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Abstract 

Data compression is a technique used to reduce the size of a file. To reduce the size 

of a file, unnecessary information is removed or parts that repeat the same 

information are stored once. Thus a lossless compression is achieved.  The extracted 

file has all the features of the compressed original file and can be used in the same 

way. Data compression can be done using different techniques. Some of these 

techniques are Huffman coding, Lempel-Ziv-Welch coding and Burrows-Wheeler 

Transform. Techniques such as Huffman coding, Lempel-Ziv-Welch coding and 

Burrows-Wheeler Transform are some of them. Which technique to use depends on 

the type and size of the data to be compressed. Huffman, Lempel-Ziv-Welch, 

Burrows-Wheeler Transform and Deflate algorithms are the most widely used 

techniques for text compression. Each algorithm uses different approaches and can 

produce different results in terms of compression ratios and performance. In this 

study, different data compression techniques were measured on specific data sets by 

using them individually and in pairs on top of each other. The most successful result 

was obtained with the Deflate algorithm when used alone and the achieved 

compression ratio was 29.08. When considered in the form of stacked pairs, the 

compression ratio of the Burrows-Wheeler Transform and Deflate gave the best 

result as 57.36. In addition, when compression is performed in pairs, which 

algorithm is applied first and which algorithm is applied afterwards can make a 

significant difference in the compression ratio. In this study, the performance 

measurements obtained by applying the algorithms in different orders are compared 

and suggestions are presented to obtain optimum performance. 

 

 

1. Introduction 

 

The vast amount of data generated every moment 

is the basic building block of the digital world. 

Any information that can be measured and 

recorded can be referred to as data. This 

information can be in a wide variety of forms such 

as text, graphics, numbers, video, images and 

audio recordings. From personal files to the data 

centers of large companies, the amount of data 

collected and generated is enormous. Data can be 
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obtained from a variety of sources [1]. For 

example, it can be entered as user input or 

collected automatically by software, sensors and 

devices. This collected data can be used for 

analysis and decision making. Information can 

often be stored on different platforms. Some are 

saved on the hard drive of computers, while 

others are stored on servers in cloud infrastructure 

[2]. 
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In the 21st century, data is of great importance. 

Data is crucial for businesses, researchers, 

government agencies and even individuals.  

 

However, storing and transmitting data comes 

with a number of disadvantages, such as 

increased volume and high costs [3]. As data 

capacities increase, storage and transmission 

costs also increase. This has led to the 

development of data compression techniques to 

reduce the data footprint. Data compression 

techniques have been developed to minimize 

storage space and reduce costs. It has also 

positively affected processing and analysis times. 

Data compression techniques encode information 

by compressing data into smaller formats, 

effectively reducing data size. The focus should 

be on using techniques to compress data in a 

performant way, thus making storage and 

transmission less costly [4]. This paves the way 

for faster and easily manageable transmission. 

 

There are numerous approaches to data 

compression, determined by the degree of 

similarity between the compressed and original 

data, as well as the compression ratio. The history 

of compression techniques dates back to the 

advent of electronic digital computers. Early 

techniques were based on basic mathematical 

algorithms such as Huffman coding [5]. As 

technology advanced, lossless and lossy 

compression techniques emerged in the 1970s 

and 1980s. Later on, various techniques such as 

number-length coding, arithmetic coding and 

wavelet compression were developed. In addition 

to its effectiveness in storage and data 

transmission, compression has also become 

effective in data backup and data recovery. It has 

enabled the reduction of storage space for 

backups. Data compression is a widely used 

technique for archiving purposes. It has facilitated 

the storage of very large data for long periods of 

time while requiring minimal space. 

 

1.1. Literature Review 

 

There are different studies on data compression 

using many techniques to date. In a study 

conducted by Hasan in 2011, a compression study 

was carried out using Huffman and then Lempel-

Ziv-Welch (LZW) techniques. A compression 

value of 3.25 was achieved on the data. When 

only one technique was applied, compression did 

not exceed 2.55 [3]. In another study conducted 

in the same year, the average compression ratio in 

multiple applications of the Huffman technique 

was 5.27 [6].  In the study conducted by Rahman 

and Hamada, the compression ratio of LZW 

technique was 1.28, Gzip technique was 1.5, 

LZMA technique was 1.32 and Brotli technique 

was 1.66. The original transform-based 

compression technique proposed in this study was 

found to be more successful than the other 

techniques with a compression ratio of 1.88 [7]. 

In another study conducted on texts based on 

LZW compression technique, it was concluded 

that the compression ratio remained at 1.33 [8]. In 

a study using Burrows-Wheeler Transform 

(BWT) and RLE techniques, the compression 

ratio remained at 2.48 [9]. In a study with Hybrid 

Sym6- Huffman coding, the compression ratio 

was 1.70 [10].  In a study comparing LZW, 

wavelet tree and compressed wavelet tree 

techniques, the compressed wavelet tree reduced 

a 200 KB file with a compression ratio of 4.65 

[11].  In a study comparing the compression 

performance of Huffman and Unary coding on 

text files, Unary coding was found to be more 

successful. The compression ratio of the Unary 

code remained at 2.64 [12].  In a study by S. 

