied Sciences,

Department of Computer Technologies and Information Systems, Burdur

(ORCID: 0000-0001-9404-5039) (ORCID: 0000-0002-8933-8395) (ORCID: 0000-0001-6511-3450)

Abstract

Data compression is a technique used to reduce the size of a file. To reduce the size

of a file, unnecessary information is removed or parts that repeat the same

information are stored once. Thus a lossless compression is achieved. The extracted

file has all the features of the compressed original file and can be used in the same

way. Data compression can be done using different techniques. Some of these

techniques are Huffman coding, Lempel-Ziv-Welch coding and Burrows-Wheeler

Transform. Techniques such as Huffman coding, Lempel-Ziv-Welch coding and

Burrows-Wheeler Transform are some of them. Which technique to use depends on

the type and size of the data to be compressed. Huffman, Lempel-Ziv-Welch,

Burrows-Wheeler Transform and Deflate algorithms are the most widely used

techniques for text compression. Each algorithm uses different approaches and can

produce different results in terms of compression ratios and performance. In this

study, different data compression techniques were measured on specific data sets by

using them individually and in pairs on top of each other. The most successful result

was obtained with the Deflate algorithm when used alone and the achieved

compression ratio was 29.08. When considered in the form of stacked pairs, the

compression ratio of the Burrows-Wheeler Transform and Deflate gave the best

result as 57.36. In addition, when compression is performed in pairs, which

algorithm is applied first and which algorithm is applied afterwards can make a

significant difference in the compression ratio. In this study, the performance

measurements obtained by applying the algorithms in different orders are compared

and suggestions are presented to obtain optimum performance.

1. Introduction

The vast amount of data generated every moment

is the basic building block of the digital world.

Any information that can be measured and

recorded can be referred to as data. This

information can be in a wide variety of forms such

as text, graphics, numbers, video, images and

audio recordings. From personal files to the data

centers of large companies, the amount of data

collected and generated is enormous. Data can be

* Corresponding author: serkankeskin@isparta.edu.tr Received: 24.05.2023, Accepted:04.09.2023

obtained from a variety of sources [1]. For

example, it can be entered as user input or

collected automatically by software, sensors and

devices. This collected data can be used for

analysis and decision making. Information can

often be stored on different platforms. Some are

saved on the hard drive of computers, while

others are stored on servers in cloud infrastructure

[2].

Keywords: Text

Compression, Data

compression, Binary

Compression, Deflate, BWT

https://dergipark.org.tr/tr/pub/bitlisfen
https://doi.org/10.17798/bitlisfen.1301546
https://orcid.org/0000-0001-9404-5039
https://orcid.org/0000-0002-8933-8395
https://orcid.org/0000-0001-6511-3450
mailto:serkankeskin@isparta.edu.tr

S. Keskin, O. Sevli, E. Okatan / BEU Fen Bilimleri Dergisi 12(3), 783-796, 2023

784

In the 21st century, data is of great importance.

Data is crucial for businesses, researchers,

government agencies and even individuals.

However, storing and transmitting data comes

with a number of disadvantages, such as

increased volume and high costs [3]. As data

capacities increase, storage and transmission

costs also increase. This has led to the

development of data compression techniques to

reduce the data footprint. Data compression

techniques have been developed to minimize

storage space and reduce costs. It has also

positively affected processing and analysis times.

Data compression techniques encode information

by compressing data into smaller formats,

effectively reducing data size. The focus should

be on using techniques to compress data in a

performant way, thus making storage and

transmission less costly [4]. This paves the way

for faster and easily manageable transmission.

There are numerous approaches to data

compression, determined by the degree of

similarity between the compressed and original

data, as well as the compression ratio. The history

of compression techniques dates back to the

advent of electronic digital computers. Early

techniques were based on basic mathematical

algorithms such as Huffman coding [5]. As

technology advanced, lossless and lossy

compression techniques emerged in the 1970s

and 1980s. Later on, various techniques such as

number-length coding, arithmetic coding and

wavelet compression were developed. In addition

to its effectiveness in storage and data

transmission, compression has also become

effective in data backup and data recovery. It has

enabled the reduction of storage space for

backups. Data compression is a widely used

technique for archiving purposes. It has facilitated

the storage of very large data for long periods of

time while requiring minimal space.

1.1. Literature Review

There are different studies on data compression

using many techniques to date. In a study

conducted by Hasan in 2011, a compression study

was carried out using Huffman and then Lempel-

Ziv-Welch (LZW) techniques. A compression

value of 3.25 was achieved on the data. When

only one technique was applied, compression did

not exceed 2.55 [3]. In another study conducted

in the same year, the average compression ratio in

multiple applications of the Huffman technique

was 5.27 [6]. In the study conducted by Rahman

and Hamada, the compression ratio of LZW

technique was 1.28, Gzip technique was 1.5,

LZMA technique was 1.32 and Brotli technique

was 1.66. The original transform-based

compression technique proposed in this study was

found to be more successful than the other

techniques with a compression ratio of 1.88 [7].

In another study conducted on texts based on

LZW compression technique, it was concluded

that the compression ratio remained at 1.33 [8]. In

a study using Burrows-Wheeler Transform

(BWT) and RLE techniques, the compression

ratio remained at 2.48 [9]. In a study with Hybrid

Sym6- Huffman coding, the compression ratio

was 1.70 [10]. In a study comparing LZW,

wavelet tree and compressed wavelet tree

techniques, the compressed wavelet tree reduced

a 200 KB file with a compression ratio of 4.65

[11]. In a study comparing the compression

performance of Huffman and Unary coding on

text files, Unary coding was found to be more

successful. The compression ratio of the Unary

code remained at 2.64 [12]. In a study by S.

Kumar, a comparison was made between RLE

(Run-length encoding) and ASCII encoding. The

experimental study resulted in an average

compression ratio of 2.53 [13]. A.Rahman

compared Bzip2, Gzip, LZMA, Brotli and his

proposed compression algorithms on 10 data sets.

