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Abstract: Flow patterns for incompressible, steady flows in a Z-shaped domain 
with two lids moving in the same direction are determined by using the numerical 
method and nonlinear dynamical systems. The cavity type flow problem governed 
by the Stokes equation contains many different flow structures within the region 

as the heights of the cavity (
1

h and 
2

h ) varied. By examining the transformation of 

these structures, vortex formation scenarios within the cavity are obtained. 
  
  

Z-Şekilli Kavitideki Akış Desenleri ve Çatallanmalar 
 
 

Anahtar Kelimeler 
Z-şekilli kaviti, 
Akış yapıları, 
Çatallanmalar, 
Fem, 
Girdap oluşumu  

Öz: İki kapağı aynı yönde hareket eden Z-şekilli bölgedeki sıkıştırılamaz, durağan 
akışlar için akış desenleri sayısal yöntem ve lineer olmayan dinamik sistemler 
kullanılarak belirlendi. Stokes denklemi tarafından yönetilen kaviti tipi akış 

problemi, kavitinin (
1

h ve 
2

h ) yükseklikleri değiştikçe bölgede birçok farklı akış 

yapısı içerir. Bu yapıların dönüşümü incelenerek bölgedeki girdap oluşum 
senaryoları belirlendi. 

  
*İlgili Yazar, email: ecelik@erciyes.edu.tr 
1. Introduction
 
Many studies have been conducted on the flow transformations and the vortex formation mechanism in the 
fluid-filled cavity of different geometries. Gürcan[1] investigated the effect of the Reynolds number in the range 

[0,100]Re  on the flow patterns and their bifurcations in a double-lid-driven cavity with free surfaces for 

varying A  and three values of speed ratios ( 1,0,1)S . Then, Gürcan et al. [2] considered Stokes flow in a 

rectangular driven cavity of depth 2H  and width 2L , with two stationary side walls and two lids moving in 
opposite directions. They showed changes in the streamline as the cavity aspect ratio A  and speed ratio S  

varied. ( , )S A  control space diagram including several critical curves representing flow bifurcations at 

degenerate critical points is constructed. In the continuation of this study, Gürcan et al. [3] turned their focus to 
deep cavities those with large height-to-width aspect ratios, where multiple eddies arise. Gaskell et al. [4] 
investigated the flow in a half-filled annulus lying between horizontal, infinitely long concentric cylinders of radii 

i
R , 

0
R  rotating with peripheral speeds 

i
U ,

0
U . They used Stokes’ approximation to formulate a boundary value 

problem which is solved for the stream function, , as a function of radius ratio 
0

/
i

R R R  and speed ratio

0
/

i
S U U . Recently, Gürcan et al., Gürcan and Bilgil [5,6] analyzed the Stokes flow in a sectorial cavity which is 

governed by two physical control parameters A  and S . Flow structures and eddy genesis mechanisms were 

illustrated in detail with flow patterns and bifurcation diagram. 
 
McQuain et al. [7] studied the flow numerically in a trapezoidal cavity (including the rectangular and triangular 
cavities) with one moving wall. They investigated the effect of cavity geometry on the flow structure and showed 
that streamlines are sensitive to geometric changes. McQuain et al. [7] presented efficient numerical techniques 
to solve the Navier-Stokes equation inside the both equilateral and scalene triangular cavity. Erturk and Gokcol 
[8] also considered 2-D steady incompressible flow inside a triangular cavity with different triangle geometries 
to compare his results with those obtained earlier. 
Bilgil and Gürcan [9] investigated the effect of the Reynolds number on flow bifurcations and eddy genesis in a 
lid-driven sectorial cavity by varying A  for each S . The 2-D Navier-Stokes equations are solved by using the 

finite element method to analyze the flow structures within the cavity. In addition to these geometries, an L-
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shaped cavity has been studied recently. Deliceoĝlu and Aydin [10] studied flow bifurcation and eddy generation 
in a steady, viscous L-shaped cavity with the lids moving in opposite directions using a Galerkin finite element 
method with a stabilization technique. They analyzed topological behavior near a re-entrant corner on the 
boundary and showed the effect of the Reynolds number on flow bifurcations and eddy generation. In the 
continuation of this study, Deliceoĝlu and Aydin [11] formulated the problem as a boundary value problem in the 
case of Stokes flow which is solved by analytically for the same region. They assumed that the flow governs by 

1
h  and 

2
h  which are related to the heights of the region and obtained the 

1 2
( , )h h  control space diagram to 

demonstrate the new eddy mechanism in the cavity. 
 