Kumar, a comparison was made between RLE 

(Run-length encoding) and ASCII encoding. The 

experimental study resulted in an average 

compression ratio of 2.53 [13]. A.Rahman 

compared Bzip2, Gzip, LZMA, Brotli and his 

proposed compression algorithms on 10 data sets. 

As a result of the comparison, Bzip2 algorithm 

was the most successful technique with a 

compression ratio of 2.91 [14]. P.Sarker, who 

performed compression with another text 

compression technique, achieved a compression 

ratio of 1.49 with his proposed technique [15].  S 

Haldar-Iversen performed binary compression 

with ASCII compression modulus+GZIP and 

obtained a compression ratio of 3.00 [16].  In a 

study on compression of dictionaries in different 

languages using the LZW algorithm, an average 

compression rate of 3.33 was obtained [1]. In a 

binary compression study with Chinese 

Remainder Theorem and Huffman algorithms, a 

success rate of 1.56 was achieved in license.txt 

text file [17].  In the study conducted by Ibrahim 

and Gbolagade, 4 different algorithms were used 

and the LZW algorithm with a compression ratio 

of 7.91 gave more successful results [18]. In the 

compression process performed with the help of 

a matrix table using the Huffman algorithm, a 

compression ratio of 2.94 was achieved in the 
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artificial text 1.txt text file [19]. In a study 

conducted by Rincy and Rajesh to examine the 

performance of the LZW algorithm with ASCII 

characters, a compression ratio of 4.23 was 

obtained [20]. In another study where the 

compression algorithm was constructed by 

utilizing long distance correlations between 

words, the compression ratio remained at 1.80 

[21]. In this study, a new Karhunen-Loeve 

transform based algorithm for lossy image 

compression is developed, which presents a 

simple algorithm where images are only 

subsampled and KLT is applied. While most 

other image compression studies use hybrid 

methods, this study presents an approach based 

solely on KLT[22].  Ince et al. present the 

proposed LDR-DCT method as an alternative to 

the conventional DCT method when compression 

is unnecessary. It is also claimed that if the 

method is designed with quantisation tables, it 

can achieve the same JPEG image quality as the 

traditional DCT method and provide higher 

compression ratios [23]. In the study where data 

compression is performed by text clustering, the 

Compression Ratio Index (CRI), which can be 

calculated faster than internal methods such as 

Silhouette, Calinski-Harabasz and Davies-

Bouldin indices, is developed. This study showed 

that SOI, an alternative clustering performance 

measure, gives consistent results with traditional 

internal and external methods [24]. 

 

1.2. Basic Principles of Data Compression 

 

The process of reducing the footprint of electronic 

data is commonly known as data compression. 

Data compression is usually performed by two 

different techniques. These are redundancy 

removal and statistical coding techniques. These 

techniques help to optimize the storage of data on 

electronic devices. It is also possible to divide 

data compression into two parts: lossy and 

lossless. 

 

1.2.1. Redundancy Removal 

 

Redundancy removal is a valuable technique for 

removing repetitive or predictable data from 

datasets. In this technique, unnecessary spaces or 

characters are identified and removed, and is 

often used to compress text documents. This can 

minimize file size, save storage space and speed 

up data transfer [25]. There are three main 

methods for redundancy removal. The first is 

spatial redundancy, where similar or identical 

data is repeated within the same file. For example, 

the same pixels in a photo do not need to be 

repeated more than once. It is enough to save 

them once to reduce the file size. Redundancy can 

also be eliminated based on time. This relates to 

situations where the same or similar data is 

repeated at different points in time. For example, 

the same images appearing multiple times in a 

single video is redundant and requires more 

storage space. To avoid this, video sizes can be 

reduced by recording repetitive images once. The 

third and final redundancy removal technique is 

encoding redundancy. Encoding redundancy 

occurs when the same data uses more than one bit 

or symbol. By eliminating these redundancies, 

storage requirements can be reduced. 

 

1.2.2. Statistical Coding 

 

Statistical coding is based on the fact that some 

symbols or characters are more common than 

others in the dataset. There are two types of 

statistical coding. Entropy coding is a type of 

statistical coding that uses probability to assign 

variable length codes to symbols or characters. 

Lexical coding is a type of coding that replaces 

repeated words in a dataset with references to a 

dictionary or a table [5]. 

 

1.2.3. Lossless Data Compression 

 

Lossless data compression is a technique used to 

compress data to take up less space. In this 

technique, no data is lost during the compression 

process. This means that the compressed data is 

exactly equal to the original data. Lossless 

compression algorithms usually compress by 

identifying duplicate parts of the data. These parts 

can significantly reduce the size of the data. For 

example, multiple repeated words or sentences in 

a text document can be recognized by lossless 

compression algorithms and stored in a smaller 

footprint. The most common use of lossless 

compression algorithms are file compression 

programs [19]. These programs save storage 

space by compressing particularly large files or 

multiple files together. Since compressed data has 

a smaller amount of data than the original data, 

there are fewer errors during data transmission. 

