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ABSTRACT

This study reports on double—differential alpha emission cross sections for '°0, 27Al, 3*36Fe, Nji, 80y, 120Gn,
97 Au, 2%8Pb and 2%Bi target nuclei with the TALYS code at 62 MeV proton energy. The calculations involved
the pre-equilibrium exciton model and the Hauser-Feshbach model within TALYS code. The calculated results
were compared with the experimental data taken from the literature. The results are in good agreement.

Keywords: Alpha emission spectra, pre-equilibrium exciton model; Hauser — Feshbach model.

1. Introduction

The emitted light charged particles (p, d, t, *He, o)
in nucleon induced reactions are needed to
understand various accelerator applications, such as
accelerator-driven transmutation for nuclear waste,
radiation damage estimation of semiconductor
memory devices in space, and advanced proton
therapy [1]. Even though the cross section for light
particle production including neutrons is very large
and compares well with the reaction cross section at
a given energy, this process is not fully understood
because of the emission process of these light
particles being rather complex. The emissions of
light particles are mainly due to three different
processes at different time scales — compound,
direct and pre-equilibrium. Moreover, there are
indications that they are also emitted during the
formation stage of the compound nucleus [2].

Proton induced nuclear reactions data both
evaluated and compiled at intermediate energy are
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needed for a wide range of technical applications
including the activation study for advanced nuclear
systems, like accelerator-driven systems (ADS) and
the study of production of radionuclides used in
medicine and industry [2-6]. Many studies on the
ADS are available in literature [7-9].

In general, further development of nuclear reactions
theory strongly depends on the understanding of
nucleon-induced reactions. These reactions can
produce accurate nuclear reaction data of common
cross-sections and energy-differential cross sections
and especially the data of neutron and proton-
induced energy-angle correlated spectra of
secondary light particles such as neutron, proton,
deuteron, triton, helium and alpha-particles.
Reaction cross sections are required to benchmark
the nuclear reaction codes in the incident energy
region where many reaction mechanisms compete
[10].
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The accurate calculations of high-energy proton
transport in matter require information on
secondary particle production in nuclear reactions
[11]. The self-consistent calculation and analyses
using nuclear theoretical models are indispensable
because the experimental data of charged particle
reactions are scarce. Besides, the nuclear cross-
section data are needed for refinement of the
nuclear theories. The main aim is to obtain the
reaction systematic to mediate the reaction cross
section evaluation for the prediction and calculation
of nuclear reaction cross-sections [12-17].

In this study, double—differential alpha emission
cross sections were calculated for '°0, ?’Al, >*°Fe,
ONi, 80Y, 129Sn,!'7Au, 2%Pb and 2B target nuclei
and were compared with experimental data
available in the literature at the incident proton
energy of 62 MeV.

2. Calculation methods

In this study, double — differential cross sections for
proton induced reactions of '°O, 2’Al, *>°Fe, ®Nji,
80y, 1208n, "7Au, 2%Pb and 2"Bi targets were
calculated using the pre-equilibrium exciton and the
Hauser—Feshbach models implemented in the
TALYS code. The new expressions for internal
transition rates and new parameterization of the
average squared matrix element for the residual
interaction could be obtained for pre-compound
model using the optical model potential [16].

The TALYS code was developed to analyze and
predict nuclear reactions involving neutrons,
photons and light charged particles (A < 4) in the
energy range of 1 keV to 200 MeV for target nuclei
heavier than carbon [17]. The default model to
describe the pre-equilibrium process in TALYS is
the two-component exciton model (EM) where the
time evolution of the nuclear state is described by
the total energy of the system and the total number
of particles (protons and neutrons) above the Fermi
surface and corresponding holes below it. A
detailed description of the model is available [18].
TALYS includes the phenomenological model
proposed by Kalbach [19] to take into account the
nucleon transfer (NT) and the knock-out (KO)
reactions which are not included in the exciton
model. The total pre-equilibrium (PE) cross section
is sum of these three contributions:

dO'PE dO'EM dO'NT dG’KO

=+ (1)

dE dE dE dE

Three parameters in TALYS can be used to control
how to add the NT and the KO contributions. In the
pre-equilibrium region the input parameter allows
to switch on or off the use of the Kalbach model for
NT (pickup, stripping) and KO reactions in addition
to the exciton model. Cyyrip and the Cinock are two
adjustable parameters, for the NT and the KO
processes respectively, to scale the complex-
particle pre-equilibrium cross section per outgoing
particle. The scaling factor can vary between 0 and
10.