To our knowledge, there is no study on the new eddy mechanism in a Z-shaped cavity with its upper and lower 

lids moving in the same direction. In this article, we assume that 
1

h  and 
2

h  are parameters governing the flow 

and the control-space diagram is constructed which contains several bifurcation curves representing a 
transformation in the flow structures by using the numerical method and theoretical framework. Thus, the flow 
bifurcations and main scenarios for the new vortex formation mechanisms are obtained. 
 
2.  Material and Method 
 
In this chapter, the boundary value problem formed for steady, viscous and incompressible flow in the two-
dimensional Z-shaped cavity will be solved (as shown in Figure 1). All walls are fixed except for the top and 
bottom lids which move in the same direction at a constant speed ( u 1) and they drive the internal flow. From 

the no-slip boundary conditions, boundary values can be expressed in terms of velocity vector components 
which allows us to obtain solutions in the form of stream function. Since the boundary conditions are not 
continuous at the intersection of the fixed and translating lids, the boundary conditions are forced to smooth 
transition from the sidewall to the top or bottom lids. The width of the flow region is fixed ( 1 5.L ) and the 

different flow patterns and their bifurcations within the cavity are investigated by varying the two control 

parameters 
1

h  and 
2

h  which are related to the height of the lower and upper part of the cavity, respectively. 

 
Figure 1. Boundary conditions for the lid-driven Z-shaped cavity. 

For the Z-shaped cavity, two dimensional slow viscous flow ( 0Re ) will be considered. In this case, Navier-

Stokes equations are transformed to Stokes equations by neglecting inertial forces and then the solutions are 
obtained by the Galerkin finite element approximations. 

Governing equations in an open bounded domain 2R  with the boundary  for the steady, viscous and 

incompressible flow are given by 
 

( )  in ,

 in ,

 on .

p
Re

u u u f

u

u

1

0

0

                          (1) 

 
We will be concerned with Stokes flow in which viscous forces predominate over the inertial forces. The Navier-
Stokes equations are rewritten as the Stokes equations for incompressible Newtonian fluid flows with a low 
Reynolds number by neglecting the non-linear terms in the equation (1); 
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 in ,

 in .

p
Re






  





 

u f

u

1

0

          (2) 

 
In two-dimensional cavity type flow problems, the existence of a stream function has an advantageous such that 
it allows us to work with a single scalar function rather than the velocity field. Stream function can be derived 

from the equations (2) by eliminating the pressure for the case 0Re . If we assume that external force ( f ) is 

absent, a stream function ( , )x y  may be expressed as a unique solution of the biharmonic equation 

 

constant, constant.

x x y y

n

4 4 4
4

4 2 2 4
2 0

         (3) 

 
2.1. Finite element methods for the problem 
 
We can rewrite the two dimensional boundary value problem of (3) as a variational statement by Mitchell [12]: It 

can be find 2

0
( )V H  such that 

 

( , ) ( , ) ,0B d         (4) 

 

for all V  and 2

0
( )H  where 2

0
( )H  is the class of all 2H  functions satisfying the boundary condition 

of (3) and  is the Laplacian operator. In this study, the standard Galerkin finite element method is used to 

solve the biharmonic problem. In this study, we consider Galerkin’s method for constructing an approximate 
solution to the boundary value problem. In the principal of process, the approximation of the problem is 

determined by choice of finite-dimensional subspace 
h

V V  defined on a family of regular quadrangular 

discretization 
h

T  of the domain. To create the discretization of the domain, the bicubic rectangle is chosen as an 

appropriate element for approximating fourth-order problems such as ( , )h h hV   

 
( , ) ( , ) .h h h hB 0  

 

