Cumhuriyet Science Journal

csj.cumhuriyet.edu.tr

Some Identities with Special Numbers

Neşe Ömür 1,a, Kübra Nur Südemen 1,b, Sibel Koparal 2,c,*
${ }^{1}$ Department of Mathematics, Faculty of Sciences and Arts, Kocaeli University, Kocaeli, Türkiye.
${ }^{2}$ Department of Mathematics, Faculty of Sciences and Arts, Bursa Uludağ University, Bursa, Türkiye.
*Corresponding author

Research Article

History

Received: 14/12/2021
Accepted: 05/12/2022
Copyright

Abstract

In this paper, we derive new identities which are related to some special numbers and generalized harmonic numbers $H_{n}(\alpha)$ by using the argument of the generating function given in [3] and comparing the coefficients of the generating functions. Also considering q-numbers involving q-Changhee numbers $C h_{n q}$ and q-Daehee numbers $D_{n q}$, some sums are given. For example, for any positive integer n and any positive real number $q>1$, when $\alpha=\frac{q}{q-1}$, we have the relationship between generalized harmonic numbers and q-Daehee numbers.

Keywords: Harmonic numbers, Cauchy numbers of order r, q - Changhee number, Generating functions

Introduction

In [1], for any $\alpha \in \mathbb{R}^{+}$and $n \in \mathbb{N}$, the generalized harmonic numbers $H_{n}(\alpha)$ are defined by
$H_{0}(\alpha)=0$ and $H_{n}(\alpha)=\sum_{i=1}^{n} \frac{1}{i \alpha^{i}}$ for $n \geq 1$.
For $\alpha=1$, the usual harmonic numbers are $H_{n}(1)=$ H_{n} and the generating function of $H_{n}(\alpha)$ is

$$
\begin{equation*}
\sum_{n=1}^{\infty} H_{n}(\alpha) t^{n}=-\frac{\ln \left(1-\frac{t}{\alpha}\right)}{1-t} \tag{2}
\end{equation*}
$$

The works of Cauchy numbers of order $\mathrm{r} C_{n}^{r}$, Daehee numbers of order $r D_{n}^{r}, q$ - Changhee numbers $C h_{n, q}$, q - Daehee numbers $D_{n, q}$ are given. Their combinatorial identities and relations have received much attention [27].

The Cauchy numbers of order r, denoted by C_{n}^{r}, are defined by the generating function
$\sum_{n=0}^{\infty} C_{n}^{r} \frac{t^{n}}{n!}=\left(\frac{t}{\ln (1+t)}\right)^{r} \quad$ [13]

For $r=1, C_{n}^{1}=C_{n}$ are called Cauchy numbers.
The Daehee numbers of order r, denoted by D_{n}^{r}, are defined by the generating function
$\sum_{n=0}^{\infty} D_{n}^{r} \frac{t^{n}}{n!}=\left(\frac{\ln (1+t)}{t}\right)^{r} \quad[11-13]$.

For $r=1, D_{n}^{1}=D_{n}$ are called Daehee numbers.
The Stirling numbers of the first kind $S_{1}(n, k)$ are defined by
$x^{n}=\sum_{k=0}^{n} S_{1}(n, k) x^{k}$,
and the Stirling numbers of the second kind $S_{2}(n, k)$ are defined by
$x^{n}=\sum_{k=0}^{n} S_{2}(n, k) x^{\underline{k}}$,
where $x \underline{n}$ stands for the falling factorial defined by $x^{0}=1$ and $x \underline{n}=x(x-1) \cdots(x-n+1)$. It is known that $S_{1}(n, k)=0$ for $k>n$ and $S_{1}(n, n)=1$.

The generating function of the Stirling numbers of the first kind $S_{1}(n, k)$ is given by
$\sum_{n=k}^{\infty} S_{1}(n, k) \frac{t^{n}}{n!}=\frac{(\ln (1+t))^{k}}{k!}, k \geq 0$,
and the generating function of the Stirling numbers of the second kind $S_{2}(n, k)$ is given by
$\sum_{n=k}^{\infty} S_{2}(n, k) \frac{t^{n}}{n!}=\frac{\left(e^{t}-1\right)^{k}}{k!}, k \geq 0 \quad[10]$.

