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ABSTRACT 
 

In this study, a novel algorithm to estimate the optimum value of the fuselage drag coefficient is designed by integrating 
the artificial neural network (ANN) which is an artificial intelligent method into the algorithm of simultaneous 
perturbation stochastic approximation (SPSA) which is a fast method. SPSA converges to the optimum value for 
solution very fast. However using SPSA alone requires a function of problem to estimate the optimum solution. On 
the other hand, ANN is able to estimate the solutions for the problem without need of its any objective function. 
However ANN needs a certain data set to be effectively trained. Also, the best ANN architecture which accomplish 
with different data sets of problem may alter. Thus, ANN architecture alone is not adequate for estimating the best 
result for each different data set. The main target of this study is making SPSA able to be applicable for the problem 
that has not any objective function by using training capability of ANN. For this purpose, initially, ANN is trained by 
the data of fuselage drag coefficient obtained by previous experimental results conducted in wind tunnel and varies 
depending on the geometry of fuselage. Thus, ANN becomes capable to estimate the fuselage drag coefficient for each 
parameter values of the fuselage shape. Therefore, ANN estimates the fuselage drag coefficient with respect to inputs 
without the requirement of any experimental computations. Note that ANN does not estimate the optimum value as 
output but estimates the output regarding to the inputs. The ANN is integrated into the SPSA to fulfill the need of cost 
function for SPSA. More clearly, the new algorithm evaluates ANN to estimate the fuselage drag coefficient with 
respect to inputs while evaluates SPSA to estimate the optimum inputs for the optimum fuselage drag coefficient. 
Through integrating the trained ANN into the SPSA, an effective and novel algorithm estimates the fuselage drag 
coefficient fast and accurately without defining an objective function is improved. 
 
Keywords: Aerial Vehicle, Fuselage Drag Coefficient, Artificial Neural Network, Simultaneous Perturbation 
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En uygun gövde sürükleme katsayısı hesabı için yeni bir öğrenme algoritması 

 
ÖZ 

 
Bu çalışmada gövde sürükleme katsayısının en uygun değerini hesaplamak için yapay zeki bir yöntem olan Yapay 
Sinir Ağları (YSA), hızlı bir yöntem olan Eşzamanlı Dağılım Rassal Yaklaşım (EDRY) algoritması içerisine 
yerleştirilerek yeni bir algoritma tasarlanmıştır. EDRY en iyi çözüme oldukça hızlı bir şekilde yakınsayabilmektedir. 
Ancak tek başına EDRY çözümü bulabilmek için problemin bir fonksiyonuna ihtiyaç duymaktadır. YSA ise problemin 
bir fonksiyonu olmaksızın da çözümü bulabilmektedir. Ancak YSA’nın iyi eğitilebilmesi için belirli bir veri kümesine 
ihtiyaç vardır. Ayrıca problemin değişen her veri kümesi için en iyi sonucu veren uygun ağ yapısı ve parametreleri de 
değişebilmektedir. Bu nedenle YSA yalnız başına kullanılarak tek bir ağ yapısı ile her farklı veri kümesi için en iyi 
sonuca ulaşmak mümkün değildir. Bu çalışmanın temel amacı YSA’nın öğrenme kabiliyetinden faydalanarak 
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EDRY’yi bir amaç fonksiyonu olmayan problemler için de kullanılabilir hale getirmektir. Bu amaçla, öncelikle daha 
önce rüzgâr tünelinde yapılmış deneysel çalışmalar neticesinde elde edilen gövde şekillerine göre gövde sürükleme 
katsayısının değişimi verileri ile YSA eğitilmiştir. Böylece YSA şekil değerlerine göre gövde sürükleme katsayısını 
kendisi tahmin edebilecek yeteneğe gelmiştir. YSA artık herhangi bir deneysel hesaplamaya ihtiyaç duymadan giriş 
değerlerine göre gövde sürükleme katsayısını tahmin edebilmektedir. Fakat burada YSA ile en uygun değer değil, her 
giriş değeri için bir çıkış değeri bulunmaktadır. EDRY’nin her adımda hesaplamaya ihtiyaç duyduğu maliyet 
fonksiyonu bu şekilde YSA, EDRY’ye gömülerek giderilmiştir. Yani burada tasarlanan yeni algoritma YSA’yı hangi 
durumlarda gövde sürükleme katsayısının ne olacağını bulmak için kullanırken EDRY’yi de en iyi katsayının oluşması 
için en uygun durumların ne olduğunu bulmak için kullanmaktadır. Bu şekilde eğitilen YSA, EDRY’ye gömülerek, 
gövde sürükleme katsayısını bir bağıntıya ihtiyaç olmaksızın hızlı ve doğru bir şekilde hesaplayan, başarılı ve yeni bir 
algoritma geliştirilmiştir. 
 