Since the test function 2

h
H , it follows that the basis function 

h
 and its normal derivative are specified, and 

they are continuous across interelement boundaries. This results in such basis function that is the two-
dimensional version of Hermite interpolation functions on a rectangular element. They are constructed by 
substituting the product of a cubic equation in x  by a cubic in y  yielding in a collection of 16 monomials 

 
2 3

2 3

2 2 2 2 2 2 32 3

3 3 3 3 2 3 3

1 1

1 .

y y y

x x xy xy xy

x x x y x y x yy y y
x x x y x y x y

 

 
Then, the solution is attained for the unknown coefficients of these monomials after calculating their values by 
using the following four quantities at each corner of the rectangle: 
 
 

2

, , , .h h h
h x y x y
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3. Results 
 
In this chapter, the mechanism of vortex formation occurring in the Z-shaped cavity with its upper and lower lids 
moving in the same direction will be examined. The flow patterns in the Z-shaped domain are obtained by 

changing the parameters 
1

h  and 
2

h  which are related to cavity heights. While the flow patterns are stable at 

some values of parameter space, the pattern turns into another one by changing of the parameters. This 
transformation in the structure of pattern is called bifurcation.  A curve which refers to the bifurcation in 
degenerate points is called the bifurcation curve, and the space formed by the bifurcation curves is called the 
control space diagram. The method given in the previous section is used to create the control space diagram.  
 

In this study, the control space diagram is obtained for 
1

1.8 1.4h and . .21 4 1 8h  including salient and 

re-entrant corners, see Figure 2. Outside of this range, the flow structures and their bifurcations are the same as 
the rectangular cavity, so the cavity heights are limited at these intervals.  
 

 
Figure 2. The control space diagram for the Z-shaped cavity. The parameter space 

1 2
( , )h h  is divided into different regions 

by the bifurcation curves, and the labels in the each regions refer to the flow patterns given in Figure 3-Figure 5. 

 
A total of 60 different flow patterns are obtained in the control space diagram, 30 for the upper cavity (see Figure 
3, Figure 4, Figure 5) and 30 for the lower cavity. Although the boundary value problem for the Z-shaped cavity is 
not symmetrical, it is interesting that the curves in the control space diagram are symmetrical about y x , as 

shown in Figure 2. This suggests that the vortex formation mechanism in the upper region of the Z-shaped cavity 
also occurs in the lower region of the cavity for corresponding symmetrical values. For example, the flow 
patterns in the upper region of the cavity which are denoted by the numbers (1), (2), (3), (4), (5) in the control 

space diagram appear in the lower region of the cavity and they are denoted by ( s1 ), ( s2 ), ( s3 ), ( s4 ), ( s5 ) in the 

paramater space (see Figure 10). Therefore, the flow patterns that occur within the cavity and the different 
vortex formation mechanisms are obtained only for the upper part of the cavity, and due to symmetry, similar 
expressions and flow topology are also valid for the lower part of the cavity. 



Flow Patterns and Bifurcations in a Z-Shaped Cavity  

412 
 

 
Figure 3. Flow patterns which are labelled in the control space diagram: 

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1

1 4 1 5h h h h h h h h h h

h h h h h h h h

(1) - . ,  . , (2) =-1.47, =1.59, (3) =-1.47, =1.65, (4) =-1.54, =1.71, (5) =-1.53, =1.785, 

(6) =-1.475, =1.5, (7) =-1.475, =1.5, (8) =-1.47, =1.512, (9) =-1.467, 

 

2 1 2

1 2 1 2

h h

h h h h

=1.517, (10) =-1.49, =1.5,

(11) =-1.5, =1.512, (12) =-1.5, =1.525.
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Figure 4. Flow patterns which are labeled in the control space diagram (continued): 

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

(13) =-1.51, =1.54, (14) =-1.512, =1.514, (15) =-1.545, =1.555, (16) =-1.545, =1.57, (17) =-1.52, =1.552,

(18) =-1.523, =1.562, (19) =-1.53, =1.57, (20) =-1.57, =1.584, 

h h h h h h h h h h

h h h h h h
1 2 1 2

1 2 1 2

(21) =-1.545, =1.607, (22) =-1.514, =1.644, 

(23) =-1.578, =1.587, (24) =-1.562, =1.612

h h h h

h h h h
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Figure 5. Flow patterns which are labeled in the control space diagram (continued): 