Let $\left|S_{1}(n, k)\right|$ be the unsigned Stirling numbers of the first kind given by
$x^{\bar{n}}=\sum_{k=0}^{n}\left|S_{1}(n, k)\right| x^{k}$,
where $x^{\bar{n}}$ stands for the rising factorial defined by $x^{\overline{0}}=1$ and $x^{\bar{n}}=x(x+1) \cdots(x+n-1)$. It is clear that $S_{1}(n, k)=(-1)^{n-k}\left|S_{1}(n, k)\right|[5]$.

The generating function of $\left|S_{1}(n, k)\right|$ is given by
$\sum_{n=k}^{\infty}\left|S_{1}(n, k)\right| \frac{t^{n}}{n!}=\frac{(-\ln (1-t))^{k}}{k!}$.
The numbers associated with $S_{1}(n, k)$ are given as follows: For $n<k$,
$\rho(n, k)=\frac{\left|S_{1}(k, k-n)\right|}{\binom{k-1}{n}}$,
and for $n \geq k$,
$\rho(n, k)=n!\sigma_{n}(k)$,
where $\sigma_{n}(x)$ is the Stirling polynomial [5]. The generating function of these numbers is
$\sum_{n=0}^{\infty} \rho(n, k) \frac{t^{n}}{n!}=\left(\frac{t}{1-e^{-t}}\right)^{k}$.
It is clearly that $\rho(n, k)=B_{n}^{(k)}(k)$ is known as the classical Bernoulli polynomials of order k [9].

Let p be a fixed odd prime number. $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} will denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of the algebraic closure of \mathbb{Q}_{p}. The p - adic norm $|.|_{p}$ is normalized by $|p|_{p}=\frac{1}{p}$. Let q be an indeterminate in \mathbb{C}_{p} such that $|1-q|_{p}<p^{\frac{-1}{p-1}}$. The $q-$ extension of number x is defined as $[x]_{q}=\frac{1-q^{x}}{1-q}$. It is clear that $\lim _{q \rightarrow 1}[x]_{q}=x$.

The q - Changhee polynomials $C h_{n, q}(x)[4]$ are defined by the generating function
$\sum_{n=0}^{\infty} C h_{n, q}(x) \frac{t^{n}}{n!}=\frac{1+q}{1+q(1+t)}(1+t)^{x}$.
When $x=0, C h_{n, q}=C h_{n, q}(0)$ are called $q-$ Changhee numbers and when $q=1, C h_{n}=C h_{n, 1}$ (0) are called Changhee numbers.

The q - Daehee polynomials $D_{n, q}(x)$ [7] are defined by the generating function
$\sum_{n=0}^{\infty} D_{n, q}(x) \frac{t^{n}}{n!}=\frac{1-q+\frac{1-q}{\ln q} \ln (1+t)}{1-q-q t}(1+t)^{x}$. (9)

In the special case, when $q=1, D_{n}(x)=D_{n, 1}(x)$ are called Daehee polynomials and when $x=0, D_{n, q}=$ $D_{n, q}(0)$ are called q - Daehee numbers.