Anahtar kelimeler: Hava Aracı, Gövde Sürükleme Katsayısı, Yapay Sinir Ağları, Eşzamanlı Dağılım Rassal 
Yaklaşım 
 
 

1. INTRODUCTION 
 
Drag force is very important for aircraft due to not only 
directly affects fuel consumption but also indicates the 
payload of aircraft that includes weather instruments. In 
order to minimize drag force, various researches are 
conducted. In most of these researches, the optimum 
value of the aspects of the fuselage such as the shape of 
tail and nose are estimated, convenient materials 
described to reduce the aerial vehicle surface roughness, 
and aerodynamic shape is optimized [1]. Additionally, in 
order to reduce the drag forces, placing vortex generators 
on the surface of aircraft that accelerate the transition into 
turbulent flow is studied [2]. When designing an aircraft, 
it is crucial to decide the most appropriate shape of 
aircraft due to its significant effect of the drag force. 
 
Experimentally, by placing the fuselage in the wind 
tunnel and using a force measuring system, it is possible 
to calculate the aerodynamic forces that effect on the 
fuselage. However it is very expensive to calculate the 
drag coefficient of each designed fuselage separately by 
examining them in the wind tunnels. Moreover it is not 
possible to compute the drag coefficient analytically due 
to its non-linear complex components. Therefore, 
stochastic approximation based estimation methods are 
needed to be implemented to estimate fuselage drag 
coefficient. 
 

 

Figure 1. A wind tunnel that provides to calculate the aerodynamic 
forces 

 
Simultaneous Perturbation Stochastic Approximation 
(SPSA), one of stochastic approximation algorithm, uses 
only two observations at each iteration to estimate the 
solution among random directions for the computation of 
the gradient. That makes SPSA very attractive and fast 
optimizer [3]. When compared to computationally 
expensive algorithms such as fast simulated annealing 
and genetic algorithms, numerical studies showed that 
SPSA is more efficient in solving various optimization 
problems [4]. Also, SPSA is successful in solving 
constrained optimization problems [5] as seen in this 
study. In addition, as a stochastic method, SPSA includes 
an inherent randomness that protects it to stick around a 
local minimum and provides to converge to the global 
minimum of the best solution just in a few iterations. 
 
Artificial neural networks [6] are using in solving various 
engineering problems because of their many advantages 
such as capability of learning, easily applicable to 
different problems, capacity for generalization, 
requirement of less data compared to the traditional 
estimation techniques, ability to work fast because of 
parallel structures and flexibility in design. In recent 
years, ANN is also utilized in solving problems in 
aeronautics [7], [8]. 
 
In previous studies, a few researchers [9], [10] are 
combined ANN with SPSA, and they used SPSA as a 
training method of ANN. However, in this paper, SPSA 
is not applied to train the ANN. On the contrary, ANN is 
mounted in SPSA algorithm to make SPSA able to 
estimate the optimum value of fuselage drag coefficient 
without any equation of objective function. The data of 
fuselage drag coefficient obtained from experimentally 
studies are used to train ANN to be capable of estimating 
the fuselage drag coefficient with respect to new 
parameter values of fuselage shape. Trained ANN is 
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integrated into the SPSA, and so a novel stochastic 
algorithm is improved to estimate the optimum fuselage 
drag coefficient value without any equation of objective 
function. Also, while it is possible to evaluate only the 
ANN to estimate the optimum fuselage drag coefficient 
value, with the novel algorithm in this study, it is aimed 
to make SPSA able to estimate the optimum fuselage 
drag coefficient value without using any numerical 
computation of cost function. Additionally, using a single 
ANN architecture may not deal with any data set of the 
problem. On the other hand, valuating only ANN instead 
of SPSA requires designing new ANNs for our each 
different experimental data set which is not logical. 
 