1 2 1 2 1 2 1 2 1 2

1 2

(25) =-1.536, =1.639, (26) =-1.525, =1.65, (27) =-1.595, =1.614, (28) =-1.67, =1.715, (29) =-1.69, =1.775,

(30) =-1.765, =1.791

h h h h h h h h h h

h h

 

 
3.1. Bifurcations at the degenerate critical points 
 
It is possible to analyze the local flow topology of the critical points using the tools of dynamic systems. In this 
study, the classification of critical points near a stationary wall or away from boundaries has been made by 
considering the theorems given below. The normal form of stream function at a simple (with singular non-zero 
Jacobian matrix) and non-simple (with zero Jacobian matrix) critical points (near the wall and away from the 
boundary) is given in Theorem 1, Theorem 2, Theorem 3, respectively. Detailed studies can be found in the Brøns 
and Hartnack [13], Gürcan et al. [14], Hartnack [15]. 
 
Theorem 1: Let  is expanded in a power series near a stationary wall 

 

2

, 2
0

i j

i j
i j

y a x y .           (5) 

 

Assuming the non-degenerate conditions 0 3 0a , , ,a2 2 0  a normal form of order 4 for the stream function (5) 

is 

y y b x2 21

2
           (6) 

 
where 
  

,

,

,

,

for

for

a
a

a
a

2 2

0 3

2 2

0 3

1 0

1 0

 

 

and b  is a transformed small parameter. 
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Theorem 2: Let, ,a0 2 , ,a1 2 , ,a0 3  and ,a2 2  be small parameters. Assuming the non-degeneracy conditions ,a1 3 0 , 

,a3 2 0  are satisfied, then the normal form of order 5 for the stream function (5) is 

 

y x y xy x2 3
1 2 3          (7) 

 
where 1 , 2  and 3  are small transformed parameters. 

 

Theorem 3: Let ,a1 0 , ,a0 1 , ,a2 0 , ,a1 1 , and ,a2 0 , ,a3 0  be small parameters. Assuming the non-degeneracy conditions, 

,a3 0 0 a normal form of order 3 for the stream function is 

 

y cx x2 31

2 3
           (8) 

 
where 
 

,

,

,

,

for

for

a

a

a

a

3

0 2

0 2

0

0 3

1 0

1 0

 

 
and c  is transformed small parameters. 

 
There exits two different kinds of simple degenerate critical points close the stationary wall as a bubble creation 
and bubble merging which are illustrated in Figure 6-(a) and Figure 6-(b), respectively. In the first kind, see 
Figure 6-(a), there is a side eddy appearing on the wall with a center and two on-wall saddles connected by 
heteroclinic trajectories. This bifurcation is represented by SE (dash) in the diagram. In the second, BM i, i=1,2 
(dash-dot-dash) represents bubble merging bifurcation at which two on wall saddle points coalesce to produce 
an off wall saddle point, see Figure 6-(b).  

 
Figure 6. Bifurcation diagrams for the normal form of stream function (6) a) 1 , b) 1  . 

 
The flow structure which appears away from boundaries having a saddle with center is named by cusp 

bifurcation and denotes by CPi, i=1,...,5 curves (short-dash), see Figure 7. 

 
Figure 7. Bifurcation diagrams for the normal form of stream function (8). 

 
In the non-simple case, the bifurcation diagram for the fifth-order normal form equation (7) is given in Figure 8. 
GBi, i=1,2 refers to global bifurcation where a separation bubble and separation line interact with an in-flow 
saddle point and creates the same flow structure in the opposite direction. The flow patterns in Figure 2 
correspond exactly to the patterns in Figure 8 which are labeled with the same number as those Figure 2. 
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Figure 8. Local behaviour of non-simple degenerate points near a stationary wall and corresponding flow patterns. 

 
3.2. Vortex formations in the domain 

 
Vortex formation occurs after various flow transformations within the cavity see Figure 9, which shows all 
possible eddy mechanism that increases the number of eddies from 2 to 4.  