As a result of the comparison, Bzip2 algorithm

was the most successful technique with a

compression ratio of 2.91 [14]. P.Sarker, who

performed compression with another text

compression technique, achieved a compression

ratio of 1.49 with his proposed technique [15]. S

Haldar-Iversen performed binary compression

with ASCII compression modulus+GZIP and

obtained a compression ratio of 3.00 [16]. In a

study on compression of dictionaries in different

languages using the LZW algorithm, an average

compression rate of 3.33 was obtained [1]. In a

binary compression study with Chinese

Remainder Theorem and Huffman algorithms, a

success rate of 1.56 was achieved in license.txt

text file [17]. In the study conducted by Ibrahim

and Gbolagade, 4 different algorithms were used

and the LZW algorithm with a compression ratio

of 7.91 gave more successful results [18]. In the

compression process performed with the help of

a matrix table using the Huffman algorithm, a

compression ratio of 2.94 was achieved in the

S. Keskin, O. Sevli, E. Okatan / BEU Fen Bilimleri Dergisi 12(3), 783-796, 2023

785

artificial text 1.txt text file [19]. In a study

conducted by Rincy and Rajesh to examine the

performance of the LZW algorithm with ASCII

characters, a compression ratio of 4.23 was

obtained [20]. In another study where the

compression algorithm was constructed by

utilizing long distance correlations between

words, the compression ratio remained at 1.80

[21]. In this study, a new Karhunen-Loeve

transform based algorithm for lossy image

compression is developed, which presents a

simple algorithm where images are only

subsampled and KLT is applied. While most

other image compression studies use hybrid

methods, this study presents an approach based

solely on KLT[22]. Ince et al. present the

proposed LDR-DCT method as an alternative to

the conventional DCT method when compression

is unnecessary. It is also claimed that if the

method is designed with quantisation tables, it

can achieve the same JPEG image quality as the

traditional DCT method and provide higher

compression ratios [23]. In the study where data

compression is performed by text clustering, the

Compression Ratio Index (CRI), which can be

calculated faster than internal methods such as

Silhouette, Calinski-Harabasz and Davies-

Bouldin indices, is developed. This study showed

that SOI, an alternative clustering performance

measure, gives consistent results with traditional

internal and external methods [24].

1.2. Basic Principles of Data Compression

The process of reducing the footprint of electronic

data is commonly known as data compression.

Data compression is usually performed by two

different techniques. These are redundancy

removal and statistical coding techniques. These

techniques help to optimize the storage of data on

electronic devices. It is also possible to divide

data compression into two parts: lossy and

lossless.

1.2.1. Redundancy Removal

Redundancy removal is a valuable technique for

removing repetitive or predictable data from

datasets. In this technique, unnecessary spaces or

characters are identified and removed, and is

often used to compress text documents. This can

minimize file size, save storage space and speed

up data transfer [25]. There are three main

methods for redundancy removal. The first is

spatial redundancy, where similar or identical

data is repeated within the same file. For example,

the same pixels in a photo do not need to be

repeated more than once. It is enough to save

them once to reduce the file size. Redundancy can

also be eliminated based on time. This relates to

situations where the same or similar data is

repeated at different points in time. For example,

the same images appearing multiple times in a

single video is redundant and requires more

storage space. To avoid this, video sizes can be

reduced by recording repetitive images once. The

third and final redundancy removal technique is

encoding redundancy. Encoding redundancy

occurs when the same data uses more than one bit

or symbol. By eliminating these redundancies,

storage requirements can be reduced.

1.2.2. Statistical Coding

Statistical coding is based on the fact that some

symbols or characters are more common than

others in the dataset. There are two types of

statistical coding. Entropy coding is a type of

statistical coding that uses probability to assign

variable length codes to symbols or characters.

Lexical coding is a type of coding that replaces

repeated words in a dataset with references to a

dictionary or a table [5].

1.2.3. Lossless Data Compression

Lossless data compression is a technique used to

compress data to take up less space. In this

technique, no data is lost during the compression

process. This means that the compressed data is

exactly equal to the original data. Lossless

compression algorithms usually compress by

identifying duplicate parts of the data. These parts

can significantly reduce the size of the data. For

example, multiple repeated words or sentences in

a text document can be recognized by lossless

compression algorithms and stored in a smaller

footprint. The most common use of lossless

compression algorithms are file compression

programs [19]. These programs save storage

space by compressing particularly large files or

multiple files together. Since compressed data has

a smaller amount of data than the original data,

there are fewer errors during data transmission.

This form of compression is especially important

in critical systems where there is no fault

tolerance during data transmission. The most

S. Keskin, O. Sevli, E. Okatan / BEU Fen Bilimleri Dergisi 12(3), 783-796, 2023

786

common lossless compression algorithms are

Huffman Coding, LZ77 and LZ78, BWT.

1.2.4. Lossy Data Compression

When less memory or disk space is available to

store information, lossy data compression is used

to reduce the size of large data sets. However, this

technique has a disadvantage. There is a

possibility that some data may be lost during the

compression process. Because of this potential

loss, it is called lossy. This technique becomes

more useful when working with multimedia files

and other large data sets that require a significant

amount of space to store and share. The size of

files can be significantly reduced using lossy data

compression techniques. Lossy compression is a

technique that accelerates data compression by

allowing efficient data storage and sharing. It can

affect data quality while reducing storage

requirements. Appropriate algorithm selection

and proper configuration are required to achieve

optimal results [26].

Different techniques are used in lossy data

compression. Among the most important are

volume-based, frequency-based and predictive

techniques. Volume-based techniques evaluate

the density and volume of data, such as how

undetectable frequencies or low-density data can

be bypassed by MP3 compression for audio files.

Frequency-based techniques focus on frequency

components using low frequency components to

preserve essential information, such as JPEG

compression that groups similar colors together

and uses averages. Finally, predictive techniques

identify recurring patterns in the data and

efficiently reconstruct it using minimal

information for patterns. For example, the GIF

format can reduce the size of images by reusing

similar colors in an image [18].

In short, lossless compression preserves all the

original data, while lossy compression sacrifices

some of the original data to achieve higher

compression ratios. Lossless compression is

typically used for text and data files, while lossy

compression is typically used for image, audio

and video files.