2. FUSELAGE DRAG COEFFICIENT OF AN 
AERIAL VEHICLE 

 
An object located in air flow is influenced by the 
aerodynamic forces. The forces acting at the vertical axis 
are defined as weight and lift, and thrust and drag acting 
at the horizontal axis. Drag force is defined as the 
resistance against air flow produced by the object in the 
air. This force is expressed by: 

2

2
DD C V S


  (1) 

where in 
DC  is the dimensionless drag coefficient,   is 

air density, V  is airspeed of the freestream, and  S  
represents straight wing surface. The air flow speed, 
angle of attack, wing shape, density and compressibility 
of the air affect the aerodynamic drag force D  directly. 
The components that affecting dimensionless drag 

coefficient, DC , are fuselage, wings, and vertical and 

horizontal control surfaces [11]. 
 
It is possible to measure the aerodynamic forces acting 
on aircraft numerically and experimentally. Numerically, 
the aerodynamic forces can be calculated as 2D and 3D 
for different angles of attack and speed values by a 
numerical analysis program. Experimentally, the 
aerodynamic forces acting on an air vehicle or wing 
profile placed in a wind tunnel can be calculated by a 
force measuring system. In experimental studies [12], 
[13] carried out to estimate the fuselage drag coefficient 

DfC  was realized at high Reynolds numbers 

approximately as: 

2
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 (2) 

where fl  is length of fuselage and 
fd  is frontal average 

diameter of fuselage. 
 
 

3. ARTIFICIAL NEURAL NETWORK 
INTEGRATED SIMULTANEOUS 
PERTURBATION STOCHASTIC 

APPROXIMATION 
 

3.1. Model of Simultaneous Perturbation 
Stochastic Approximation 
 
In classical SPSA, let 500a   denote the vector 

includes optimization variables ( fl  and 
fd  data for this 

paper) and [ ]kx  is the estimate of x  at the kth iteration, 

then 

[ 1] [ ] [ ]k k k kx x a g    (3) 

where ka  is a decreasing sequence of positive numbers, 

and [ ]kg  is the estimate of the objective’s gradient at 

[ ]kx , calculated using a simultaneous perturbation as 

introduced above. Let [ ]
p

k R   be a vector of p  

mutually independent mean-zero random variables 

 [ ]1 [ ]2 [ ]...k k k p    satisfying given conditions [14], 

[15]. Then, 

[ ]

[ ]1 [ ]

...
2 2

T

k

k k k k p

g
d d
   

      
  

   

 (4) 

where 
  and 

  are the estimations of the objective 

evaluated at 
[ ] [ ]k k kx d   and 

[ ] [ ]k k kx d  , 

respectively. In this study, a novel adaptive SPSA that 
deal with the constraints which means optimization 
variables are required to be between lower and upper 

limits (i.e., 
min maxi i ix x x  , 5  percent for this article) 

is developed to solve related problems. All the perturbed 

vector elements, 
[ ] [ ]k k kx d   and 

[ ] [ ]k k kx d  , must 

also be between the certain lower and upper limits. With 
these requirements and the guidelines of [3], [16] for the 

selection of sequences 
kd  and 

ka , 
kd is chosen as 

     min / ,0.95min min , min
i ik l u

i
d d k    (5) 

where l  and u  are vectors whose components are 

[ ] min [ ]( ) /
ik i k ix x   for each positive, [ ]k i  and 

max [ ] [ ]( ) /
i k i k ix x   for each negative [ ]k i , 

respectively. Similarly, 
ka  is selected as  

  min / ( ) ,0.95min min( ),min( )
i ik l u

i
a a S k      (6) 

Where l  and u  are vectors whose components are 

[ ] min [ ]) /
ik i k ix x g  for each positive [ ]k ig  and 
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max [ ] [ ]( ) /
i k i k ix x g  for each negative [ ]k ig , 

respectively. 
 