Let $f(t)$ be a generating function (a power series) for a sequence $\left\{A_{n}\right\}$, the sequence of coefficients of the expansion of $f(t)^{r}$ is defined by $A_{n}^{(r)}$, where r is a fixed real nonzero number:
$f(t)=\sum_{n=0}^{\infty} A_{n} \frac{t^{n}}{n!}, \quad f(t)^{r}=\sum_{n=0}^{\infty} A_{n}^{(r)} \frac{t^{n}}{n!}$
absolutely convergent in a neighborhood of the origin.
Suppose $f(t)$ has a subsidiary generating function $g(t)$ so that
$f(t)=(1+g(t))^{-1}, \quad|g(t)|<1 \quad$ and $\quad g(t)^{n}$
$=\sum_{m=M(n)}^{\infty} a_{m}^{(n)} \frac{t^{m}}{m!}$,
where $M(n)$ is a non-negative integer. Note that $\mathrm{g}(t)=\sum_{m=0}^{\infty} a_{m} \frac{t^{m}}{m!}$ [8].
\ln [2], let
$a(m, k)=(-1)^{k} \sum_{n=k}^{M^{-1}(m)} \frac{1}{n!} S_{1}(n, k) a_{m}^{(n)}$,
where $M^{-1}(m)$ indicates the inverse function of M (in most cases, it is simply $M^{-1}(m)=m$). Then
$A_{m}^{(r)}=\sum_{k=1}^{M^{-1}(m)} a(m, k) r^{k}, m \geq 1$.
Also Liu gave the sum as follows:
$A_{m}^{(r)}=\sum_{i=0}^{M^{-1}(m)}\binom{-r}{i} a_{m}^{(i)}$.
In [3], Kim et. al. gave obvious formula for coefficients of the expansion of given generating function, when that function has a suitable form, the coefficients can be represented by the Daehee numbers of order r and the Changhee numbers of order r. By the classical method of comparing the coefficients of the generating function, some identities related to these numbers were shown. For example,
$D_{n}^{r}=\sum_{m=0}^{n} B_{m}^{(r)} S_{1}(n, m)$,
where $B_{n}^{(r)}$ are the Bernoulli numbers of order r.
In this paper, we derive new identities which are related to some special numbers by using the argument of the generating function given in [2]. For example, for any positive integer n and any positive real number $q \neq 1$,
$\sum_{i=0}^{n-1}\left(\frac{1-q}{q}\right)^{i+1} \frac{D_{i}}{i!}=\ln q\left(D_{n, q} \frac{(1-q)^{n}}{n!q^{n}}-1\right)$,
and for any positive integers n and r,
$C_{n}^{r}=\sum_{m=0}^{n} \sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\binom{r+m-1}{m} D_{n}^{k}$.

Some identities with special numbers

In this section, we will give some identities involving generalized harmonic numbers, Cauchy numbers of order r, q-Changhee numbers and q-Daehee numbers.

Theorem 1. For any positive integer n and any positive real number $q>1$, we have
$H_{n}\left(\frac{q}{q-1}\right)=\ln q\left(1-D_{n, q} \frac{(1-q)^{n}}{n!q^{n}}\right)$.
Proof. From (2) and (9), we have
$\sum_{n=0}^{\infty}(-1)^{n} D_{n, q} \frac{t^{n}}{n!}=\frac{1-q}{1-q+q t}+\frac{1-q}{\ln q} \frac{1-t}{1-q+q t} \frac{\ln (1-t)}{1-t}$
$=\frac{1-q}{1-q+q t}-\frac{1-q}{\ln q} \frac{1-t}{1-q+q t} \sum_{k=0}^{\infty} H_{k} t^{k}$
$=\frac{1-q}{1-q+q t}+\frac{1}{\ln q} \frac{1-q}{1-q+q t}\left(\sum_{k=0}^{\infty} H_{k} t^{k+1}-\sum_{k=0}^{\infty} H_{k} t^{k}\right)$
and by $\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x^{\prime}}$, equals to
$\sum_{n=0}^{\infty}(-1)^{n} \frac{q^{n}}{(1-q)^{n}} t^{n}+\frac{1}{\ln q} \sum_{n=0}^{\infty}(-1)^{n} \frac{q^{n}}{(1-q)^{n}} t^{n}\left(\sum_{k=1}^{\infty} H_{k-1} t^{k}-\sum_{k=0}^{\infty} H_{k} t^{k}\right)$
$=\sum_{n=0}^{\infty}(-1)^{n} \frac{q^{n}}{(1-q)^{n}} t^{n}-\frac{1}{\ln q} \sum_{n=0}^{\infty}(-1)^{n} \frac{q^{n}}{(1-q)^{n}} t^{n} \sum_{k=0}^{\infty} H_{k} t^{k}+\frac{1}{\ln q} \sum_{n=0}^{\infty}(-1)^{n} \frac{q^{n}}{(1-q)^{n}} t^{n} \sum_{k=1}^{\infty} H_{k-1} t^{k}$
and by some combinatoric operations,
$\sum_{n=0}^{\infty}(-1)^{n} D_{n, q} \frac{t^{n}}{n!}$
$=\sum_{n=0}^{\infty}(-1)^{n} \frac{q^{n}}{(1-q)^{n}} t^{n}-\frac{1}{\ln q} \sum_{n=0}^{\infty} \sum_{k=0}^{n}(-1)^{k} \frac{q^{k}}{(1-q)^{k}} H_{n-k} t^{n}+\frac{1}{\ln q} \sum_{n=1}^{\infty} \sum_{k=0}^{n-1}(-1)^{k} \frac{q^{k}}{(1-q)^{k}} H_{n-k-1} t^{n}$
$=\sum_{n=0}^{\infty}\left((-1)^{n} \frac{q^{n}}{(1-q)^{n}}+\frac{1}{\ln q} \sum_{k=0}^{n-1}(-1)^{k+1} \frac{q^{k}}{(1-q)^{k}} \frac{1}{n-k}\right) t^{n}$.