This form of compression is especially important 

in critical systems where there is no fault 

tolerance during data transmission. The most 
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common lossless compression algorithms are 

Huffman Coding, LZ77 and LZ78, BWT. 

 

1.2.4. Lossy Data Compression 

 

When less memory or disk space is available to 

store information, lossy data compression is used 

to reduce the size of large data sets. However, this 

technique has a disadvantage. There is a 

possibility that some data may be lost during the 

compression process. Because of this potential 

loss, it is called lossy. This technique becomes 

more useful when working with multimedia files 

and other large data sets that require a significant 

amount of space to store and share. The size of 

files can be significantly reduced using lossy data 

compression techniques. Lossy compression is a 

technique that accelerates data compression by 

allowing efficient data storage and sharing. It can 

affect data quality while reducing storage 

requirements. Appropriate algorithm selection 

and proper configuration are required to achieve 

optimal results [26]. 

 

Different techniques are used in lossy data 

compression. Among the most important are 

volume-based, frequency-based and predictive 

techniques. Volume-based techniques evaluate 

the density and volume of data, such as how 

undetectable frequencies or low-density data can 

be bypassed by MP3 compression for audio files. 

Frequency-based techniques focus on frequency 

components using low frequency components to 

preserve essential information, such as JPEG 

compression that groups similar colors together 

and uses averages. Finally, predictive techniques 

identify recurring patterns in the data and 

efficiently reconstruct it using minimal 

information for patterns. For example, the GIF 

format can reduce the size of images by reusing 

similar colors in an image [18]. 

In short, lossless compression preserves all the 

original data, while lossy compression sacrifices 

some of the original data to achieve higher 

compression ratios. Lossless compression is 

typically used for text and data files, while lossy 

compression is typically used for image, audio 

and video files. 

 

1.3. Areas Where Data Compression Is Used 

1.3.1. File Compression 

 

The technique used to reduce file size is called file 

compression. Compression reduces the size of 

files on disk. Smaller files are easier to download, 

share and send. This allows users to save time, 

internet resources and storage space. File 

compression algorithms such as RAR, 7z, ZIP, 

GZIP are commonly used file compression 

applications. 

 

1.3.2. Video Compression 

 

Video compression is the process of reducing the 

volume and flow rate of data and is used in direct 

relation to the term bandwidth. This compression 

technique works in the same way that a video 

camera captures each frame and converts it to 

JPEG format. If these frames are played back on 

a surveillance computer at 25 frames per second, 

you get moving video. This compression aims to 

provide high image quality. However, it also 

results in high bandwidth and storage overhead. 

Video compression algorithms are H.264, H.265, 

MPEG, HEVC, VP9, etc. 

 

1.3.3. Audio Compression 

 

Audio compression is the process of fitting 

digitally recorded audio signals into a smaller 

volume with or without loss. FLAC, MP3, Ogg 

Vorbis, AAC are examples of popular audio 

compression algorithms. 

 

1.3.4. Image Compression 

 

Image compression is a technique used to reduce 

the footprint of large image files. Generally, 

digital compression algorithms are used. These 

techniques are used to compress complex images 

such as photographs. JPEG, PNG, GIF are among 

the prominent ones of these techniques.  In 

addition, high performance compression is 

performed with the discrete cosine transform 

(DCT) method. In order to minimise rounding 

errors and information loss, it is necessary to 

reduce the dynamic range of the DCT 

coefficients. In this way, a lower range of weights 

can be obtained according to frequency levels 

during DCT calculations [23]. 

 

2. Material and Method 

2.1.  Huffman Coding 
 

Huffman coding is a commonly used technique in 

data compression. This technique reduces the data 

size by encoding frequently repeating symbols 

using fewer bits. This allows data to be 
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transmitted faster and uses less storage space. 

This algorithm first calculates the frequency of 

frequently repeated symbols and assigns shorter 

codes to these symbols. Rarely used symbols are 

assigned longer codes. In this way, the encoding 

of frequently used symbols uses fewer bits, while 

the encoding of infrequently used symbols uses 

more bits [27]. 

 

For Huffman coding, the symbols of the data are 

first identified and the frequencies of these 

symbols are calculated. These frequencies allow 

the symbols to be represented in a tree structure. 

Then, left branches in the tree structure are coded 

as 0 and right branches as 1. Since frequently used 

symbols will take shorter codes, the coding of 

these symbols will use fewer bits [15]. 