1.3. Areas Where Data Compression Is Used

1.3.1. File Compression

The technique used to reduce file size is called file

compression. Compression reduces the size of

files on disk. Smaller files are easier to download,

share and send. This allows users to save time,

internet resources and storage space. File

compression algorithms such as RAR, 7z, ZIP,

GZIP are commonly used file compression

applications.

1.3.2. Video Compression

Video compression is the process of reducing the

volume and flow rate of data and is used in direct

relation to the term bandwidth. This compression

technique works in the same way that a video

camera captures each frame and converts it to

JPEG format. If these frames are played back on

a surveillance computer at 25 frames per second,

you get moving video. This compression aims to

provide high image quality. However, it also

results in high bandwidth and storage overhead.

Video compression algorithms are H.264, H.265,

MPEG, HEVC, VP9, etc.

1.3.3. Audio Compression

Audio compression is the process of fitting

digitally recorded audio signals into a smaller

volume with or without loss. FLAC, MP3, Ogg

Vorbis, AAC are examples of popular audio

compression algorithms.

1.3.4. Image Compression

Image compression is a technique used to reduce

the footprint of large image files. Generally,

digital compression algorithms are used. These

techniques are used to compress complex images

such as photographs. JPEG, PNG, GIF are among

the prominent ones of these techniques. In

addition, high performance compression is

performed with the discrete cosine transform

(DCT) method. In order to minimise rounding

errors and information loss, it is necessary to

reduce the dynamic range of the DCT

coefficients. In this way, a lower range of weights

can be obtained according to frequency levels

during DCT calculations [23].

2. Material and Method

2.1. Huffman Coding

Huffman coding is a commonly used technique in

data compression. This technique reduces the data

size by encoding frequently repeating symbols

using fewer bits. This allows data to be

S. Keskin, O. Sevli, E. Okatan / BEU Fen Bilimleri Dergisi 12(3), 783-796, 2023

787

transmitted faster and uses less storage space.

This algorithm first calculates the frequency of

frequently repeated symbols and assigns shorter

codes to these symbols. Rarely used symbols are

assigned longer codes. In this way, the encoding

of frequently used symbols uses fewer bits, while

the encoding of infrequently used symbols uses

more bits [27].

For Huffman coding, the symbols of the data are

first identified and the frequencies of these

symbols are calculated. These frequencies allow

the symbols to be represented in a tree structure.

Then, left branches in the tree structure are coded

as 0 and right branches as 1. Since frequently used

symbols will take shorter codes, the coding of

these symbols will use fewer bits [15].

For example, if Huffman coding is done for the

sentence "HELLO WORLD", the frequencies of

the symbols of the text are first calculated. The

letter "H" appears 1 time, "E" 1 time, "L" 3 times,

"O" 2 times, "W" 1 time, R" 1 time and "D" 1

time. A Huffman tree is constructed according to

the frequencies of these symbols [19]. First, the

two lowest frequency symbols (here "E" and "R")

are merged to form a node whose frequency is

equal to the total frequency of the two symbols.

This process continues according to the

frequencies of the other symbols, and the tree

structure is formed with the most frequently used

symbol at the top. In this tree structure, a code is

generated for each symbol. Frequently used

symbols are assigned shorter codes, for example

the symbol "L" is assigned a short code, while

rarely used symbols are assigned longer codes.

The Huffman coding for the sentence "HELLO

WORLD" can be coded as shown in Table 1

Table 1. Huffman algorithm frequency and codes assigned to each symbol

Symbol Frequency Code

E 1 000

H 1 001

D 1 010

R 1 011

W 1 100

O 2 101

L 3 11

Table 1 shows the frequency of each symbol, the

code assigned to the symbol and its path in the

Huffman tree. For example, the code assigned to the

symbol "L" is "11" and this symbol is located two

nodes down the Huffman tree. Thanks to this coding

technique, frequently used symbols in the text will

receive shorter codes and the size of the text will be

significantly reduced. For example, when Huffman

encoding is used for the sentence "HELLO

WORLD", the size of the text will decrease from 44

bits to 23 bits. This means that text can be transmitted

and stored faster and using less storage space.

2.2. Lempel-Ziv-Welch

Among the data compression techniques currently in

use, the LZW (Lempel-Ziv-Welch) algorithm is

often preferred. It is a lossless technique. This means

that no information is lost during the compression

process. Basically, the algorithm identifies repeating

patterns in the data and replaces them with shorter

codes, resulting in compressed data [28]. Text files,

graphics files and compressed data are typical

applications of the LZW algorithm. Briefly

summarizing the steps of the LZW algorithm:

Initially, a dictionary is created by the algorithm

consisting of codes for individual symbols such as

"a", "b", "c", etc.

 During the compression process, individual

data units are analyzed and the longest

recurring pattern, also known as a word, is

found. If the word is not found in the

dictionary, it is given a code number and

integrated into the dictionary.

S. Keskin, O. Sevli, E. Okatan / BEU Fen Bilimleri Dergisi 12(3), 783-796, 2023

788

 The word represented by the code number is

added to the compressed data.

 Whenever a compressed data set contains a

new term, the dictionary is immediately

reviewed and a unique code number is

assigned to the newly added word.

 This process continues in full until the piece

of data is completely finished.

 The file format stores both the compressed

data and a dictionary that allows the

compressed data to be restored.

Using a window to identify patterns during

compression, the LZW algorithm examines the data

to detect repetition. The window size governs the

pattern size for the search. For example, with a

window size of 12 bits, the algorithm can identify up

to 4096 unique words. The larger the window size,

the longer patterns the algorithm can identify.

However, this increases the complexity [20].

The LZW algorithm is particularly useful when

dealing with data that contains repeating patterns,

such as text files. In fact, it has proven effective in

cases like

"LLLLLLLLLLLLLLLLLLLLLLLLLLLLZ".

Instead of encoding "LLLLLLLLZ" every time it

appears, the word is encoded only once and then

represented by the corresponding code number each

time it is repeated.

The LZW algorithm compresses the input data by

replacing repeated patterns with shorter codes stored

in a dictionary. The output of the algorithm consists

of a set of indices corresponding to the codes in the

dictionary. When the compressed data is

decompressed, the dictionary is reconstructed using

the same algorithm and the indices are replaced by

the corresponding symbols in the dictionary [28].