Hence, by comparing the coefficients of t^{n} above gives
$\frac{D_{n, q}}{n!}=\frac{q^{n}}{(1-q)^{n}}+\frac{1}{\ln q} \sum_{k=0}^{n-1}(-1)^{n+k+1} \frac{q^{k}}{(1-q)^{k}} \frac{1}{n-k}$.
Thus, from (1), the desired result is obtained.
Corollary 1. For any positive integer n and any positive real number $q \neq 1$, we have
$\sum_{i=0}^{n-1}\left(\frac{1-q}{q}\right)^{i+1} \frac{D_{i}}{i!}=\ln q\left(D_{n, q} \frac{(1-q)^{n}}{n!q^{n}}-1\right)$.

Proof. From Theorem 1, we obtain
$\ln q\left(1-D_{n, q} \frac{(1-q)^{n}}{n!q^{n}}\right)=\sum_{i=1}^{n} \frac{(-1)^{i}(1-q)^{i}}{i q^{i}}=-\sum_{i=0}^{n-1} \frac{(-1)^{i}(1-q)^{i+1}}{q^{i+1}} \frac{i!}{(i+1)!}$,
and by Daehee number $D_{n}=\frac{(-1)^{n}}{n+1} n!$,
$\ln q\left(D_{n, q} \frac{(1-q)^{n}}{n!q^{n}}-1\right)=\sum_{i=0}^{n-1}\left(\frac{1-q}{q}\right)^{i+1} \frac{D_{i}}{i!}$,
as claimed.
Theorem 2. For any positive integers n and r, we have

$$
\rho(n, r)=\sum_{i=0}^{n} \sum_{m=0}^{n} \sum_{k=0}^{i}(-1)^{k+n}\binom{r+i-1}{i}\binom{i}{k} S_{2}(n, m) C_{m}^{k}
$$

Proof. For $f(t)=\frac{t}{1-e^{-t}}$, by (11) and Binomial theorem, we have

$$
g(t)^{i}=\left(\frac{e^{-t}-1}{\ln \left(1+\left(e^{-t}-1\right)\right)}-1\right)^{i}=\sum_{k=0}^{i}(-1)^{i-k}\binom{i}{k}\left(\frac{e^{-t}-1}{\ln \left(1+\left(e^{-t}-1\right)\right)}\right)^{k} .
$$