 

For example, if Huffman coding is done for the 

sentence "HELLO WORLD", the frequencies of 

the symbols of the text are first calculated. The 

letter "H" appears 1 time, "E" 1 time, "L" 3 times, 

"O" 2 times, "W" 1 time, R" 1 time and "D" 1 

time. A Huffman tree is constructed according to 

the frequencies of these symbols [19]. First, the 

two lowest frequency symbols (here "E" and "R") 

are merged to form a node whose frequency is 

equal to the total frequency of the two symbols. 

This process continues according to the 

frequencies of the other symbols, and the tree 

structure is formed with the most frequently used 

symbol at the top. In this tree structure, a code is 

generated for each symbol. Frequently used 

symbols are assigned shorter codes, for example 

the symbol "L" is assigned a short code, while 

rarely used symbols are assigned longer codes. 

The Huffman coding for the sentence "HELLO 

WORLD" can be coded as shown in Table 1

 

Table 1. Huffman algorithm frequency and codes assigned to each symbol 

Symbol Frequency Code 

E 1 000 

H 1 001 

D 1 010 

R 1 011 

W 1 100 

O 2 101 

L 3 11 

 

Table 1 shows the frequency of each symbol, the 

code assigned to the symbol and its path in the 

Huffman tree. For example, the code assigned to the 

symbol "L" is "11" and this symbol is located two 

nodes down the Huffman tree. Thanks to this coding 

technique, frequently used symbols in the text will 

receive shorter codes and the size of the text will be 

significantly reduced. For example, when Huffman 

encoding is used for the sentence "HELLO 

WORLD", the size of the text will decrease from 44 

bits to 23 bits. This means that text can be transmitted 

and stored faster and using less storage space. 

 

2.2.  Lempel-Ziv-Welch 

 

Among the data compression techniques currently in 

use, the LZW (Lempel-Ziv-Welch) algorithm is 

often preferred. It is a lossless technique. This means 

that no information is lost during the compression 

process. Basically, the algorithm identifies repeating 

patterns in the data and replaces them with shorter 

codes, resulting in compressed data [28]. Text files, 

graphics files and compressed data are typical 

applications of the LZW algorithm. Briefly 

summarizing the steps of the LZW algorithm: 

Initially, a dictionary is created by the algorithm 

consisting of codes for individual symbols such as 

"a", "b", "c", etc. 

 During the compression process, individual 

data units are analyzed and the longest 

recurring pattern, also known as a word, is 

found. If the word is not found in the 

dictionary, it is given a code number and 

integrated into the dictionary. 
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 The word represented by the code number is 

added to the compressed data. 

 Whenever a compressed data set contains a 

new term, the dictionary is immediately 

reviewed and a unique code number is 

assigned to the newly added word. 

 This process continues in full until the piece 

of data is completely finished. 

 The file format stores both the compressed 

data and a dictionary that allows the 

compressed data to be restored. 

 

Using a window to identify patterns during 

compression, the LZW algorithm examines the data 

to detect repetition. The window size governs the 

pattern size for the search. For example, with a 

window size of 12 bits, the algorithm can identify up 

to 4096 unique words. The larger the window size, 

the longer patterns the algorithm can identify. 

However, this increases the complexity [20]. 

The LZW algorithm is particularly useful when 

dealing with data that contains repeating patterns, 

such as text files. In fact, it has proven effective in 

cases like 

"LLLLLLLLLLLLLLLLLLLLLLLLLLLLZ". 

Instead of encoding "LLLLLLLLZ" every time it 

appears, the word is encoded only once and then 

represented by the corresponding code number each 

time it is repeated. 

 

The LZW algorithm compresses the input data by 

replacing repeated patterns with shorter codes stored 

in a dictionary. The output of the algorithm consists 

of a set of indices corresponding to the codes in the 

dictionary. When the compressed data is 

decompressed, the dictionary is reconstructed using 

the same algorithm and the indices are replaced by 

the corresponding symbols in the dictionary [28]. 

 

As part of the compressed file, the LZW algorithm 

includes a table for code search. Overall, this table 

consists of 4,096 entries. The codes 0-255 in the table 

are assigned to represent individual bytes found in 

the input file. Before the initialization of the 

algorithm, only the first 256 entries of the table are 

filled, while the remaining entries are left blank. 

Basically, by default the first 256 codes are assigned 

to the standard character set. As the compression 

process evolves, the remaining codes are allocated to 

the sequences. During encoding initialization, the 

algorithm detects duplicate sequences in the data and 

adds them to the code table. It thus expands its 

content. In the context of file compression, codes 

between 256 and 4,095 are used to symbolize 

sequences of multiple bytes. 

 

2.3. Burrows-Wheeler Transformation 

 

The Burrows-Wheeler Transform (BWT) is an 

algorithm for text compression. This algorithm 

performs compression by identifying repetitive 

characters within a text. It is also based on the use of 

varying orderings of data based on their consecutive 

characters [9]. The stages of the BWT algorithm can 

be summarized as follows: 

 Adding an EOF character at the end of the text: 

An EOF character is added at the end of the text. 