 
Figure 9. Schematic representation of the flow pattern numbers in Figure 2 for the vortex formation in the Z-shaped cavity. 
Directed arrows from 1 to 30 illustrate all possible eddy mechanism which form from 2 to 4 eddies. 
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Two basic bifurcation scenarios are observed for the vortex formation in the Z-shaped cavity. We will describe 
them in details. The first scenario occurs if there is a separation line around the re-entrant corner. As shown in 
Figure 10-(1), there are two primary vortices and two corner vortices in the Z-shaped cavity, one in the upper 
and the other one in the lower cavity. The separation line appears around the corner between the upper and 

lower cavity. As 
2

h  increases, a side eddy (separation bubble) appears along the right side wall in the upper part 

of the cavity (Figure 10-(2)). As 
2

h  gradually increases, the left corner vortex grows and approaches the re-

entrant corner point. Then a pitchfork bifurcation occurs between the corner point, and the separation bubble 
located on the right wall and a saddle point emerge (Figure 10-(3)). With a further increase in height, the 

separation bubble on the wall with a corner vortex is approaching the saddle point, and when the 
2

h  height is 

above the BM 1  bifurcation curve, heteroclinic (saddle-to-saddle) connection merges (Figure 10-(4)). When the 

height of the 
2

h  is above the CP4 curve, the two center points coalesce at the saddle point to produce the second 

vortex in the upper part of the cavity (Figure 10-(5)). Also, the separation line separating the cavity near the 
corner is transformed into a vortex that separates the lower and upper parts of the cavity. As stated earlier, the 
number of vortices reaches two after a similar set of bifurcations for the lower part of the cavity. 
 

 
Figure 10. (a) A section of bifurcation diagram for the mechanism of vortex formation (b) symmetric case. 

 
The second scenario for the formation of a vortex is observed when there is a separation bubble around the 
corner, as shown in Figure 11-(21). There are also two cases for the separation bubble to evolve into vortex 
formation that occurs around the corner. In the first case, the side eddy on the upper right wall and the 
separation bubble formed at the re-entrant corner approach to the saddle point in the cavity and merge each 
other to create a new separatrix and two other separation lines from the one sidewall to the opposite wall. Thus 
the saddle point replaced the structure called separatrix (Figure 11- (24)). Here if you continue to follow the 
arrows, there are again two cases.  Separatrix formed on the right corner either turn into a center by the 
coalescence of the sub-eddies in the saddle point (Figure 11-(27)) or will bring heteroclinic bifurcation by 
getting closer to the left corner vortex (Figure 11-(25)). In the second, the separation bubble becomes closer to 
the left corner vortex and forms the separatrix structure (see Figure 11-(22)). This separatrix will either create a 
heteroclinic bifurcation at the saddle point with a side eddy on the wall (Figure 11-(26)) or turn into a full vortex 
and perform a series of bifurcations in the first scenario (Figure 11-(3)). After these four different structural 
bifurcations, one primary vortex and separatrix appear at the upper part of the cavity (Figure 11-(4)). When the 

height 
2

h  is increased, the two sub-eddies contained in the separatrix structure will join together at the saddle 

point to produce a second vortex (Figure 11-(5)). Thus, at the end of the two scenarios, the number of vortices in 
the upper of the Z-shaped cavity is doubled.  The effect of the separation line or separation bubble that occurred 
around the corner to these bifurcations is presented. 
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Figure 11. A section of bifurcation diagram for the mechanism of vortex formation. 

 
4. Conclusion 
 
In this paper, we obtained the flow patterns occurring in the domain and found out the mechanism of eddy 

generation in the Z-shaped cavity with lids moving in the same direction. We constructed the 
1 2

( , )h h  parameter 

space with a series of bifurcation curves for h. .11 8 1 4  and . .h21 4 1 8 . The flow patterns in the upper 

part for a specific value of heights were observed surprisingly in the lower part for the symmetrical values of 
parameter about the y x . Several flow transformations to increase the number of vortices in the upper 

cavity from one to two are shown schematically.  
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