3.2. Artificial Neural Network Architecture 
 
In this paper, the multi layered perceptron (MLP) is 
utilized as ANN architectures because of their simple 
structure [17]. After several trials, the most appropriate 
network architecture was found as two hidden layers with 
six and five for first and second hidden layers, 
respectively. Two inputs are defined. The first one is the 
length of aerial vehicle fuselage, (

fl ), and the second one 

is frontal average diameter of fuselage, (
fd ). ANN 

estimates the output that is the fuselage drag coefficient 
while obeying constraints (variance of 5  percent) on 
the inputs. By the evaluation of (2), input and output data 

sets are conducted for 100 different 
fl , 

fd  and 
DfC  

values. Totally, 100 training and testing data are obtained 
by using (2) which is an approximation of experimental 
results. Then, the data set is divided as the training: 
testing ratio that is 80: 20. Because of its fast learning and 
good convergence capabilities, Levenberg-Marquardt 
[18], [19] algorithm is underlined to train the MLP. The 
transfer function is experimentally selected as the linear 
transfer functions for the input and output layers and the 
hyperbolic tangent sigmoid functions for the hidden 
layers to obtain better testing performance. In order to 
design the most suitable network architecture the number 
of the neurons for the hidden layers is iterated with 
combinations of 2–10 neurons in each layer. The 
iterations are performed to minimize the mean square 
error function. The best results are the combination of 
double hidden layers including 6 and 5 neurons, 
respectively. The epoch number is selected as 300 since 
any improvement is not seen above this value. After 
training and testing the ANN, observed results are 
proposed in Table 1. 

 
Table 1. ANN results after training and testing 

 
 
 
 
 
 
 
 
Although (2) is evaluated to obtain data sets to train the 
ANN, note that using this equation is not necessary or 
compulsory. The ANN can be trained by experimental 
results. Actually, our purpose for using (2) is that it is 
already defined after experimental measurements. (2) is 
just used as a preliminary study. Here it is important to 
note that (2) is just an approximation defined from 
experiments. The fuselage drag coefficient data is 
extracted from (2) for the initial design of our novel 
algorithm. However, after using (2) for this initial design, 
the algorithm will be capable of and applicable for our 
experimental data which is conducting in our wind tunnel 
laboratory. Much bigger data sets conducting at our wind 
tunnel laboratory will be used in future studies of this 
algorithm. Also note that, the decided ANN architecture 
and parameters are compatible for different sized and 
parameterized fuselage drag coefficient. More clearly, 
parameters such as number of hidden layers and epoch 
are selected to be capable of more complex fuselage drag 
coefficient data sets.  Additionally, the values of ANN 
parameters that not given in this section are selected as 
their default values.  
 
 
 
 

3.3. Proposed Algorithm 
 
Normally, a classical SPSA algorithm estimates the 
optimum value of cost function by using the computation 
of two neighbors of cost function. However, our 
algorithm estimates the two neighbors via ANN 
regardless of computation. Thus, our algorithm does not 
need any equation of cost function. All part of this 
algorithm is established by operating MATLAB. 
 
The following novel algorithm is generated by using the 
ANN integrated SPSA that is improved by handling with 
inequality constraints on the design parameters. 
The main purpose of this algorithm is to estimate the 
optimum fuselage drag coefficient with respect to the 
length of aerial vehicle fuselage and frontal average 
diameter of fuselage. The other parameters of SPSA such 

as d , a ,  ,  , S  are chosen using guidelines provided 
in [3], [16]. 
Step 1. Train ANN. 

Step 2. Set initial values d , a ,  ,  , S  and 1k   and 

[ ]kx x . 