As part of the compressed file, the LZW algorithm

includes a table for code search. Overall, this table

consists of 4,096 entries. The codes 0-255 in the table

are assigned to represent individual bytes found in

the input file. Before the initialization of the

algorithm, only the first 256 entries of the table are

filled, while the remaining entries are left blank.

Basically, by default the first 256 codes are assigned

to the standard character set. As the compression

process evolves, the remaining codes are allocated to

the sequences. During encoding initialization, the

algorithm detects duplicate sequences in the data and

adds them to the code table. It thus expands its

content. In the context of file compression, codes

between 256 and 4,095 are used to symbolize

sequences of multiple bytes.

2.3. Burrows-Wheeler Transformation

The Burrows-Wheeler Transform (BWT) is an

algorithm for text compression. This algorithm

performs compression by identifying repetitive

characters within a text. It is also based on the use of

varying orderings of data based on their consecutive

characters [9]. The stages of the BWT algorithm can

be summarized as follows:

 Adding an EOF character at the end of the text:

An EOF character is added at the end of the text.

 Creating all loops: All loops after the EOF

character are created. Loops are created by

shifting each character of the text to the right.

 Ordering of loops: All loops are sorted according

to the lexicographic order of the characters in

them.

 Creation of the BWT matrix: From each loop, the

last character (except EOF) and all previous

characters are copied into a matrix.

 BWT encoding: The characters of each column

in the matrix are combined and used as the

encoded representation of the compressed text.

The key used during BWT encoding is the index

of the last character in the original text. In this

way, the compressed text can be reconstructed

before it is encoded.

The BWT algorithm does not directly compress the

data. Instead, it increases the compressibility of the

data. The word "the" is most frequently used in the

English text. Therefore, when the word "the" is

encountered in the converted text, it is represented as

"he". This feature has proven to be quite

advantageous for various transformation algorithms,

including Move-To-Front Transform [29]. When

applying the BWT to an array, the resulting output of

the Move Forward transform will consist mainly of

smaller values that can be compressed efficiently

using entropy encoding. We can rank the existing

compression methods based on BWT in four

different stages. The first stage includes the

implementation of BWT, which serves as the core

component of the compression algorithm. This

operation increases the compressibility of the array.

The next stage is known as global structure

transformation (GST). At this stage, Burrows and

Wheeler applied the Move Forward transformation

as part of the list update algorithm [29]. The first

version of the Burrows and Wheeler compression

algorithm does not include a third step. However,

S. Keskin, O. Sevli, E. Okatan / BEU Fen Bilimleri Dergisi 12(3), 783-796, 2023

789

they introduced a concept that uses a code to

symbolize the length of a string of zeros. In a later

study, string length coding was applied as a tool to

encode zero sequences and provided a commendable

level of compression [30]. The final stage, the fourth

stage, includes entropy encoding, which can be

obtained through Huffman coding or arithmetic

coding to compress the output of the previous stage.

The BWT algorithm performs compression by

identifying repeating patterns. For example, in the

text "bababababac", similar repeated characters

could be "baba" and "c". The BWT algorithm creates

blocks grouping the same characters and compresses

by changing the order of the blocks. This can result

in a significant reduction in data size.

The BWT algorithm is highly efficient for

compressing data. However, in order to return the

compressed data to its original format, the algorithm

needs to know the index of the last character in the

source text [31]. Furthermore, the compression

efficiency of the algorithm may lag behind other

existing algorithms in certain scenarios.

2.4. Deflate Coding

In mid-1990, Phil Katz developed a data

compression format that preserves all original data,

called lossless compression. This new algorithm is a

combination of Huffman coding and LZ77

algorithms [24]. Deflate algorithm is a lossless

compression algorithm used in compression

programs such as gzip, PNG and WinZip. Data is

compressed in consecutive blocks. Each block is

compressed using Huffman coding and the LZ77

algorithm. The size of the compressible blocks varies

and when the Huffman tree becomes too large for

efficient coding, the Deflate algorithm terminates

that block. It then starts a new block by creating a

new Huffman tree. Each block consists of two parts.

These parts are the compressed data and the Huffman

code trees representing the data. In particular, the

Huffman tree of each block is independent of the

previous and the next block. The compressed data at

the beginning of each block is preceded by Huffman

trees compressed using Huffman coding. The LZ77

algorithm relies on a search buffer spanning 32,768

bytes and can refer to a string from the previous

block as long as it stays within these limits. However,

the length of the repeating character or forwarding

buffer in this algorithm is limited to 258. The length

of 256 different character numbers between 3 and

258 is represented as 1 byte. The 32,768-byte size

search buffer is represented by 15 bits, while 1 bit is

used for the flag representing the uncompressed data,

so it is represented by 3 bytes.

2.5. Data Compression Performance

There are two parameters in data compression

performance. These are data compression ratio and

speed. Data compression ratio is expressed as the

ratio of original data to compressed data. Take a 10

MB text or video file. Let the size of this file be 2

MB after compression. The compression ratio of this

file is 5. An increase in the compression ratio means

the direct success of the algorithm used. The other

parameter, speed, refers to the compression time. As

the speed increases, the time taken in the

compression process will decrease. There is an

inverse relationship between speed and compression

ratio. As the speed increases, the compression ratio

decreases. For this, it is important to achieve balance.

The compression ratio is expressed by Equation (1).

Compression Ratio=original file/compressed file (1)

2.6. Data Set

In this study, 4 different data sets were used. The first

data set is a text file named "pi.txt" consisting of the

first one million digits of pi after the comma. This

data set consists only of numbers and its size is 997

kilobytes. The second data set is a text file of the

book "Alice's Adventures in Wonderland". It

consists only of letters. The name of the data set is

"alice.txt" and its size is 149 kilobytes. The third data

set is a text file of firewall logs. This data set consists

of 50% letters and 50% numbers. This data set is

named "log.txt" and its size is 4.38 megabytes. The

last data set is an Excel document. Like the log file,

this document has a 50/50 ratio of letters and text.