 Creating all loops: All loops after the EOF 

character are created. Loops are created by 

shifting each character of the text to the right. 

 Ordering of loops: All loops are sorted according 

to the lexicographic order of the characters in 

them. 

 Creation of the BWT matrix: From each loop, the 

last character (except EOF) and all previous 

characters are copied into a matrix. 

 BWT encoding: The characters of each column 

in the matrix are combined and used as the 

encoded representation of the compressed text. 

The key used during BWT encoding is the index 

of the last character in the original text. In this 

way, the compressed text can be reconstructed 

before it is encoded. 

 

The BWT algorithm does not directly compress the 

data. Instead, it increases the compressibility of the 

data. The word "the" is most frequently used in the 

English text. Therefore, when the word "the" is 

encountered in the converted text, it is represented as 

"he". This feature has proven to be quite 

advantageous for various transformation algorithms, 

including Move-To-Front Transform [29]. When 

applying the BWT to an array, the resulting output of 

the Move Forward transform will consist mainly of 

smaller values that can be compressed efficiently 

using entropy encoding. We can rank the existing 

compression methods based on BWT in four 

different stages. The first stage includes the 

implementation of BWT, which serves as the core 

component of the compression algorithm. This 

operation increases the compressibility of the array. 

The next stage is known as global structure 

transformation (GST). At this stage, Burrows and 

Wheeler applied the Move Forward transformation 

as part of the list update algorithm [29]. The first 

version of the Burrows and Wheeler compression 

algorithm does not include a third step. However, 
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they introduced a concept that uses a code to 

symbolize the length of a string of zeros. In a later 

study, string length coding was applied as a tool to 

encode zero sequences and provided a commendable 

level of compression [30]. The final stage, the fourth 

stage, includes entropy encoding, which can be 

obtained through Huffman coding or arithmetic 

coding to compress the output of the previous stage. 

 

The BWT algorithm performs compression by 

identifying repeating patterns. For example, in the 

text "bababababac", similar repeated characters 

could be "baba" and "c". The BWT algorithm creates 

blocks grouping the same characters and compresses 

by changing the order of the blocks. This can result 

in a significant reduction in data size. 

 

The BWT algorithm is highly efficient for 

compressing data. However, in order to return the 

compressed data to its original format, the algorithm 

needs to know the index of the last character in the 

source text [31]. Furthermore, the compression 

efficiency of the algorithm may lag behind other 

existing algorithms in certain scenarios. 

 

2.4. Deflate Coding 

 

In mid-1990, Phil Katz developed a data 

compression format that preserves all original data, 

called lossless compression. This new algorithm is a 

combination of Huffman coding and LZ77 

algorithms [24]. Deflate algorithm is a lossless 

compression algorithm used in compression 

programs such as gzip, PNG and WinZip. Data is 

compressed in consecutive blocks. Each block is 

compressed using Huffman coding and the LZ77 

algorithm. The size of the compressible blocks varies 

and when the Huffman tree becomes too large for 

efficient coding, the Deflate algorithm terminates 

that block. It then starts a new block by creating a 

new Huffman tree. Each block consists of two parts. 

These parts are the compressed data and the Huffman 

code trees representing the data. In particular, the 

Huffman tree of each block is independent of the 

previous and the next block. The compressed data at 

the beginning of each block is preceded by Huffman 

trees compressed using Huffman coding. The LZ77 

algorithm relies on a search buffer spanning 32,768 

bytes and can refer to a string from the previous 

block as long as it stays within these limits. However, 

the length of the repeating character or forwarding 

buffer in this algorithm is limited to 258. The length 

of 256 different character numbers between 3 and 

258 is represented as 1 byte. The 32,768-byte size 

search buffer is represented by 15 bits, while 1 bit is 

used for the flag representing the uncompressed data, 

so it is represented by 3 bytes. 

 

2.5. Data Compression Performance 

 

There are two parameters in data compression 

performance. These are data compression ratio and 

speed. Data compression ratio is expressed as the 

ratio of original data to compressed data. Take a 10 

MB text or video file. Let the size of this file be 2 

MB after compression. The compression ratio of this 

file is 5. An increase in the compression ratio means 

the direct success of the algorithm used. The other 

parameter, speed, refers to the compression time. As 

the speed increases, the time taken in the 

compression process will decrease. There is an 

inverse relationship between speed and compression 

ratio. As the speed increases, the compression ratio 

decreases. For this, it is important to achieve balance. 

The compression ratio is expressed by Equation (1). 

Compression Ratio=original file/compressed file (1) 

 

2.6. Data Set 

 

In this study, 4 different data sets were used. The first 

data set is a text file named "pi.txt" consisting of the 

first one million digits of pi after the comma. This 

data set consists only of numbers and its size is 997 

kilobytes. The second data set is a text file of the 

book "Alice's Adventures in Wonderland". It 

consists only of letters. The name of the data set is 

"alice.txt" and its size is 149 kilobytes. The third data 

set is a text file of firewall logs. This data set consists 

of 50% letters and 50% numbers. This data set is 

named "log.txt" and its size is 4.38 megabytes. The 

last data set is an Excel document. Like the log file, 

this document has a 50/50 ratio of letters and text. 