Step 3. Estimate the objective value by using trained 
ANN within the constrains for 

[ ]kx  input parameter  

Training 
Algorithm 

Neurons in 
Hidden 
Layers 

Transfer 
Function 

for Hidden 
Layers 

Epoch 
Training 

Percentage 
Testing 

Percentage 

LM 6-5 Sigmoid 300 92,1 90,2 

T. Oktay, H. Çelik, M. Uzun / A novel learning algorithm to estimate the optimum fuselage drag coefficient

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 2017, 63-68 66



Step 4. Perturb 
[ ]kx  to 

[ ] [ ]k k kx d   and 
[ ] [ ]k k kx d  , 

and estimate new objective values for these perturbed 
values by using ANN to obtain 

  and 
 , respectively. 

Then, compute the approximate gradient, [ ]kg , using (4) 

with kd  given by (5). 

Step 5. Compute ka  given by (6). If 
[ ]k ka g x  

(where x  is the minimum allowed variation of x ) or 

1k   is greater than the maximum number of iterations 

allowed, exit, else calculate the next estimate of 
[ 1]kx 

 

using (3), set 1k k  , and return to step 2. 

Step 6. Show estimation results. 
 
Although the SPSA is a fast converging optimization 
method, it has not the ability of converging to the 
optimum fuselage drag coefficient value without the 
neighbor values of the optimum. Therefore, the cost 
functions are supposed to be computed for SPSA. 
However, in this article, regardless of computing the cost 
functions for each evaluation, ANN is applied to estimate 
them for SPSA. This means that ANN estimates the new 
fuselage drag coefficients from given length and 
diameter of fuselage for SPSA estimating the optimum 
fuselage drag coefficient with respect to the optimum 
length and diameter of fuselage.  
 

4. RESULTS 
 
Using SPSA parameters, 5S  , 0.602  , 500a  , 

20d   and 0.101  , as depicted in Figure 2, the 

optimum value of fuselage drag coefficient, 
DfC , is 

achieved by very fast convergence and accuracy of the 
algorithm which means the proposed ANN integrated 
SPSA algorithm is capable for estimating the fuselage 
drag coefficient effectively and properly. 

 

Figure 2. Optimization of fuselage drag coefficient by proposed 
algorithm. 

 
Although the optimum value of fuselage drag coefficient 

is estimated using only two variables (
fl  and 

fd ) in this 

paper, it is seen that the proposed algorithm has the 

capacity of solving optimization problems such as drag 
estimation using various variables at the same time due 
to its two-stepped evolutionary structure. The algorithm 
is very effective in decreasing the value of the objective 
function in the first several iterations. Also it is very fast 
as it is not computing objective function at the each step. 
After training ANN one time, the cost function can be 
estimated by ANN for each step. 
 

5. CONCLUSIONS 
 
In this article, a novel ANN integrated SPSA algorithm 
is proposed. The advantage of ANN which is an artificial 
intelligent technique and SPSA that has fast convergence 
capability are combined to estimate fuselage drag 
coefficient which takes a significant part in aerial vehicle 
design. Initially, the data set for training and testing ANN 
is obtained using the results of previous experimental 
studies in wind tunnels. ANN is trained using the data 
includes experimental results of fuselage drag coefficient 
with respect to fuselage shape in order to learn to estimate 
the new fuselage drag coefficients from given length and 
diameter of fuselage. Finally, trained ANN is integrated 
into classical SPSA to generate adaptive SPSA which is 
able to estimate the objective by two observations for 
approximations of each component. With ANN, it is 
possible to use experimental results instead of defining 
any equations by them. 
 
Although the proposed algorithm is evaluated to estimate 
the optimum values of fuselage drag coefficient using 
only two design parameter, trials are proven that our 
algorithm is capable of estimating the objective using 
various design parameters at same time as well as solving 
optimization problems that include various variables, 
accurately and fast. Using ANN provides the algorithm 
to work without an equation of cost function. Thus, it is 
decided to implement this algorithm to solve more 
complex optimization problems in further studies. 
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