From (3) and (6), we have

$$
\begin{aligned}
g(t)^{i} & =\sum_{k=0}^{i}(-1)^{i-k}\binom{i}{k} \sum_{m=0}^{\infty} C_{m}^{k} \frac{\left(e^{-t}-1\right)^{m}}{m!} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{k=0}^{i}(-1)^{i-k+n}\binom{i}{k} C_{m}^{k} S_{2}(n, m) \frac{t^{n}}{n!},
\end{aligned}
$$

and by (11),
$a_{n}^{(i)}=\sum_{m=0}^{n} \sum_{k=0}^{i}(-1)^{i-k+n}\binom{i}{k} C_{m}^{k} S_{2}(n, m)$.
Note that for integers $r \geq 1$ and $j \geq 0$,
$\binom{-r}{j}=(-1)^{j}\binom{r+j-1}{j}$.
Then, by (14), we have
$A_{n}^{(r)}=\sum_{i=0}^{n} \sum_{m=0}^{n} \sum_{k=0}^{i}(-1)^{k+n}\binom{r+i-1}{i}\binom{i}{k} S_{2}(n, m) C_{m}^{k}$.
(7) and (10) give that
$\sum_{n=0}^{\infty} A_{n}^{(r)} \frac{t^{n}}{n!}=\left(\frac{t}{1-e^{-t}}\right)^{r}=\sum_{n=0}^{\infty} \rho(n, r) \frac{t^{n}}{n!}$.
Thus, comparing the coefficients of $\frac{t^{n}}{n!}$, the desired result is obtained.
Theorem 3. For any positive integers n and r, we have
$C_{n}^{r}=\sum_{i=0}^{n} \sum_{k=0}^{i}(-1)^{k}\binom{r+i-1}{i}\binom{i}{k} D_{n}^{k}$.
Proof. We take $f(t)=\frac{t}{\ln (1+t)}$ for using (11). From Binomial theorem and (4), we have

$$
\begin{aligned}
g(t)^{i} & =\left(\frac{\ln (1+t)}{t}-1\right)^{i}=\sum_{k=0}^{i}(-1)^{i-k}\binom{i}{k}\left(\frac{\ln (1+t)}{t}\right)^{k} \\
& =\sum_{k=0}^{i}(-1)^{i-k}\binom{i}{k} \sum_{n=0}^{\infty} D_{n}^{k} \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} \sum_{k=0}^{i}(-1)^{i-k}\binom{i}{k} D_{n}^{k} \frac{t^{n}}{n!},
\end{aligned}
$$

which equals by (11),
$a_{n}^{(i)}=\sum_{k=0}^{i}(-1)^{i-k}\binom{i}{k} D_{n}^{k}$.
From here, by (14) and (15), we obtain that
$A_{n}^{(r)}=\sum_{i=0}^{n} \sum_{k=0}^{i}(-1)^{k}\binom{i}{k}\binom{r+i-1}{i} D_{n}^{k}$,
and from (7) and (10),
$\sum_{n=0}^{\infty} A_{n}^{(r)} \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} C_{n}^{r} \frac{t^{n}}{n!}$.
Thus, we have the proof.
Theorem 4. For any positive integers n and r, we have
$\sum_{i=0}^{n}(-1)^{n} S_{2}(n, i) C_{i}^{r}=\sum_{i=0}^{n} \sum_{k=0}^{i}(-1)^{k}\binom{i}{k}\binom{r+i-1}{i} \rho(n, k)$.
Proof. By (11), we note that
$f(t)=\frac{e^{-t}-1}{\ln \left(1+\left(e^{-t}-1\right)\right)}$ and $g(t)=\frac{t-1+e^{-t}}{1-e^{-t}}$.

From Binomial theorem, (6) and (7) , we have

$$
\begin{aligned}
g(t)^{i} & =\left(\frac{t}{1-e^{-t}}-1\right)^{i}=\sum_{k=0}^{i}(-1)^{i-k}\binom{i}{k}\left(\frac{t}{1-e^{-t}}\right)^{k} \\
& =\sum_{k=0}^{i}(-1)^{i-k}\binom{i}{k} \sum_{n=0}^{\infty} \rho(n, k) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{i}(-1)^{i-k}\binom{i}{k} \rho(n, k) \frac{t^{n}}{n!}
\end{aligned}
$$

and using (11),
$a_{n}^{(i)}=\sum_{k=0}^{i}(-1)^{i-k}\binom{i}{k} \rho(n, k)$.