The size of the data set is 5.44 MB and is named

"list.xls". "Alice.txt" was taken from the public

domain [32]. The other datasets used were created by

us.

3. Results and Discussion

Huffman coding, Deflate coding, LZW and BWT

algorithms were used for data compression. With the

algorithms, data compression operations were

performed singly and sequentially in pairs. This data

compression process was applied on 4 different data

sets. Single compression rates and compression

times are given in Table 2 and Table 3 respectively.

S. Keskin, O. Sevli, E. Okatan / BEU Fen Bilimleri Dergisi 12(3), 783-796, 2023

790

Table 2. Single data compression ratios

 Compression Ratios

Data Set
Pi Dataset

(996,19 kilobyte)

Alice Dataset

(148,52 kilobyte)

Log Dataset

(4283,64 kilobyte)

List Dataset

(5578.72 kilobyte)

Algorith

m

Compressio

n

The post

File size

Compressio

n

Ratio

Compressio

n

The post

File size

Compressio

n

Ratio

Compressio

n

The post

File size

Compressio

n

Ratio

Compressio

n

The post

File size

Compressio

n

Ratio

Huffman 466,57 2,13 91,13 1,62 2732,83 1,57 5231.19 1.06

LZW 468,74 2,12 64,38 2,30 638,75 6,70 8042.12 -1.69

BWT 444,73 2.24 48,18 3,08 577,45 7,41 1510.34 3.69

Deflate 486,06 2,03 53,66 2,76 147,3 29,08 1851.05 3.01

As seen in Table 2, the BWT algorithm is generally

the most successful in single compression. This is

due to the fact that it groups the same character

blocks in the data sets and changes their order, which

results in more successful results than other

algorithms. The fact that the Deflate algorithm is

more successful than the BWT algorithm on the log

dataset can be explained by the fact that the dataset

is more suitable for this algorithm. The negative

result of the LZW algorithm on the list dataset is an

indication that the algorithm cannot compress Excel

files. It could not detect any similarity in the list

dataset, thus increasing the character count instead of

decreasing it.

Table 3. Single data compression times

 Compression Times (milliseconds)

Data set/

Algorithm

Pi Dataset Alice Dataset Log Dataset List Dataset

Huffman 313 187 1390 2492

LZW 157 78 267 802

BWT 4478 446 29540 40845

Deflate 120 86 98 198

Table 3 shows the compression times in

milliseconds. The most successful algorithm in terms

of compression time is the deflate algorithm. The

reason why the deflate algorithm is more successful

is that the compression is done by recording the

initial position and length of the pattern. This data is

written to the buffer as part of the compressed data.

Thus, the algorithm compresses faster than other

algorithms.

Although the BWT algorithm is more successful in

single compression, it can be said that the deflate

algorithm is more successful if we evaluate it

together with the compression time. The

compression time of the BWT algorithm is 206 times

higher than the deflate algorithm for the list dataset,

301 times higher for the log dataset, 5 times higher

for the alice dataset and 37 times higher for the pi

dataset. The differences in compression ratios are not

large. Based on the size of the datasets used,

compression with BWT can be used for small

datasets. However, for larger data sets, the BWT

algorithm may take more time to compress.

Considering the compression ratios and times

together, it can be said that the deflate algorithm is

more successful.

The binary compression results are detailed in Table

4 and Table 5.

S. Keskin, O. Sevli, E. Okatan / BEU Fen Bilimleri Dergisi 12(3), 783-796, 2023

791

Table 4. Compression ratios before and after Binary Compression

Data Set Pi Dataset Alice Dataset Log Dataset List Dataset

Algorithm 1.Compres

sion ratio

2.Post-

compressio

n ratio

1.Compr

ession

ratio

2.Post-

compressio

n ratio

1.Compres

sion ratio

2.Post-

compressio

n ratio

1.Compres

sion ratio

2.Post-

compressio

n ratio

Huffman+LZW 2,135 1,634 1.629 1.390 1.567 2.410 1.066 0.767

Huffman+BWT 2,135 2.180 1.629 1.932 1.567 9.176 1.066 1.865

Huffman+Deflate 2,135 2.202 1.629 1.921 1.567 10.906 1.066 1.720

LZW+Huffman 2.125 2.100 2.306 2.274 6.706 6.664 0.693 0.770

LZW+BWT 2.125 2.123 2.306 2.310 6.706 18.704 0.693 2.427

LZW+Deflate 2.125 2.126 2.306 2.351 6.706 18.037 0.693 1.643

BWT+Huffman 2.239 2.243 3.082 3.159 7.418 29.499 3.693 4.375

BWT+LZW 2.239 1.631 3.082 2.395 7.418 44.950 3.693 3.501

BWT+Deflate 2.239 2.262 3.082 3.281 7.418 57.368 3.693 4.754

Deflate+Huffman 2.049 2.006 2.767 2.713 29.080 28.520 3.013 2.958

Deflate+BWT 2.049 2.048 2.767 2.753 29.080 29.214 3.013 3.013

Deflate+LZW 2.049 1.420 2.767 1.872 29.080 20.270 3.013 2.092

Table 5. File sizes in Kilobytes before and after binary compression

Data Set Pi Dataset

(1020100 KiloByte)

Alice Dataset

(152089 KiloByte)

Log Dataset

(4386450 KiloByte)

List Dataset

(5712605 KiloByte)