The size of the data set is 5.44 MB and is named 

"list.xls". "Alice.txt" was taken from the public 

domain [32]. The other datasets used were created by 

us. 

 

3. Results and Discussion 

 

Huffman coding, Deflate coding, LZW and BWT 

algorithms were used for data compression.  With the 

algorithms, data compression operations were 

performed singly and sequentially in pairs. This data 

compression process was applied on 4 different data 

sets.  Single compression rates and compression 

times are given in Table 2 and Table 3 respectively. 
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Table 2. Single data compression ratios 

 Compression Ratios 

Data Set 
Pi Dataset 

(996,19 kilobyte) 

Alice Dataset 

(148,52 kilobyte) 

Log Dataset 

(4283,64 kilobyte) 

List Dataset 

(5578.72 kilobyte) 

Algorith

m 

Compressio

n 

The post 

File size 

Compressio

n 

Ratio 

Compressio

n 

The post 

File size 

Compressio

n 

Ratio 

Compressio

n 

The post 

File size 

Compressio

n 

Ratio 

Compressio

n 

The post 

File size 

Compressio

n 

Ratio 

Huffman 466,57 2,13 91,13 1,62 2732,83 1,57 5231.19 1.06 

LZW 468,74 2,12 64,38 2,30 638,75 6,70 8042.12 -1.69 

BWT 444,73 2.24 48,18 3,08 577,45 7,41 1510.34 3.69 

Deflate 486,06 2,03 53,66 2,76 147,3 29,08 1851.05 3.01 

 

As seen in Table 2, the BWT algorithm is generally 

the most successful in single compression.  This is 

due to the fact that it groups the same character 

blocks in the data sets and changes their order, which 

results in more successful results than other 

algorithms. The fact that the Deflate algorithm is 

more successful than the BWT algorithm on the log 

dataset can be explained by the fact that the dataset 

is more suitable for this algorithm. The negative 

result of the LZW algorithm on the list dataset is an 

indication that the algorithm cannot compress Excel 

files. It could not detect any similarity in the list 

dataset, thus increasing the character count instead of 

decreasing it.
 

Table 3. Single data compression times 

 Compression Times (milliseconds) 

Data set/ 

Algorithm 

Pi Dataset Alice Dataset Log Dataset List Dataset 

Huffman 313 187 1390 2492 

LZW 157 78 267 802 

BWT 4478 446 29540 40845 

Deflate 120 86 98 198 

 

Table 3 shows the compression times in 

milliseconds. The most successful algorithm in terms 

of compression time is the deflate algorithm. The 

reason why the deflate algorithm is more successful 

is that the compression is done by recording the 

initial position and length of the pattern. This data is 

written to the buffer as part of the compressed data. 

Thus, the algorithm compresses faster than other 

algorithms. 

 

Although the BWT algorithm is more successful in 

single compression, it can be said that the deflate 

algorithm is more successful if we evaluate it 

together with the compression time. The 

compression time of the BWT algorithm is 206 times 

higher than the deflate algorithm for the list dataset, 

301 times higher for the log dataset, 5 times higher 

for the alice dataset and 37 times higher for the pi 

dataset. The differences in compression ratios are not 

large.  Based on the size of the datasets used, 

compression with BWT can be used for small 

datasets. However, for larger data sets, the BWT 

algorithm may take more time to compress. 

Considering the compression ratios and times 

together, it can be said that the deflate algorithm is 

more successful. 

The binary compression results are detailed in Table 

4 and Table 5. 
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Table 4. Compression ratios before and after Binary Compression 

Data Set Pi Dataset Alice Dataset Log Dataset List Dataset 

Algorithm 1.Compres

sion ratio 

2.Post-

compressio

n ratio 

1.Compr

ession 

ratio 

2.Post-

compressio

n ratio 

1.Compres

sion ratio 

2.Post-

compressio

n ratio 

1.Compres

sion ratio 

2.Post-

compressio

n ratio 

Huffman+LZW 2,135 1,634 1.629 1.390 1.567 2.410 1.066 0.767 

Huffman+BWT 2,135 2.180 1.629 1.932 1.567 9.176 1.066 1.865 

Huffman+Deflate 2,135 2.202 1.629 1.921 1.567 10.906 1.066 1.720 

LZW+Huffman 2.125 2.100 2.306 2.274 6.706 6.664 0.693 0.770 

LZW+BWT 2.125 2.123 2.306 2.310 6.706 18.704 0.693 2.427 

LZW+Deflate 2.125 2.126 2.306 2.351 6.706 18.037 0.693 1.643 

BWT+Huffman 2.239 2.243 3.082 3.159 7.418 29.499 3.693 4.375 

BWT+LZW 2.239 1.631 3.082 2.395 7.418 44.950 3.693 3.501 

BWT+Deflate 2.239 2.262 3.082 3.281 7.418 57.368 3.693 4.754 

Deflate+Huffman 2.049 2.006 2.767 2.713 29.080 28.520 3.013 2.958 

Deflate+BWT 2.049 2.048 2.767 2.753 29.080 29.214 3.013 3.013 

Deflate+LZW 2.049 1.420 2.767 1.872 29.080 20.270 3.013 2.092 

 