Hence, (14) and (15) yield that
$A_{n}^{(r)}=\sum_{i=0}^{n} \sum_{k=0}^{i}(-1)^{k}\binom{i}{k}\binom{r+i-1}{i} \rho(n, k)$.
From (3), (6) and (10), we obtain that

$$
\begin{aligned}
\sum_{n=0}^{\infty} A_{n}^{(r)} \frac{t^{n}}{n!} & =f(t)^{r}=\left(\frac{e^{-t}-1}{\ln \left(1+\left(e^{-t}-1\right)\right)}\right)^{r} \\
& =\sum_{i=0}^{\infty} C_{i}^{r} \frac{\left(e^{-t}-1\right)^{i}}{i!}=\sum_{i=0}^{\infty} C_{i}^{r} \sum_{n=i}^{\infty}(-1)^{n} S_{2}(n, i) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \sum_{i=0}^{n}(-1)^{n} S_{2}(n, i) C_{i}^{r} \frac{t^{n}}{n!}
\end{aligned}
$$

Thus, comparing the coefficients of $\frac{t^{n}}{n!}$, we have the proof.
Now, for any positive integers r, we have q - numbers $\binom{n+r-1}{r-1} C h_{n, q}$ given by

$$
\begin{equation*}
\left(\frac{1+q}{q(1+t)+1}\right)^{r}=\sum_{n=0}^{\infty}\binom{n+r-1}{r-1} C h_{n, q} \frac{t^{n}}{n!} \tag{16}
\end{equation*}
$$

Theorem 5. For any positive integers n and r, we have

$$
\binom{r}{n} \sum_{i=0}^{r}\binom{r-n}{i-n} q^{i}=\frac{(1+q)^{r}}{n!} C h_{n, q} \sum_{i=0}^{n} \sum_{k=0}^{i}(-1)^{k}\binom{i}{k}\binom{r+i-1}{i}\binom{n+k-1}{k-1} .
$$

Proof. For $f(t)=\frac{q(1+t)+1}{1+q}$, by (11), we have
$g(t)=\frac{-q t}{q(1+t)+1}$.
From Binomial theorem, we have

$$
\begin{align*}
& f(t)^{r}=\left(\frac{q(1+t)+1}{1+q}\right)^{r}=\frac{1}{(1+q)^{r}}(q(1+t)+1)^{r} \\
& =\frac{1}{(1+q)^{r}} \sum_{i=0}^{r}\binom{r}{i} q^{i}(1+t)^{i}=\frac{1}{(1+q)^{r}} \sum_{n=0}^{\infty} \sum_{i=0}^{r}\binom{r}{i}\binom{i}{n} q^{i} t^{n} \tag{17}
\end{align*}
$$

which, by Binomial theorem and (16), we write

$$
\begin{aligned}
& g(t)^{i}=\left(\frac{1+q}{q(1+t)+1}-1\right)^{i}=\sum_{k=0}^{i}(-1)^{i-k}\binom{i}{k}\left(\frac{1+q}{q(1+t)+1}\right)^{k} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{i}(-1)^{i-k}\binom{i}{k}\binom{n+k-1}{k-1} C h_{n, q} \frac{t^{n}}{n!} .
\end{aligned}
$$

Hence, with the help of (11), by comparing coefficients of t^{n}, we obtain that
$a_{n}^{(i)}=\sum_{k=0}^{i}(-1)^{i-k}\binom{i}{k}\binom{n+k-1}{k-1} C h_{n, q}$.