Algorithm 1.File

size after

compress

ion

2.File

size after

compress

ion

1.File

size after

compress

ion

2.File

size after

compress

ion

1.File

size after

compress

ion

2.File

size after

compress

ion

1.File

size after

compress

ion

2.File

size after

compress

ion

Huffman+LZW 477767 624275 93321 109355 2798420 1819681 5356740 7444115

Huffman+BWT 477767 467909 93321 78696 2798420 478030 5356740 3061738

Huffman+Deflate 477767 463181 93321 79163 2798420 402183 5356740 3319809

LZW+Huffman 479988 485702 65931 66870 654076 658156 8235129 7417408

LZW+BWT 479988 480316 65931 65815 654076 234514 8235129 2353460

LZW+Deflate 479988 479776 65931 64668 654076 243180 8235129 3476828

BWT+Huffman 455408 454766 49345 48140 591313 148695 1546586 1305441

BWT+LZW 455408 625273 49345 63481 591313 97585 1546586 1631568

BWT+Deflate 455408 450954 49345 46350 591313 76461 1546586 1201640

Deflate+Huffman 497729 508283 54948 56059 150839 153801 1895478 1931159

Deflate+BWT 497729 498057 54948 55226 150839 150148 1895478 1895806

Deflate+LZW 497729 717965 54948 81240 150839 216396 1895478 2730094

S. Keskin, O. Sevli, E. Okatan / BEU Fen Bilimleri Dergisi 12(3), 783-796, 2023

792

In Table 4, the compression ratios of the first and

second compression results of the experimental

study with binary compression are given in three

digits after the dot. Table 5 shows the size of the first

and second compression files in kilobytes. In both

tables, the most successful ones are bolded. In both

tables, compression was performed using the two

algorithms in succession. As a result of the

compression process, the most successful result was

obtained when using the BWT and Deflate

algorithms respectively. The pi dataset, which is

numeric data, exceeded the initial compression

measurement by 0.97%. In the alice dataset, which

consists only of letters, binary compression is better

than the pi dataset. The Alice dataset shows an

increase of 6.06% over the initial compression rate.

For the List dataset, which is an Excel file, the

situation is better. There is an increase of 22.3% over

the initial compression ratio. In the Log dataset,

which has the highest compression ratio, an increase

of 87.06% over the initial compression ratio was

realized. This is because the first compression

increased the similarity and the second compression

reduced more characters.

In the pi and alice datasets, the similarity was

significantly reduced in the first compression. As a

result, the second compression resulted in a low

compression ratio due to low similarity. In the list

dataset, the similarity was not reduced in the first

compression and was compressed slightly more in

the second compression.

The main issue here is the compression order. BWT-

Deflate and Deflate-BWT do not have the same

compression ratios. All compression algorithms

ultimately achieve a certain amount of compression.

However, when subjected to a second compression

process, the two algorithms give different results.

This is because the BWT algorithm sorts repeated

characters as consecutive variables. This compresses

to a certain extent. The Deflate algorithm compares

the data in the buffer with the data in the window. If

there is a pattern between the data in the window and

the data in the buffer, it compresses that pattern. The

data that was compressed in the first compression

with BWT is made suitable for compression again

with Deflate. This results in an increase in the

compression ratio. However, when dual compression

is performed as Deflate-BWT, the second

compression cannot reduce the number of characters

as a sequential variable, which is required by the

BWT algorithm. Thus, the order of compression is

important. This will also be valid for other

algorithms. Table 6 shows the binary compression

times.

Table 6. Binary compression times (milliseconds)

Data Set Pi Dataset Alice Dataset Log Dataset List Dataset

Algorithm 1.Compre

ssion time

2.Compre

ssion time

1.Compre

ssion time

2.Compre

ssion time

1.Compre

ssion time

2.Compre

ssion time

1.Compre

ssion time

2.Compre

ssion time

Huffman+LZW 313 49 187 14 1390 192 2492 514

Huffman+BWT 313 1696 187 318 1390 17617 2492 48597

Huffman+Deflate 313 37 187 12 1390 31 2492 132

LZW+Huffman 157 333 78 115 267 459 802 2994

LZW+BWT 157 1796 78 220 267 1897 802 67963

LZW+Deflate 157 22 78 11 267 32 802 211

BWT+Huffman 4478 230 446 126 29540 115 40845 541

BWT+LZW 4478 47 446 7 29540 16 40845 120

BWT+Deflate 4478 23 446 16 29540 12 40845 48

Deflate+Huffman 120 348 86 110 98 242 198 1108

Deflate+BWT 120 1789 86 172 98 496 198 13240

Deflate+LZW 120 59 86 6 98 17 198 297

S. Keskin, O. Sevli, E. Okatan / BEU Fen Bilimleri Dergisi 12(3), 783-796, 2023

793

Table 6 shows the binary compression times in

milliseconds. In general, the Deflate-LZW binary

compression algorithm performs the best in terms of

binary compression times. If we look at the

compression ratios, we can see that this has an

inverse ratio. If we look at the BWT-Deflate binary

compression algorithm, we can see that it has the

highest compression time. From this we can

conclude the following. The more compression, the

more time it will take. Another aspect of

compression time that we should not ignore is the

type of data set. Text, numeric or text and numeric

data also have different compression times.

As can be seen from Table 4 and Table 5, ranking in

binary compression makes a big difference in both

compression ratio and compression time. This is

clearly seen in the experimental study. In general, the

most successful result is obtained when BWT-

Deflate algorithms are used consecutively.

In Table 7, the results of the study are tabulated in

comparison with other studies in the literature.

Table 7. Similar Studies in the Literature

Study Name Algorithm Used Compression

Ratio

Hasan, 2011 [3] Huffman+LZW 3.25

Hasan, 2011 [3] LZH 2.55

Rahman and Hamada, 2020 [7] Proposed Method 1.88

Barua et al, 2017 [8] MLZW 1.33

Fruchtman et al, 2023 [9] BWT+RLE 2.48

Amusa et al, 2022 [10] Hybrid Sym6- Huffman coding 1.70

Gupta et al., 2022 [11] Compressed wavelet tree 4.65

Wijaya et al., 2022 [12] Unary Codes Algorithm 2.64

Kumar and Chatuverdi, 2021 [13] RLE 2.53

Rahman and Hamada 2021 [14] Bzip2 2.91

Sarker and Rahman 2021 [15] Proposed Method 1.49

Iversen, 2020 [16] ASCII Compression Module+GZİP 3.00

Ignatoski at al., 2020 [1] LZW 3.33

Ibrahim and Gbolagade, 2023 [17] Huffman+CRT(Chinese Remainder Theorem) 1.56

Reza et al., 2019 [18] Huffman 2.30

Bulut, 2016 [19] Huffman 2.94

Rincy and Rajesh, 2019 [20] LZW 4.23

Horspool and Cormack, 1992 [21] UNIX Compress 1.80

This study Pi Dataset BWT+Deflate 2.26

This study Alice Dataset BWT+Deflate 3.28

This study List Dataset BWT+Deflate 4.75

This study Log Dataset BWT+Deflate 57.36

S. Keskin, O. Sevli, E. Okatan / BEU Fen Bilimleri Dergisi 12(3), 783-796, 2023

794

Table 7 shows the success rates of similar studies in

the literature and which algorithm is more

successful. It is seen that the study is more successful

than other studies.