Table 5. File sizes in Kilobytes before and after binary compression 

Data Set Pi Dataset 

(1020100 KiloByte) 

Alice Dataset 

(152089 KiloByte) 

Log Dataset 

(4386450 KiloByte) 

List Dataset 

(5712605 KiloByte) 

Algorithm 1.File 

size after 

compress

ion 

2.File 

size after 

compress

ion 

1.File 

size after 

compress

ion 

2.File 

size after 

compress

ion 

1.File 

size after 

compress

ion 

2.File 

size after 

compress

ion 

1.File 

size after 

compress

ion 

2.File 

size after 

compress

ion 

Huffman+LZW 477767 624275 93321 109355 2798420 1819681 5356740 7444115 

Huffman+BWT 477767 467909 93321 78696 2798420 478030 5356740 3061738 

Huffman+Deflate 477767 463181 93321 79163 2798420 402183 5356740 3319809 

LZW+Huffman 479988 485702 65931 66870 654076 658156 8235129 7417408 

LZW+BWT 479988 480316 65931 65815 654076 234514 8235129 2353460 

LZW+Deflate 479988 479776 65931 64668 654076 243180 8235129 3476828 

BWT+Huffman 455408 454766 49345 48140 591313 148695 1546586 1305441 

BWT+LZW 455408 625273 49345 63481 591313 97585 1546586 1631568 

BWT+Deflate 455408 450954 49345 46350 591313 76461 1546586 1201640 

Deflate+Huffman 497729 508283 54948 56059 150839 153801 1895478 1931159 

Deflate+BWT 497729 498057 54948 55226 150839 150148 1895478 1895806 

Deflate+LZW 497729 717965 54948 81240 150839 216396 1895478 2730094 
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In Table 4, the compression ratios of the first and 

second compression results of the experimental 

study with binary compression are given in three 

digits after the dot. Table 5 shows the size of the first 

and second compression files in kilobytes. In both 

tables, the most successful ones are bolded. In both 

tables, compression was performed using the two 

algorithms in succession. As a result of the 

compression process, the most successful result was 

obtained when using the BWT and Deflate 

algorithms respectively. The pi dataset, which is 

numeric data, exceeded the initial compression 

measurement by 0.97%. In the alice dataset, which 

consists only of letters, binary compression is better 

than the pi dataset. The Alice dataset shows an 

increase of 6.06% over the initial compression rate. 

For the List dataset, which is an Excel file, the 

situation is better. There is an increase of 22.3% over 

the initial compression ratio. In the Log dataset, 

which has the highest compression ratio, an increase 

of 87.06% over the initial compression ratio was 

realized. This is because the first compression 

increased the similarity and the second compression 

reduced more characters. 

 

In the pi and alice datasets, the similarity was 

significantly reduced in the first compression. As a 

result, the second compression resulted in a low 

compression ratio due to low similarity. In the list 

dataset, the similarity was not reduced in the first 

compression and was compressed slightly more in 

the second compression. 

 

The main issue here is the compression order. BWT-

Deflate and Deflate-BWT do not have the same 

compression ratios. All compression algorithms 

ultimately achieve a certain amount of compression. 

However, when subjected to a second compression 

process, the two algorithms give different results. 

This is because the BWT algorithm sorts repeated 

characters as consecutive variables. This compresses 

to a certain extent. The Deflate algorithm compares 

the data in the buffer with the data in the window. If 

there is a pattern between the data in the window and 

the data in the buffer, it compresses that pattern. The 

data that was compressed in the first compression 

with BWT is made suitable for compression again 

with Deflate. This results in an increase in the 

compression ratio. However, when dual compression 

is performed as Deflate-BWT, the second 

compression cannot reduce the number of characters 

as a sequential variable, which is required by the 

BWT algorithm. Thus, the order of compression is 

important. This will also be valid for other 

algorithms. Table 6 shows the binary compression 

times.