3. Results and conclusions

Double differential cross sections are consistently
calculated using nuclear theory models for 'O,
27A1, 54’56F€, 60Ni, 80Y, 12081’1, 197Au, ZOSPb, and 209Bi
target nuclei at the incident proton energy of 62
MeV. Results calculated for double differential
cross sections of alpha emission are compared with
experimental data as shown in Figs. 1 to 10. The
shape of the curve and the magnitude of calculated
results at all emission angles are in agreement with
experimental data. The theoretical models provide a
good description of the shapes and magnitude of the
double differential cross section of alpha emission
for given emission angles and energies.
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Fig. 1 The comparison of calculated double
differential cross-section of (p,o) reaction on '°O
with the experimental data reported in literature.
Experimental values were taken from EXFOR [20].
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Fig. 2 The comparison of calculated double
differential cross-section of (p,o) reaction on 2’Al
with the experimental data reported in literature.
Experimental values were taken from EXFOR[20].
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Fig. 3 The comparison of calculated double
differential cross-section of (p,a) reaction on >Fe
with the experimental data reported in literature.
Experimental values were taken from EXFOR [20].
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Fig. 4 The comparison of calculated double
differential cross-section of (p,o) reaction on >°Fe
with the experimental data reported in literature.
Experimental values were taken from EXFOR [20].
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Fig. 5 The comparison of calculated double
differential cross-section of (p,o) reaction on Ni
with the experimental data reported in literature.
Experimental values were taken from EXFOR [20].
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Fig. 6 The comparison of calculated double

differential cross-section of (p,a) reaction on %Y

with the experimental data reported in literature.

Experimental values were taken from EXFOR [20].
. 120,
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Fig. 7 The comparison of calculated double
differential cross-section of (p,a) reaction on '2°Sn
with the experimental data reported in literature.
Experimental values were taken from EXFOR [20].



Sarptin et al./Journal of Nuclear Sciences 1 (2014) 1-5

197
1 Au (p,a) at 61.5 MeV

....

Diff Cross Sec (mb/Sr/MeV)

10 ) * Bertrand et al., 1969
——TALYS 1.2

¥ T T T T v T
10 20 30 40 50 60 70
Alpha Energy (MeV)

Fig. 8 The comparison of calculated double
differential cross-section of (p,a) reaction on '7Au
with the experimental data reported in literature.
Experimental values were taken from EXFOR [20].
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Fig. 9 The comparison of calculated double
differential cross-section of (p, a) reaction on 2%Pb
with the experimental data reported in literature.
Experimental values were taken from EXFOR [20].
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Fig. 10 The comparison of calculated double
differential cross-section of (p, o) reaction on **Bi
with the experimental data reported in literature.
Experimental values were taken from EXFOR [20].

TALYS code calculations were in the framework of
the pre-equilibrium exciton model and the Hauser—
Feshbach model. The calculation results were
compared with the available experimental data with
conclusions that can be summarized as follows:

1. All double differential cross sections are
consistently calculated using nuclear theory
models for '°0, ?7Al, *%Fe, “Ni, 30y, 120Sn,
97Au, 2%8Pb, and 2”Bi target nuclei at the
incident proton energy of about 62 MeV (Figs.
1-10).

2. The pre-equilibrium models provide the good
description of the shapes and magnitude of the
double differential cross section of alpha at the
incident proton energy of 62 MeV.

3. All of the present results have been
transformed into ENDF formatted data files for
application.

4. In this study, possible production routes of
alpha that could be produced in the Proton
Accelerator (PA) of Turkish Accelerator
Center (TAC) have been investigated at the
incident proton energy of 62 MeV.
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