By (10), (14) and (15), we get
$A_{n}^{(r)}=\sum_{i=0}^{n} \sum_{k=0}^{i}(-1)^{k}\binom{i}{k}\binom{r+i-1}{i}\binom{n+k-1}{k-1} C h_{n, q}$,
and
$f(t)^{r}=\sum_{n=0}^{\infty} \sum_{i=0}^{n} \sum_{k=0}^{i}(-1)^{k}\binom{i}{k}\binom{r+i-1}{i}\binom{n+k-1}{k-1} C h_{n, q} \frac{t^{n}}{n!}$.
Finally, (17) and (18) give that
$\sum_{i=0}^{r}\binom{r}{i}\binom{i}{n} q^{i}=\frac{(1+q)^{r}}{n!} C h_{n, q} \sum_{i=0}^{n} \sum_{k=0}^{i}(-1)^{k}\binom{i}{k}\binom{r+i-1}{i}\binom{n+k-1}{k-1}$.
By the equality $\binom{r}{i}\binom{i}{n}=\binom{r}{n}\binom{r-n}{i-n}$, we have the proof.
Theorem 6. For any positive integers n and r, we have
$\sum_{i=1}^{n} \sum_{k=0}^{i} \sum_{j=0}^{k}(-1)^{k}\binom{i}{k}\binom{k}{j}\binom{r+i-1}{i}\binom{n+j-1}{j-1} \frac{q^{j}}{(1+q)^{k}}=(1+q)^{r-n} \sum_{k=0}^{r}(-1)^{k}\binom{r}{k}\binom{n+k-1}{k-1} \frac{q^{k}}{(1+q)^{k}}$.

Proof. The proof is similar to the proof of above theorems, taking $f(t)=(1+q) \frac{1+t}{1+q+t}$ and using the generating function
$\sum_{n=0}^{\infty}\binom{n+r-1}{r-1} \frac{(-1)^{n}}{(1+q)^{n}} t^{n}=\frac{(1+q)^{r}}{(1+q+t)^{r}}$.

Acknowledgment

We would like thank the anonymous reviewers for their valuable suggestions.

Conflicts of interest.

There are no conflicts of interest in this work.

References

[1] Genčev M., Binomial sums involving harmonic numbers, Math. Slovaca, 61(2) (2011) 215-226.
[2] Liu G., Generating functions and generalized Euler numbers, Proc. Japan Acad., 84(A) (2008) 29-34.
[3] Wang N.L., Li H., Some identities on the higher-order Daehee and Changhee numbers, Pure and Applied Mathematics Journal, 4(5-1) (2015) 33-37.
[4] Kim T., Mansour T., Rim S.-H., Seo J.-J., A note on q-Changhee polynomials and numbers, Adv. Studies Theor. Phys., 8(1) (2014) 35-41.
[5] Graham R.L., Knuth D.E., Patashnik O., Concrete Mathematics. 2nd. Edition, Addison-Wesley Publishing Company, (1994).
[6] Kim D.S., Kim T., Lee S.-H., Seo J.-J., Higher-order Daehee numbers and polynomials, International Journal of Mathematical Analysis, 8 (5-6) (2014) 273-283.
[7] Kim T., Lee S.-H., Mansour T., Seo J.-J., A note on q-Daehee polynomials and numbers, Adv. Stud. Comtemp. Math., 24(2) (2014) 155-160.
[8] Srivastava H.M., Choi J.-S., Series associated with the zeta and related functions. Dordrecht, Boston and London, Kluwer Acad. Publ., (2001).
[9] Charalambides C.A., Enumerative Combinatorics. Boca Raton, London, New York, Chapman
\& Hall/CRC , (2002).
[10] Comtet L., Advanced Combinatorics. Reidel, Doredecht, (1974).
[11] Kwon H.l., Jang G.W., Kim T., Some Identities of Derangement Numbers Arising from Differential Equations, Advanced Studies in Contemporary Mathematics, 28(1) (2018) 73-82.
[12] Park J.W., Kwon J., A note on the degenerate high order Daehee polynomials, Appl. Math. Sci., 9 (2015) 4635-4642.
[13] Rim S.-H., Kim T., Pyo S.-S., Identities between harmonic, hyperharmonic and Daehee numbers, J. Inequal. Appl., 2018 (2018) 168.