 
Table 6. Binary compression times (milliseconds) 

Data Set Pi Dataset Alice Dataset Log Dataset List Dataset 

Algorithm 1.Compre

ssion time 

2.Compre

ssion time 

1.Compre

ssion time 

2.Compre

ssion time 

1.Compre

ssion time 

2.Compre

ssion time 

1.Compre

ssion time 

2.Compre

ssion time 

Huffman+LZW 313 49 187 14 1390 192 2492 514 

Huffman+BWT 313 1696 187 318 1390 17617 2492 48597 

Huffman+Deflate 313 37 187 12 1390 31 2492 132 

LZW+Huffman 157 333 78 115 267 459 802 2994 

LZW+BWT 157 1796 78 220 267 1897 802 67963 

LZW+Deflate 157 22 78 11 267 32 802 211 

BWT+Huffman 4478 230 446 126 29540 115 40845 541 

BWT+LZW 4478 47 446 7 29540 16 40845 120 

BWT+Deflate 4478 23 446 16 29540 12 40845 48 

Deflate+Huffman 120 348 86 110 98 242 198 1108 

Deflate+BWT 120 1789 86 172 98 496 198 13240 

Deflate+LZW 120 59 86 6 98 17 198 297 
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Table 6 shows the binary compression times in 

milliseconds. In general, the Deflate-LZW binary 

compression algorithm performs the best in terms of 

binary compression times. If we look at the 

compression ratios, we can see that this has an 

inverse ratio. If we look at the BWT-Deflate binary 

compression algorithm, we can see that it has the 

highest compression time. From this we can 

conclude the following. The more compression, the 

more time it will take. Another aspect of 

compression time that we should not ignore is the 

type of data set.  Text, numeric or text and numeric 

data also have different compression times. 

 

As can be seen from Table 4 and Table 5, ranking in 

binary compression makes a big difference in both 

compression ratio and compression time. This is 

clearly seen in the experimental study. In general, the 

most successful result is obtained when BWT-

Deflate algorithms are used consecutively. 

 

In Table 7, the results of the study are tabulated in 

comparison with other studies in the literature.

 

Table 7. Similar Studies in the Literature 

Study Name Algorithm Used Compression 

Ratio 

Hasan, 2011 [3] Huffman+LZW 3.25 

Hasan, 2011 [3] LZH 2.55 

Rahman and Hamada, 2020 [7] Proposed Method 1.88 

Barua et al, 2017 [8] MLZW 1.33 

Fruchtman et al, 2023 [9] BWT+RLE 2.48 

Amusa et al, 2022 [10] Hybrid Sym6- Huffman coding 1.70 

Gupta et al., 2022 [11] Compressed wavelet tree 4.65 

Wijaya et al., 2022 [12] Unary Codes Algorithm 2.64 

Kumar and Chatuverdi, 2021 [13] RLE 2.53 

Rahman and Hamada 2021 [14] Bzip2 2.91 

Sarker and Rahman 2021 [15] Proposed Method 1.49 

Iversen, 2020 [16] ASCII Compression Module+GZİP 3.00 

Ignatoski at al., 2020 [1] LZW 3.33 

Ibrahim and Gbolagade, 2023 [17] Huffman+CRT(Chinese Remainder Theorem) 1.56 

Reza et al., 2019 [18] Huffman 2.30 

Bulut, 2016 [19] Huffman 2.94 

Rincy and Rajesh, 2019 [20] LZW 4.23 

Horspool and Cormack, 1992 [21] UNIX Compress 1.80 

This study Pi Dataset BWT+Deflate 2.26 

This study Alice Dataset BWT+Deflate 3.28 

This study List Dataset BWT+Deflate 4.75 

This study Log Dataset BWT+Deflate 57.36 
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Table 7 shows the success rates of similar studies in 

the literature and which algorithm is more 

successful. It is seen that the study is more successful 

than other studies. 

 

4. Conclusion and Suggestions 

 

In this experimental study, compression was 

performed on single and consecutive text files. In 

general, a certain amount of compression was 

achieved for all data sets and for all algorithms used. 

In the single compression process, the best results 

were obtained on the log data set. In this data set, it 

was observed that the Deflate algorithm achieved 

96% data compression. One of the most successful 

results in terms of compression speed was achieved 

by compressing the log data set with the Deflate 

algorithm. The fact that the log data set is more 

successful than other data sets is due to the high 

similarity rate in the data set. For this reason, the 

Deflate algorithm was more successful than other 

algorithms in compressing log files. 

 

Not all algorithms were successful in the dual, i.e. 

sequential compression process. Huffman-BWT, 

BWT-Huffman, Huffman-Deflate and BWT-Deflate 

algorithm pairs successfully compressed all data sets. 

The most successful result was obtained in BWT-

Deflate dual compression. In the log data set, this 

success was achieved with a compression factor of 

57.36. If we had performed the compression 

algorithm as Deflate-BWT in the log data set, this 

ratio would have been 29.21. The reason for 

achieving a higher compression ratio is that the 

blocks created by the BWT algorithm as a result of 

compression can be recompressed with the Deflate 

algorithm, which uses the tree structure. Therefore, it 

is very important which algorithm to use first in 

compression. Existing compression algorithms may 

have different sensitivity levels to different types of 

text data (e.g. news, articles, academic texts, poems, 

etc.). Thereby, we aim to perform sensitivity 

analyses to examine how compression performance 

varies according to the type of text. The development 

of compression algorithms optimized for specific 

types of texts is being considered. 
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