4. Conclusion and Suggestions

In this experimental study, compression was

performed on single and consecutive text files. In

general, a certain amount of compression was

achieved for all data sets and for all algorithms used.

In the single compression process, the best results

were obtained on the log data set. In this data set, it

was observed that the Deflate algorithm achieved

96% data compression. One of the most successful

results in terms of compression speed was achieved

by compressing the log data set with the Deflate

algorithm. The fact that the log data set is more

successful than other data sets is due to the high

similarity rate in the data set. For this reason, the

Deflate algorithm was more successful than other

algorithms in compressing log files.

Not all algorithms were successful in the dual, i.e.

sequential compression process. Huffman-BWT,

BWT-Huffman, Huffman-Deflate and BWT-Deflate

algorithm pairs successfully compressed all data sets.

The most successful result was obtained in BWT-

Deflate dual compression. In the log data set, this

success was achieved with a compression factor of

57.36. If we had performed the compression

algorithm as Deflate-BWT in the log data set, this

ratio would have been 29.21. The reason for

achieving a higher compression ratio is that the

blocks created by the BWT algorithm as a result of

compression can be recompressed with the Deflate

algorithm, which uses the tree structure. Therefore, it

is very important which algorithm to use first in

compression. Existing compression algorithms may

have different sensitivity levels to different types of

text data (e.g. news, articles, academic texts, poems,

etc.). Thereby, we aim to perform sensitivity

analyses to examine how compression performance

varies according to the type of text. The development

of compression algorithms optimized for specific

types of texts is being considered.

Conflict of Interest Statement
There is no conflict of interest between the authors.

Statement of Research and Publication Ethics

The study is complied with research and publication

ethics

References

[1] M. Ignatoski, J. Lerga, L. Stanković, and M. Daković, ‘Comparison of entropy and dictionary based

text compression in English, German, French, Italian, Czech, Hungarian, Finnish, and Croatian’,

Mathematics, vol. 8, no. 7, p. 1059, Jul. 2020, doi: 10.3390/MATH8071059.

[2] I. B. Ginzburg, S. N. Padalko, and M. N. Terentiev, ‘Short Message Compression Scheme for Wireless

Sensor Networks’, Moscow Work. Electron. Netw. Technol. MWENT 2020 - Proc., Mar. 2020, doi:

10.1109/MWENT47943.2020.9067371.

[3] M. R. Hasan, ‘Data Compression using Huffman based LZW Encoding Technique’, Int. J. Sci. Eng.

Res., vol. Volume 2, no. 11, pp. 1–7, 2011, Accessed: Mar. 20, 2023. [Online]. Available:

http://www.ijser.org

[4] V. Ratnam Anappindi, ‘Issue 8 www.jetir.org (ISSN-2349-5162)’, JETIREZ06012 J. Emerg. Technol.

Innov. Res., vol. 8, 2021, doi: 10.1109/EDSSC.2017.8126506.J.

[5] A. Habib, M. J. Islam, and M. S. Rahman, ‘A dictionary-based text compression technique using

quaternary code’, Iran J. Comput. Sci., vol. 3, no. 3, pp. 127–136, Sep. 2020, doi: 10.1007/s42044-019-

00047-w.

[6] S. S and R. L, ‘Text Compression Algorithms - a Comparative Study’, ICTACT J. Commun. Technol.,

vol. 02, no. 04, pp. 444–451, 2011, doi: 10.21917/ijct.2011.0062.

[7] M. A. Rahman and M. Hamada, ‘Burrows–wheeler transform based lossless text compression using

keys and Huffman coding’, Symmetry (Basel)., vol. 12, no. 10, pp. 1–14, Oct. 2020, doi:

10.3390/sym12101654.

[8] L. Barua, P. K. Dhar, L. Alam, and I. Echizen, ‘Bangla text compression based on modified lempel-

Ziv-welch algorithm’, ECCE 2017 - Int. Conf. Electr. Comput. Commun. Eng., pp. 855–859, Apr. 2017,

doi: 10.1109/ECACE.2017.7913022.

[9] A. Fruchtman, Y. Gross, S. T. Klein, and D. Shapira, ‘Weighted Burrows–Wheeler Compression’, SN

Comput. Sci., vol. 4, no. 3, pp. 1–12, Mar. 2023, doi: 10.1007/s42979-022-01629-5.

S. Keskin, O. Sevli, E. Okatan / BEU Fen Bilimleri Dergisi 12(3), 783-796, 2023

795

[10] K. Amusa, A. Adewusi, T. Erinosho, S. Salawu, and D. Odufejo, ‘On the application of wavelet

transform and Huffman algorithm to Yorùbá language syntax text files compression’, Serbian J. Electr.

Eng., vol. 19, no. 3, pp. 351–368, 2022, doi: 10.2298/sjee2203351a.

[11] S. Gupta, A. K. Yadav, D. Yadav, and B. Shukla, ‘A scalable approach for index compression using

wavelet tree and LZW’, Int. J. Inf. Technol., vol. 14, no. 4, pp. 2191–2204, Jun. 2022, doi:

10.1007/s41870-022-00915-y.

[12] B. A. Wijaya, S. Siboro, M. Brutu, and Y. K. Lase, ‘Application of Huffman Algorithm and Unary

Codes for Text File Compression’, SinkrOn, vol. 7, no. 3, pp. 1000–1007, Jul. 2022, doi:

10.33395/sinkron.v7i3.11567.

[13] S. Kumar and A. Kumar Chaturvedi, ‘A Generalized Digital Database Text Compression Scheme

Compared Wıth Ascii’, Int. J. Adv. Technol. Eng. Res., vol. 11, no. 2, p. 12, 2021, Accessed: Mar. 29,

2023. [Online]. Available: www.ijater.com

[14] M. A. Rahman and M. Hamada, ‘Lossless text compression using GPT-2 language model and Huffman

coding’, SHS Web Conf., vol. 102, p. 04013, 2021, doi: 10.1051/shsconf/202110204013.

[15] P. Sarker and M. L. Rahman, ‘Introduction to Adjacent Distance Array with Huffman Principle: A New

Encoding and Decoding Technique for Transliteration Based Bengali Text Compression’, Adv. Intell.

Syst. Comput., vol. 1299 AISC, pp. 543–555, 2021, doi: 10.1007/978-981-33-4299-6_45.

[16] S. Haldar-Iversen, ‘Improving the text compression ratio for ASCII text Using a combination of

dictionary coding , ASCII compression , and Huffman coding’, no. November, Nov. 2020, Accessed:

Mar. 29, 2023. [Online]. Available: https://munin.uit.no/handle/10037/20517

[17] M. B. Ibrahim and K. A. Gbolagade, ‘Performance Comparison of Huffman Coding and Lempel-Ziv-

Welch Text Compression Algorithms With Chinese Remainder Theorem’, Univ. Pitesti Sci. Bull. Ser.

Electron. Comput. Sci., vol. 19, no. 2, pp. 7–12, Dec. 2019, Accessed: Mar. 29, 2023. [Online].

Available: http://bulletin.feccupit.ro/archive/view/2019_2_2.html

[18] M. S. Reza, S. A. Riya, S. A. Alam, and M. A. A. Hossain, ‘Study on Text Compression’, Feb. 2019,

Accessed: Mar. 29, 2023. [Online]. Available: http://dspace.uiu.ac.bd/handle/52243/822

[19] F. BULUT, ‘Huffman Algoritmasıyla Kayıpsız Hızlı Metin Sıkıştırma’, El-Cezeri Fen ve Mühendislik

Derg., vol. 3, no. 2, May 2016, doi: 10.31202/ecjse.264192.

[20] T. A. Rincy and R. Rajesh, ‘Preprocessed text compression method for Malayalam text files’, Int. J.

Recent Technol. Eng., vol. 8, no. 2, pp. 1011–1015, 2019, doi: 10.35940/ijrte.B1806.078219.

[21] R. N. Horspool and G. V. Cormack, ‘Constructing word-based text compression algorithms’, Data

Compression Conf. Proc., vol. 1992-March, pp. 62–71, 1992, doi: 10.1109/DCC.1992.227475.

[22] B. Eren, Ü. Fen, B. Dergisi, and S. Keser, ‘An Image Compression Method Based on Subspace and

Downsampling’, Bitlis Eren Üniversitesi Fen Bilim. Derg., vol. 12, no. 1, pp. 215–225, Mar. 2023, doi:

10.17798/BITLISFEN.1225312.

[23] I. F. Ince, F. Bulut, I. Kilic, M. E. Yildirim, and O. F. Ince, ‘Low dynamic range discrete cosine

transform (LDR-DCT) for high-performance JPEG image compression’, Vis. Comput., vol. 38, no. 5,

pp. 1845–1870, May 2022, doi: 10.1007/S00371-022-02418-0/FIGURES/3.

[24] M. ASLANYÜREK and A. MESUT, ‘Kümeleme Performansını Ölçmek için Yeni Bir Yöntem ve

Metin Kümeleme için Değerlendirmesi’, Eur. J. Sci. Technol., no. 27, pp. 53–65, 2021, doi:

10.31590/ejosat.932938.

[25] R. Leelavathi and M. N. Giri Prasad, ‘High-Capacity Reversible Data Hiding Using Lossless LZW

Compression’, EAI/Springer Innov. Commun. Comput., pp. 517–528, 2022, doi: 10.1007/978-3-030-

86165-0_44.

[26] J. R. Jayapandiyan, C. Kavitha, and K. Sakthivel, ‘Optimal Secret Text Compression Technique for

Steganographic Encoding by Dynamic Ranking Algorithm’, J. Phys. Conf. Ser., vol. 1427, no. 1, p.

012005, Jan. 2020, doi: 10.1088/1742-6596/1427/1/012005.

[27] M. M. Aşşık and M. Oral, ‘Kanonik Huffman kod sözcükleri uzunluklarının evrim stratejileri

algoritması ile belirlenmesi’, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Derg., vol. 38, no. 2,

pp. 771–780, 2022, doi: 10.17341/gazimmfd.882745.

[28] M. Varol Arısoy, ‘LZW-CIE: a high-capacity linguistic steganography based on LZW char index

encoding’, Neural Comput. Appl., vol. 34, no. 21, pp. 19117–19145, Nov. 2022, doi: 10.1007/s00521-

022-07499-5.

[29] D. Zhang, Q. Liu, Y. Wu, Y. Li, and L. Xiao, ‘Compression and indexing based on BWT: A

S. Keskin, O. Sevli, E. Okatan / BEU Fen Bilimleri Dergisi 12(3), 783-796, 2023

796

surveyZhang, D., Liu, Q., Wu, Y., Li, Y., & Xiao, L. (2013). Compression and indexing based on BWT:

A survey. Proceedings - 2013 10th Web Information System and Application Conference, WISA 2013,

61–64. https://doi’, Proc. - 2013 10th Web Inf. Syst. Appl. Conf. WISA 2013, pp. 61–64, 2013, doi:

10.1109/WISA.2013.20.

[30] P. M. Fenwick, ‘The Burrows–Wheeler Transform for Block Sorting Text Compression: Principles and

Improvements’, Comput. J., vol. 39, no. 9, pp. 731–740, Jan. 1996, doi: 10.1093/COMJNL/39.9.731.

[31] D. Kempa and T. Kociumaka, ‘Resolution of the burrows-wheeler transform conjecture’, Commun.

ACM, vol. 65, no. 6, pp. 91–98, Jun. 2022, doi: 10.1145/3531445.

[32] ‘Alice’s Adventures in Wonderland dataset | Kaggle’.

https://www.kaggle.com/datasets/roblexnana/alice-wonderland-dataset (accessed May 23, 2023).

